Document Type

Article

Publication Title

Complex Variables and Elliptic Equations

Abstract

The Kerzman–Stein operator is the skew-hermitian part of the Cauchy operator defined with respect to an unweighted hermitian inner product on a rectifiable curve. If the curve is continuously differentiable, the Kerzman–Stein operator is compact on the Hilbert space of square integrable functions; when there is a corner, the operator is noncompact. Here, we give a complete description of the spectrum for a finite symmetric wedge and we show how this reveals the essential spectrum for curves that are piecewise continuously differentiable. We also give an explicit construction for a smooth curve whose Kerzman–Stein operator has large norm.

First Page

478

Last Page

492

DOI

10.1080/17476933.2014.944865

Publication Date

4-3-2015

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.