Document Type


Publication Title

Topology and its Applications


The main theorem asserts that every 2-dimensional homology class of a compact simply connected PL 4-manifold can be represented by a codimension-0 submanifold consisting of a contractible manifold with a single 2-handle attached. One consequence of the theorem is the fact that every map of S2 into a simply connected, compact PL 4-manifold is homotopic to an embedding if and only if the same is true for every homotopy equivalence. The theorem is also the main ingredient in the proof of the following result: If W is a compact, simply connected, PL submanifold of S4, then each element of H2(W;ℤ) can be represented by a locally flat topological embedding of S2.

First Page


Last Page




Publication Date




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.