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A B S T R A C T

Given the climate change emergency, reducing energy consumption, which is responsible for most greenhouse gases emissions worldwide, is a priority.
However, the strong historical link between energy consumption and economic growth questions whether continued economic growth is compatible with energy
conservation targets. Conventional final energy analysis (common analysis methods applied at the final energy stage) has provided limited insights to this nexus.
In response, this paper explores the extent to which useful stage analysis provides additional insights using three common methods: aggregate energy-economy
analysis (growth rates, energy intensities, and Index Decomposition Analysis), energy-GDP causality testing, and Aggregate Production Function modelling, using
Spain (1960–2016) as empirical case study.

The results reveal that of the three methods investigated, aggregate energy-economy analysis provides the greatest insights, including that Spain is far from
achieving absolute energy-GDP decoupling. Further, moving to the useful stage indicates that the extent of decoupling is even less than suggested at the final
energy stage, and that increasing final energy consumption has historically fully offset efficiency gains. In contrast, whether applied at the final energy or useful
stage, energy-GDP causality testing and Aggregate Production Function modelling reveal little about the energy-economy nexus — the results even suggest that
these tools are not appropriate and may mislead. Thus, useful stage analysis is necessary but not sufficient for delivering further energy-economy insights; there
is also a need for exploring alternative, reliable, energy-economy analysis methods. Indeed, the lack of robustness of Aggregate Production Function modelling
and energy-GDP causality testing is worrisome.

1. Introduction

1.1. Energy conservation and economic growth, compatible targets?

Energy conservation has been a crucial element of energy policy
since the oil crisis in the 1970s, as energy prices soared and energy
availability decreased in industrialised countries [1–3]. Currently, en-
ergy conservation is predominantly pursued through energy efficiency
policies, and is particularly driven by the climate change emergency,
as energy consumption is responsible for most of greenhouse gases
emissions worldwide [4]. In addition, future energy availability con-
straints, notably due to fossil fuel depletion1 [5–8] and declining energy
returns of energy industries [9–11], also support the need for energy
conservation measures [12].

Concurrently to energy conservation targets (see for instance [13,
14]), economic targets are aimed at more and faster economic growth.
Examples can be found with UK’s ‘‘Clean Growth Strategy’’ [15],
the French ‘‘law for energy transition and green growth’’ [16], or

∗ Corresponding author.
E-mail address: eeear@leeds.ac.uk (E. Aramendia).

1 The peak of extraction for conventional oil was reached between 2005 and 2008, and the global peak of oil extraction may be reached shortly, according to
the International Energy Agency [4, page 74].

2 Note that absolute decoupling differs from relative decoupling, which refers to a situation in which energy consumption increases, but at a slower pace than
economic output.

the European Union’s ‘‘strategy for smart, sustainable and inclusive
growth’’ [17]. In a similar vein, the Organisation for Economic Devel-
opment and Cooperation (OECD) presents growth as the solution for
ending world poverty [18], while the Sustainable Development Goals
(SDGs) describe economic growth as a key development target [19,
see Goal 8]. However, energy consumption and economic growth have
been historically tightly linked at the global scale, and absolute energy-
GDP decoupling — i.e. a reduction of energy consumption alongside an
increase in GDP2 — is currently more an illusion than a reality [20],
further economic growth meaning further energy consumption. Fig. 1
shows this tight relationship at the global scale.

Only a few countries have achieved absolute decoupling [23], and
they have relied on outsourcing energy intensive processes [24,25],
which questions the extent of such a decoupling on a consumption-
based perspective [26,27]. Thus, there are legitimate doubts about
whether energy and economic targets can be achieved together or
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Fig. 1. Economic output (real GDP) as function of energy consumption, both indexed to 1971 (time period 1971–2016). Economic data from the World Bank [21], and energy
data from the International Energy Agency (IEA) [22]. Computed R squared between primary energy and real GDP is 0.9940, and between final energy and real GDP is 0.9935.

not [28] — in which case the economic growth mantra may need to
shift towards a post-growth economics paradigm [29].

1.2. Moving from the final to useful stage for energy-economy analysis

Considering the apparently contradictory energy and economic tar-
gets, and the possible implications, there is a need for an in-depth
understanding of the energy-economy interplay. The energy-economy
nexus can be studied at the primary energy stage (i.e. the energy
extracted from nature), at the final energy stage (i.e. the energy pur-
chased by the end user), or at the useful energy stage (i.e. the energy
actually exchanged for energy services, which depends on the efficiency
of the end-use device utilised). Conventional energy-economy studies
typically adopt a final energy perspective, which presents two main
limits. First, the boundary of final energy analysis prevents assessment
of end-use efficiencies, and therefore fails to quantify the useful energy
exchanged for energy services [30]. Second, using the final energy stage
fails to account for the thermodynamic quality of energy,3 thereby
implicitly assuming that all forms of energy are equally productive. In
response, the exergy economics community [32] bases the analysis on
the useful stage of the Energy Conversion Chain (ECC), which is closer
to delivered energy services and thus to the economic productivity of
energy [33,34], and on the exergy quantification of energy, which is a
thermodynamically consistent measure of the quality of energy [35,36].
Fig. 2 shows the ECC adopted by exergy economics studies.

Appendix A introduces each of the three energy-economy analysis
methods explored in this paper (aggregate energy-economy analysis,
energy-GDP causality testing, and energy extended Aggregate Produc-
tion Function (APF) modelling) in terms of rationale, objectives, as well
as historical background. Next, insights gained from each of the three
methods are presented, both when applied at the final and useful stage.

1.2.1. Aggregate energy-economy analysis
Final stage: decreasing final energy intensities. Conventional final stage
studies tend to find results supporting a decreasing final energy inten-
sity (i.e. the ratio of final energy consumption per economic output)
over time, and therefore a decreasing dependence of the economy

3 Some exceptions can be found when employing monetary-based measures
of the quality of energy through the divisia index method, see for instance
Cleveland et al. [31].

on energy consumption [38–41], as well as converging final energy
intensities across countries [38,42]. Such studies investigate the role
of different factors on energy intensities, such as the effect of energy
prices or taxes on energy intensities [41] and the effect of struc-
tural and technological change through Index Decomposition Analysis
(IDA) [38–40].

Useful stage: relatively constant useful stage intensities and levelling off
efficiency gains. The exergy economics literature finds that, conversely
to final energy intensities, useful stage intensities have been remarkably
constant over time, although most studies focus on EU countries [43–
45] — note that Heun and Brockway also find constant intensities
for Ghana [28], and that Guevara et al. find increasing intensities
for Mexico [46]; the only known case of clearly decreasing useful
exergy intensity so far being China [47]. Such results suggest that
national economies may be, in most cases, more reliant on energy
consumption that final stage studies suggest. In addition, the exergy
economics literature, by extending IDA studies to the useful stage,
found that the aggregate thermodynamic efficiency4 is levelling off in
industrialised countries [28,48,49], which suggests that the decreasing
trend in primary and final energy intensities may not persist. However,
studies regarding developing countries remain rare, which prevents
from generalisation of findings.

1.2.2. Testing for energy-GDP causality
Energy-GDP causality testing at the final stage: an extensive, and yet
inconclusive, literature. The literature regarding the causal relationship
between energy consumption and economic growth has considerably
expanded since the initial controversy opposing Kraft and Kraft [50]
and Akarca and Long [51] (see Table A.1). Forty years later, and
despite numerous studies published, the literature remains inconclu-
sive [52–54]. Indeed, causality tests have proved to be very sensitive
to the parameters of the test carried out, including time span covered,
econometric technique used, and energy consumption metric [54,55].

4 The aggregate thermodynamic efficiency is not consistently defined across
studies and may be defined in primary-to-useful exergy or final-to-useful
exergy terms depending on studies.
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Fig. 2. Representation of the Energy Conversion Chain, figure adapted from Aramendia [37]. Dashed blue line: conventional final energy analysis. Solid blue line: useful stage
analysis. 𝜂1 and 𝜂2 represent respectively the energy efficiency of the first and second conversions, and 𝜖1 and 𝜖2 represent respectively the exergy efficiency of the first and second
conversions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Energy-GDP causality testing at the useful stage: an unexplored area. Only
one of 158 studies reviewed by Kalimeris et al. [54] adopts a useful
stage perspective, more precisely, using useful exergy as energy met-
ric [56]. Warr and Ayres find a unidirectional causality running from
useful exergy consumption to economic output, thereby supporting a
situation where energy has a key role in driving economic growth [56].
This study opens up the prospect that extending causality testing to
the useful stage may have the potential to unlock new insights and
contribute to the so-far inconclusive causality literature.

1.2.3. Energy extended Aggregate Production Function modelling
Final stage in APFs: a popular approach. Energy extended APFs are
currently found at the core of numerous models informing energy and
climate policy [57,58], particularly when coupled with mainstream
Computational General Equilibrium (CGE) models [59,60]. They are
notably used in academia, but also in governmental agencies [61,62]
and central banks [63,64]. Despite the ubiquity of energy extended
APFs, their specification often lacks empirical foundations, and APFs
may be modelled as suits the analyst best [57,65]. It is worth noting
that APFs usually rely to a large extent on an exogenous Total Factor
Productivity (TFP) that represents technological progress to account
for economic growth. Recent efforts have focused on developing qual-
ity adjusted metrics for Factors of Production (FoPs)5 to reduce the
TFP [66–69], but ‘‘there is still a TFP [...] that cannot be ‘explained
away’’’ [70].

Useful stage in APFs: rare studies. The useful stage (in terms of useful
exergy) has been adopted in APF modelling on rare occasions. First,
Ayres and Warr [34,71] were able to account for economic growth
using the Linex APF throughout the last century in the US and Japan
without relying on a TFP, thereby suggesting that technological im-
provements can be understood in terms of increasing useful exergy
available to the society. Second, Santos et al. [72] identified, with
a cointegration-based approach, economically plausible Cobb–Douglas

5 Quality adjusted metrics enable to account for both the quantity of FoPs,
and their quality. Examples include accounting for capital services instead of
capital, and adjusting labour with a human capital coefficient representing
knowledge and skills.

APFs for Portugal (1960–2009), within which useful exergy exerts a key
hold over economic output. Third, Heun et al. [65] found little change
when moving from final energy to useful exergy with Constant Elastic-
ity of Substitution (CES) functions for the UK and Ghana. Fourth, Court
et al. [73] used a Leontief-type APF within a long-term endogenous
growth model, and found that exergy efficiency exerts a crucial hold
on economic growth. Overall, however, it is rare for studies to discuss
the useful stage in APFs.

1.3. Research objectives, novelty, and case study

Conventional final energy analysis has provided limited insights to
the energy-economy nexus. There is therefore a simultaneous, urgent
need to investigate both the limitations to conventional final energy
analysis, and to provide additional insights using the useful stage. In
response, this paper sets two objectives:

• Compare the merits of conventional energy-economy analysis
methods: aggregate energy-economy analysis (growth rates, en-
ergy intensities, IDA), energy-GDP causality testing, and energy
extended APF modelling;

• Identify the merits of moving from the conventional final energy
perspective to a useful stage perspective on the three energy-
economy analysis methods.

Following the exergy economics community, useful exergy is
adopted as the quality adjusted useful stage quantification of en-
ergy; however, results obtained using useful energy are also presented
throughout the paper.

Spain (1960–2016) is selected as case study, for three reasons. First
is the availability of aggregate datasets including useful energy and
exergy. Second, Spain had a late industrialisation compared to other
Western European countries, which can be fully captured in the covered
period 1960–2016 [74,75], during which its real GDP increased seven-
fold. Third, the Spanish economy has suffered from an acute and long
economic recession (approximately 2008–2014, and designated as the
2008 economic crisis in the rest of the paper) in the wake of the 2008
global economic crisis. Most energy-economy studies so far focus on
growing economies; the Spanish case therefore broadens this literature
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Table 1
Outline of Spain’s recent economic history and energy systems development specificities.

Recent economic history The Spanish industrialisation and liberalisation of foreign trade during in the 1960s and 1970s was accompanied by an important
economic growth as well as a surge in industrial production, so that the period is sometimes referred to as the ‘‘Spanish Miracle’’
[74–76]. In the mid-1970s, Spain entered a period of economic stagnation, due to the combination of the oil shocks causing global
stagflation as well as changes in the Spanish political regime, which shifted from a dictatorship towards a representative democracy in
the late 1970s [77]. Economic growth eventually came back in the mid-1980s as a result of both the 1980s oil glut and the integration
of Spain within the European Union (EU) in 1986 [78]. The period of growth remained roughly until the 2008 economic crisis that
approximately lasted until 2014 — disregarding the short early 1990s recession.

Recent energy system development The Spanish energy transition from organic energy sources (water, firewood, muscle work) to mineral resources (particularly coal and
oil) was nearly completed by 1960, although organic energy sources remained non-negligible until the early 1970s, with the decline of
traditional agriculture [79]. During the whole covered time period, fossil fuel sources are dominant, with oil becoming the prevailing
energy source at the expense of coal in the 1960s, despite the uptick in coal use in the aftermath of the oil shocks [79]. It was only
since 1997, when the liberalisation of the electricity sector began as a consequence of EU policy, that effective implementation to
support modern renewable energy (particularly, wind and solar technologies — hydroelectricity plants having a long history in Spain)
was implemented [80]. The period of favourable legislation entailed a rapid surge of renewable energy supply [81], until being
reversed in the aftermath of the 2008 economic crisis, which resulted in a renewable energy development paralysis [82], which did not
prevent new actors, such as renewable electricity cooperatives, to emerge throughout the country [80].

to cases of economies facing recession. Table 1 outlines the specificities
of the recent Spanish economic history and energy system development.

This study contains several novelties. First, the paper presents the
first critical assessment of applying energy-economy analysis methods
at the final stage versus at the useful stage. Second, it provides the
second (after Warr and Ayres [56]) energy-GDP causality test that
uses the useful exergy metric as a quality adjusted measure of energy
consumption. Third, instead of performing a single causality test, an
innovative methodology for conducting a wide range of causality tests
(varying many parameters) is introduced, and a meta-analysis of the
results is conducted. Fourth, the exogenous TFP, which is usually
included in APFs, is removed from the specification of APFs, as its in-
clusion seems a priori unjustified. Fifth, an original method for assessing
the robustness and predictive capacity of fitted APFs is introduced and
tested.

2. Methodology

2.1. Data

All data introduced hereafter are indexed to 1960, which enables
display of time series for different variables in a single graph, without
altering results. The R language is used as programming environment
for conducting all calculations and statistical tests [83]. Input data as
well as R code are available in the Data Repository associated with the
paper [84].

2.1.1. Economic data
Economic data are taken from the Penn World Table (PWT) 9.1

[85].

GDP data. Three different GDP metrics are used in this study. Firstly,
the real GDP (rgdpna) metric is used for APF modelling as it is appropri-
ate when studying economic output over time in a single country: ‘‘if
the sole object is to compare the growth performance of economies,
we would recommend using the rgdpna series’’ [85, p. 3157]. Sec-
ondly, the expenditure-side real GDP at chained Purchasing Parity
Power (PPP) (rgdpe) and output-side real GDP at chained PPPs (rgdpo)
are used alongside rgdpna for causality testing. rgdpe and rgdpo are
both expressed in real GDP in PPP and are therefore relevant for
cross-countries as well as over time studies [85].

Capital data. Several options can be used for quantifying capital data.
The Perpetual Inventory Method (PIM) calculates capital stocks by
adding new capital stocks and subtracting obsolete stocks. When out-
of-date stocks are defined as the existing assets retired, a Gross Capital
Stocks (GCS) metric is adopted. Conversely, when the depreciation of
current assets is taken into consideration, one can define the Net Capital
Stock metric (NCS), that equates GCS minus depreciation of existing

stocks [58]. The NCS metric is adopted as a quality unadjusted metric
for capital using directly the values of the capital stock (rnna) metric.

NCS does however not account for the heterogeneity of capital and
for the differences in its economic productivity. The concept of NCS
has therefore been extended to capital services in order to account for
the productivity of capital. Capital services are defined as a ‘‘flow of
productive services from the cumulative stock of past investments’’ [68,
p. 7]. Capital services (rkna) is consequently adopted as the quality
adjusted metric for capital.

Labour data. Likewise, total hours worked is defined as the quality
unadjusted metric for labour, which is calculated by multiplying the
emp and avh variables (see PWT), where emp is the variable for people
engaged in labour, and avh is the variable for the average yearly hours
worked by a labourer. The quality adjusted metric for labour is defined
by multiplying the quality unadjusted metric by the human capital
index variable hc. The quality adjusted metric accounts for skills and
knowledge of labourers.

2.1.2. Energy and exergy data
Primary and final energy data. These data are taken from the Interna-
tional Energy Agency (IEA) Extended Energy Balances dataset [22].

Useful energy and exergy data. These data are taken from the Societal
Exergy Analysis (SEA) conducted by Aramendia [86].

2.2. Energy intensities, growth rates, and Logarithmic Mean Divisia Index
(LMDI)

2.2.1. Energy intensities calculation
The primary energy intensity 𝐼𝐸𝑝

in each year is defined as follows:

𝐼𝐸𝑝
=

𝐸𝑝

𝑌
, (1)

where 𝑌 stands for GDP, and 𝐸𝑝 for primary energy. The final energy,
useful energy, and useful exergy intensities of the Spanish economy
(noted 𝐼𝐸𝑓

, 𝐼𝐸𝑢
and 𝐼𝑋𝑢

) are defined in the same way.

2.3. Growth rates calculation

An average 𝑛-year growth rate over time for a variable 𝑥 is defined
as

𝑟𝑛𝑥(𝑡) =
( 𝑥(𝑡)
𝑥(𝑡 − 𝑛)

)
1
𝑛 − 1 . (2)

Following Heun and Brockway [28], growth rates refer to the average
5-year growth rates (𝑛 = 5) throughout the paper, unless stated
otherwise. Sensitivity tests are available in Appendix B.
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2.3.1. LMDI decomposition
LMDI decomposition is a divisia based IDA method that has been

introduced by Ang in 1998 [87] and has been further developed since
then [88–90]. A LMDI-I decomposition analysis of the Spanish useful
exergy supply is conducted in order to shed light on the evolution of
the economic useful exergy intensity. The LMDI-I method is selected,
as recommended by Ang [88,89] due to its simpler formulation as
well as two mathematical properties: consistency in aggregation and
perfect decomposition at the subcategory level. Following previous
studies [28,47], the Spanish useful exergy supply is specified as a sum
of different quantities:

𝑋𝑢 =
∑

𝑖∈

∑

𝑗∈
𝑋𝑢,𝑖𝑗

=
∑

𝑖∈

∑

𝑗∈
𝐸𝑓

𝐸𝑓,𝑖

𝐸𝑓

𝐸𝑓,𝑖𝑗

𝐸𝑓,𝑖

𝑋𝑢,𝑖𝑗

𝐸𝑓,𝑖𝑗
,

(3)

where  is the subset of economic sectors considered, and  refers to
the subset of end-uses considered in the Spanish SEA conducted (sub-
sets are defined in Supplemental Information (SI), Section 1). Hence,
𝑋𝑢,𝑖𝑗 is the useful exergy consumed by a particular end-use 𝑗 ∈ 
within a particular economic sector 𝑖 ∈ . The LMDI-I decomposition is
conducted in multiplicative terms [89], which enables to write, at any
time 𝑡:
𝑋𝑢,𝑡

𝑋𝑢,𝑡=0
= 𝐷𝑡𝑜𝑡 = 𝐷𝑓𝑒𝑛𝐷𝑠𝑡𝑟𝐷𝑠𝑢𝑏𝐷𝑒𝑓𝑓 , (4)

where 𝐷𝑓𝑒𝑛 refers to the influence of the aggregate final energy supply,
𝐷𝑠𝑡𝑟 to the effect of variations in the share of final energy consumed by
each economic subsector 𝑖 ∈  — i.e. structural changes — 𝐷𝑠𝑢𝑏 refers
to end-uses changes within each economic sector, and 𝐷𝑒𝑓𝑓 refers to
efficiency gains in the conversion of final energy into useful exergy.
The formulae for these coefficients are presented in SI, Section 1.

2.4. Testing for energy-GDP causality

From the broad family of causality tests, the Granger causality
test [91] is selected for our study.6 The methodology described there-
after enables to identify three mutually exclusive types of Granger
causality: causality running from economic output to energy consump-
tion (conservation hypothesis), causality flowing from energy con-
sumption to economic output (growth hypothesis), and bidirectional
causality (feedback hypothesis), which is identified when the two first
causality coexist. The energy consumption and economic output 1-year
growth rates are computed for conducting causality tests.

2.4.1. Selected Granger tests
Three different implementations of the Granger causality test are

used: firstly, the causality function from the vars package [93], sec-
ondly, the grangertest function from the lmtest package [94], and
thirdly, the Toda–Yamamoto (T–Y) procedure [95], for which the
implementation described by Pfeiffer [96] is adapted.

2.4.2. Obtaining stationary time series
Conversely to the T–Y implementation, the causality and

grangertest functions require stationary time series, otherwise they may
lead to spurious results [97]. The energy consumption and GDP growth
rates time series were made stationary by differentiating once before
using the causality and grangertest functions, while time series are used
as such for the T–Y procedure. (See SI, Section 2.)

6 See for instance Sims for a different econometric technique [92].

2.4.3. Choice of metrics
Three energy metrics are used for conducting causality tests: final

energy, useful energy, and useful exergy. Likewise, three economic
output metrics are used: rgdpna, rgdpe and rgdpo. Each test is conducted
for each of the nine possible (energy metric, economic output metric)
combinations.

2.4.4. Considered time period
The covered time period 1960–2016 corresponds to 56 data points

once the growth rates are calculated. The time period has been varied
in order to cover each possible time period of at least 30 years. The total
number of time periods possible for both the T–Y (𝑛T-Y) procedure and
the direct implementations of the Granger causality test (𝑛Granger) are
therefore defined as:

𝑛T-Y =
56
∑

𝑖=30

56−𝑖+1
∑

𝑗=1
1 = 351 , (5)

𝑛Granger =
55
∑

𝑖=30

55−𝑖+1
∑

𝑗=1
1 = 378 . (6)

The three different implementations of the Granger causality test, for
each of the nine combinations of energy and economic output metrics,
are conducted for each possible time period.

2.4.5. Specification and validity of the Vector Autoregression (VAR) model
The VARselect function of the vars package was used in order to

determine the number of lags to be included in the VAR model. This
function returns the optimal number of lags according to four different
criteria. (See SI, Section 2.) For each of the three procedures, of the
nine possible combinations of metrics, and of the possible time periods
(351 or 378 depending on the procedure), a VAR model is defined for
each optimal lag returned (the number of which is between one and
four depending on the optimal number of lags specified by the four
criteria). Thereafter, each VAR model specified was tested for both
misspecification and stability. (See SI, Section 2.) Only VAR models
which were found stable and non serially correlated were deemed valid
and included in the results.

2.4.6. Summary of the tests conducted
A summary of the number of causality tests carried out for each of

three procedures is presented in Table 2. A total number of 16,849 tests
have been carried out, of which 14,821 are regarded as valid and 2,028
as void. Only tests regarded as valid are included in the meta-analysis
conducted.

2.5. APF modelling

2.5.1. Formulating APF specifications
Two functional forms were selected for conducting our APF mod-

elling. Firstly, the CES, which is increasingly used in the energy-
economy modelling field [58], and secondly the Linex function, that
has been used in key studies on economic growth [34,71,98]. The
Cobb–Douglas functional form was disregarded, as it implies perfect
substitution between the FoPs (elasticities of substitution equal to
unity), and seems to be an illegitimate assumption. Next, the neoclassi-
cal assumption (cost share theorem) that output elasticities of the FoPs
equate their cost shares in the national accounts was a priori rejected.7
Instead, we determine output elasticities empirically by fitting APFs to
historical data.

In addition, the use of an exogenous TFP for technological progress
was dismissed. Indeed, it was considered that technological progress

7 Different reasons for rejecting this assumption can for instance be found
in [99–101], including that cost shares can hardly be defined for natural
resources in national accounts and that this theorem only holds with a set
of dubious assumptions.
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Table 2
Summary of the tests carried out for each of the three procedures described in Section 2.4.1. T–Y: Toda–Yamamoto.

Procedure Couples of metrics Time periods Different lags Total Valid Void

T–Y 9 378 1 ≤ 𝑛 ≤ 4 5,195 4,439 756

causality 9 351 1 ≤ 𝑛 ≤ 4 5,827 5,191 636

grangertest 9 351 1 ≤ 𝑛 ≤ 4 5,827 5,191 636

can be accounted for by the estimates of the sole FoPs. This paper
argues that technological progress can be captured independently by
using quality adjusted FoPs that account for technological change.
Indeed, by using useful exergy, technological improvements within
the energy system and the ECC are accounted for, while by using
capital services, the increase in productivity of capital entailed by
technological improvements and new technologies are accounted for.8
To conclude, assumptions lead to two different functional APFs. Firstly,
the three FoPs CES APF is defined as

𝑦 = 𝜃
{

𝛿
[

𝛿1𝑥
−𝜌1
1 + (1 − 𝛿1)𝑥

−𝜌1
2

]
𝜌
𝜌1 + (1 − 𝛿)𝑥−𝜌3

}− 1
𝜌
, (7)

where (𝑥1; 𝑥2; 𝑥3) stands for the triplet of the FoPs. Three different
configurations, or nesting structures can therefore be defined [58,65].
These will be referred as the (𝑘𝑒), 𝑙, (𝑘𝑙), 𝑒 and (𝑙𝑒), 𝑘 configurations,
where 𝑒 stands for energy consumption, 𝑘 for capital inputs, and 𝑙 for
labour inputs. Therefore, three different nesting structures are tested
for the single CES APF. The fitted parameters are the coefficients 𝜃, 𝛿,
𝛿1, 𝜌 and 𝜌1. Then, the Linex APF is defined as

𝑦 = 𝜃𝑒 exp

{

2𝑎0
[

1 − 𝑙 + 𝑒
2𝑘

]

+ 𝑎1
[ 𝑙
𝑒
− 1

]

}

, (8)

where FoPs are not interchangeable. Fitted parameters are the coeffi-
cients 𝜃, 𝑎0 and 𝑎1.

2.5.2. Fitting to historical data
For each functional form, one fit with both quality unadjusted and

adjusted FoPs is performed. An Ordinary Least Squares (OLS) fitting
technique is used, which is described in Heun and Brockway [65].
This approach seeks to find the parameters that minimise the Sum of
Squared Errors (SSE), defined as:

SSE =
∑

𝑖

(

ln(𝑦𝑖) − ln(�̃�𝑖)
)2

, (9)

where �̃�𝑖 stands for fitted economic output in year 𝑖. These fits are
conducted using the micEconCES package [103] for the CES APFs and
the MacroGrowth package [104] for the Linex APFs.

A structural break is identified in the Spanish real GDP time series
with the beginning of the 2008 economic crisis. Therefore, two fits are
conducted for both quality unadjusted and adjusted FoPs. Firstly, APFs
are fitted over the whole time period 1960–2016. Secondly, APFs are
fitted over the time period 1960–2008 predating the structural break,
and thereafter extrapolated for the period 2009–2016. The reason is
twofold: first, to explore whether the fitted econometric parameters
vary significantly depending on the fitting time period, and second, to
test the ability of fitted APFs to both cope with structural breaks, and
to account for the 2008 economic crisis.

8 Secondly, the aggregate measure of FoPs is also to some extent a measure
of technological progress. As Kümmel states, ‘‘technological progress has
often meant more energy-intensive production processes in the form of more
powerful machines handled by labour’’ [102, p. 291]. Hence, energy con-
sumption can be used as a proxy for technological progress, as technological
progress needs energy consumption in order to become ‘‘productive’’. Likewise,
one can argue that as technological change makes capital more productive,
i.e. valuable, its monetary value increases, and that therefore, technological
change is equally embedded to some extent by the aggregate measure of
capital.

Fig. 3. Aggregate values of primary, final and useful energy, as well as useful exergy,
alongside real GDP, using the rgdpna measure. All time series are indexed according to
their value in 1960. The integration of Spain within the European Union in 1986, as
well as the beginning of the 2008 economic crisis, are marked in dotted lines.

2.5.3. Comparing fitted APFs
Two different values are used as indicator of the quality of the

obtained fit. First, when the fit is conducted over the whole time period,
the SSE1 is defined as

SSE1 =
2016
∑

𝑖=1960

(

ln(𝑦𝑖) − ln(�̃�𝑖)
)2

. (10)

Conversely, when the fit is conducted over the time period 1960–
2008 and thereafter extrapolated, the focus is on the ability of the
extrapolated values to fit actual GDP. Therefore, the SSE2 value is
defined as9

SSE2 =
2016
∑

𝑖=2009

(

ln(𝑦𝑖) − ln(�̃�𝑖)
)2

. (11)

3. Results

3.1. Growth rates, energy intensities, and LMDI decomposition

3.1.1. Aggregate energy consumption and economic output
Fig. 3 presents the aggregate measures of energy consumption

alongside real GDP. Aggregate energy consumption (whether analysed
at the primary, final or useful stage) and economic output tended to
evolve together in the whole time period (see Table 1). An important
increase in energy consumption is observed in the 1960s and 1970s
(during the so-called ‘‘Spanish Miracle’’), that lasted until the period of
economic stagnation in the 1970s. Energy consumption and economic

9 Note that conversely to the SSE1 value, the SSE2 is not the parameter to
be optimised during the fit. The SSE2 is only an indicator of the quality of the
extrapolation.
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growth came back simultaneously in the mid-1980s as a result of the
oil glut and of the European integration [78], until the serious 2008
economic crisis (roughly 2008–2014), during which both aggregates
dropped.

3.1.2. Growth rates correlation and extent of historical decoupling
Fig. 4 shows the tight correlation between energy consumption and

economic output growth rates. Most data points correspond to a situ-
ation of hypercoupling, whether final energy or useful exergy is used.
Only a few data points correspond to a situation of absolute decoupling;
their number decreases from six when using final energy (Fig. 4.a) to
four when using useful exergy (Fig. 4.b). Thus, absolute decoupling
is absolutely unprecedented in the Spanish case, and, leaving apart
a few odd data points, further economic growth has always meant
further energy consumption. In addition, the number of data points
corresponding to a relative decoupling situation drops from twelve
when using final energy to nine when using useful exergy. Hence,
useful exergy analysis provides less optimistic insights on the extent
of historical decoupling than final energy analysis. Appendix B shows
that observations hold when varying the calculation of the average
growth rate, Appendix C shows similar graphs using primary and useful
energy, Appendix D shows the minor influence of the GDP metric, and
SI (Section 3) shows energy and GDP growth rates time series.

3.1.3. Final energy consumption and thermodynamic efficiency growth
rates: evidence of high energy rebound?

Fig. 5 shows final energy consumption growth rates versus final-
to-useful national energy (Fig. 5.a) and exergy (Fig. 5.b) efficiency
improvements — equally measured in growth rates. Firstly, Fig. 5
shows that final energy consumption tends to evolve in positive corre-
lation with national thermodynamic efficiency. Secondly, Fig. 5 can be
analysed with energy rebound lens. Most of the data points correspond
to a situation in which energy efficiency improvements have been fully
offset by an increasing final energy consumption. Such data points are
identified in the ‘‘Backfire’’ area in Fig. 5, and suggest historically a
high energy rebound in Spain. Very few data points (eight when using
final energy, three when using useful exergy) support a situation of no
energy rebound (or hyperconservation), i.e. a situation where efficiency
gains result in at least the final energy savings to be expected if only
efficiency gains were at play. It is worth noting that the only data points
corresponding to a situation of no energy rebound are those of the
2008 economic crisis, during which both final energy consumption and
economic activity dropped.

3.1.4. Bell-shaped energy intensities
Fig. 6 shows that the economic output metric is of key influence

on the Spanish energy intensities obtained. Indeed, a rgdpna based
intensity suggests that the useful energy and exergy of the Spanish in-
tensity has increased until a peak in 2005, while a rgdpe based intensity
suggests that these intensities peaked in 1985. Both charts show, to
some extent, a bell-shaped curve, as intensities firstly rise importantly
during the ‘‘Spanish Miracle’’ period of high industrialisation until
reaching a peak, and then initiate (albeit at different dates) a decrease
which can be interpreted as a period of structural changes that reduces
the economy’s reliance on energy intense industrial processes. In both
graphs, a sharp decrease in all intensities can be observed from 2004
onwards, although this decrease halts in the aftermath of the 2008
economic crisis, from 2009 to 2012, and then resumes.

Last, primary and final energy intensities provide insights very
different from useful stage intensities. Indeed, primary and final energy
intensities in 2016 are comparable to their initial values when using
rgdpna, while they are considerably lower than their initial values
when using rgdpe. This suggests that the Spanish economy is effectively
reducing its reliance on energy consumption. Conversely, useful stage
intensities qualify this interpretation, for they remain at high levels
corresponding to those of the industrialising period of the 1970s–1980s

(rgdpna) and of the late 1960s (rgdpe). Thus, both useful energy and
exergy intensities suggest that the Spanish economy remains fairly
dependent on energy consumption, and provide less optimistic insights
than primary and final energy intensities.

3.1.5. LMDI decomposition and levelling off thermodynamic efficiencies
The decomposition coefficients calculated are presented in Fig. 7.

Final energy supply (𝐷𝑓𝑒𝑛) has been the factor of higher influence in
the supply of useful exergy in the studied period. Table 3 highlights the
evolution of each decomposition factor over time.

𝐷𝑠𝑡𝑟 firstly increased until the mid-1970s, then started decreasing
until the early 1990s, and remained roughly constant ever since. The
first trend corresponds to the industrialisation of the Spanish economy,
during which more energy efficient economic sectors, e.g. industrial ac-
tivities, increased their share of energy consumption. The second trend
suggests a period of structural changes towards less energy efficient
economic sectors in the period 1975–1990, which corresponds to a
rise of the service sector and tourism industry [105]. Then, 𝐷𝑠𝑢𝑏 has
increased over the whole considered time period, which means that
overall, energy consumption has shifted towards increasingly energy
efficient end-uses within each economic subsector. Finally, 𝐷𝑒𝑓𝑓 has
been a crucial factor in increasing the useful exergy supply until
roughly 2000, since then it has stagnated. This suggests that efficiency
gains are slowing down in the Spanish economy (see Appendix E for
national final-to-useful and primary-to-useful exergy efficiencies).

3.2. Testing for causality

Granger causality is reported when it is detected with 95% con-
fidence. Alternatively, the result of a test is ascribed to the ‘‘No
evidence’’ outcome.

3.2.1. Results overview
Fig. 8.a presents an overview of our results. Two main conclusions

can be drawn from this table. Firstly, in 80% of the cases, Granger
causality is not identified.10 Secondly, when causality is identified, the
conservation hypothesis is the most backed up hypothesis (12% of
cases), although the number of tests backing up the growth hypothesis
is non negligible (6% of cases).

3.2.2. Influence of the chosen procedure
Consistent with the literature, Fig. 8.b shows that the procedure

employed for conducting causality tests influences the outcomes of our
tests. The T–Y procedure tends to support more the conservation hy-
pothesis (25% of cases) than the two other procedures, which provide
more balanced results. In most cases, none of the three procedures iden-
tify Granger causality, although the T–Y procedure identifies causality
in more cases (33%) than the two other procedures.

3.2.3. Influence of the energy metric
The energy metric was also found to influence the outcome of our

tests. Fig. 8.c shows that for each energy metric, most tests fail to
identify Granger causality, and that when causality is identified, the
most backed up hypothesis is the conservation hypothesis. However,
the percentage of tests backing up the growth hypothesis increases
when moving from final energy (3%) to useful energy (4%), and more
notably, when moving to useful exergy (10%). Yet, even when useful
exergy is used as energy metric, results remain inconclusive.

10 This does not imply that 80% of the tests support a situation of no
causality with 95% confidence, it only implies that in 80% of the tests, there
is not enough evidence for claiming Granger causality with 95% confidence.
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Fig. 4. Energy consumption versus economic output growth rates. On the left, energy consumption is measured as final energy, and on the right, as useful exergy. The linear best
fit is displayed for both energy metrics, and the R2 value is 0.84 when using final energy and 0.86 when using useful exergy. Graphical areas corresponding to hypercoupling,
relative decoupling, and absolute decoupling, are identified.

Fig. 5. On the left, final energy growth rate as function of final-to-useful energy efficiency growth rate. On the right, final energy growth rate as function of the final-to-useful
exergy efficiency growth rate. Graphical areas corresponding backfire, partial rebound, and no rebound, are identified.

Table 3
Decomposition factors evolution during each decade. For each decomposition factor, the reported number is not the actual
decomposition factor, but the ratio between its value at the end of the decade and its value at the beginning of the decade,
in order to highlight the relative evolution of decomposition factors occurring during each specific decade.

Decomposition factor 60–70 70–80 80–90 90–2000 2000–2010 2010–2016 Full period

Final energy change 𝐷𝑓𝑒𝑛 2.123 1.520 1.227 1.290 1.047 0.919 4.915
Structural change 𝐷𝑠𝑡𝑟 1.088 0.978 0.927 0.996 0.957 1.005 0.946
Substructural change 𝐷𝑠𝑢𝑏 1.064 1.103 1.092 1.107 1.106 1.022 1.604
Efficiency 𝐷𝑒𝑓𝑓 1.141 1.098 1.072 1.053 1.031 1.003 1.462
Total change 𝐷𝑡𝑜𝑡 2.804 1.802 1.332 1.497 1.141 0.947 10.901
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Fig. 6. Energy intensities of the Spanish economy, measured in primary, final and useful energy per economic output unit, as well as useful exergy per economic output unit.
Economic output is measured as rgdpna on the left and rgdpe on the right. Intensities are indexed to 1960.

Fig. 7. Decomposition factors of the LMDI decomposition of useful exergy consumption in the Spanish economy. The graph on the right zooms on 𝐷𝑠𝑡𝑟, 𝐷𝑠𝑢𝑏 and 𝐷𝑒𝑓𝑓 .

3.2.4. Influence of the economic output metric
Similarly, for each economic output metric used, Fig. 8.d shows

that in most cases, tests fail to identify causality, and support firstly
the conservation hypothesis when causality is identified. The number
of tests supporting the conservation and growth hypothesis are more
balanced when using the rgdpo and rgdpe metrics than when using the
rgdpna metric. Overall, results remain inconclusive.

3.2.5. Influence of the number of lags
Fig. 9 presents the results obtained with different number of lags

when useful exergy is used as energy metric. With one or two lags, re-
sults correspond to the general trend introduced in Fig. 8.a. Conversely,
when more than two lags are included in the VAR model (neglecting

results obtained with four lags, for which only five tests are conducted)
causality is identified in considerably greater proportions. In addition,
when causality is identified with more than two lags, results support-
ing the growth hypothesis are remarkably more numerous than those
supporting the conservation hypothesis, with the exception of models
including eight lags. SI (Section 4) shows that the influence of the
number of lags was neither found as stringent when using final energy
nor useful energy.

3.3. APF modelling

3.3.1. Obtained fits
The focus is here on the results obtained when fitting the CES APFs.

Fits obtained with the Linex APF are available in Appendix F, and the
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Fig. 8. Overview of the results (8.a), influence of econometric procedure (8.b), influence of energy metric (8.c), and influence of economic output metric (8.d). Causality is detected
with 95% confidence. On the top of each bar, the number of valid tests backing up each hypothesis in each situation.

Fig. 9. Results depending on the number of lags in the VAR model when using useful exergy as energy metric. Causality is detected with 95% confidence. On the top of each
bar, the number of tests backing up each hypothesis for each number of lags is reported.
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Table 4
Different fitted parameters in for the (𝑘𝑒), 𝑙 Constant Elasticity of Substitution Aggregate
Production Function depending on the time period and on whether FoPs are quality
adjusted or not. FoPs: Factors of Production.

Example FoPs Time period SSE1 10-2 SSE2 10-2 Key parameters

Example 1 Unadjusted 60–08 3.05 2.08 (𝜎𝑘,𝑒; 𝜎𝑘𝑒,𝑙) ≈ (0.07; 0.89)
𝛼𝑒 ∈ [0; 0.4]

Adjusted 60–08 4.84 1.99 (𝛿1; 𝛼𝑒) = (1; 0)

Example 2 Adjusted 60–16 5.56 NA (𝜎𝑘,𝑒; 𝜎𝑘𝑒,𝑙) ≈ (0.07; 0.39)
𝛼𝑒 ∈ [0; 0.4]

Adjusted 60–08 4.84 1.99 (𝛿1; 𝛼𝑒) = (1; 0)

parameters obtained for all conducted fits are available in Appendix G.
(Output elasticities for the CES APFs are available in SI, Section 5.)
Fig. 10 presents the fits obtained with all the CES APFs, both using
quality unadjusted and adjusted FoPs. The first fit on the whole time
period 1960–2016 is displayed on the left, and the second fit on the
time period 1960–2008 and thereafter extrapolated in dotted lines is
displayed on the right.11

Remarkably, all the CES APFs are able to account for economic out-
put when fitted over the whole time period 1960–2016, as evidenced
by the SSE1 values available in Appendix G, and this without relying on
any exogenous TFP. No significant difference in the quality of the fits
(see SSE1 and SSE2) between APFs with quality adjusted and quality
unadjusted FoPs can be evidenced from the conducted fits. However,
none of the CES APFs are fully able to follow the 2008 economic crisis
when fitted over the period 1960–2008 and thereafter extrapolated.
Indeed, the extrapolations reproduce to some extent a decrease in
economic output during the crisis, but a significant mismatch appears,
as evidenced by the SSE2 values in Appendix G. Amongst the CES
APFs, the (𝑙𝑒), 𝑘 with quality unadjusted FoPs performs best for the
extrapolation according to the SSE2 values. Fits show that APFs with
quality adjusted FoPs do not necessarily provide better fits than APFs
with quality unadjusted FoPs, which is shown by the SSE1 and SSE2
values in Appendix G.

3.3.2. Fitted economic parameters and economic interpretation
Although the obtained fits are very similar, it is noteworthy that

the underlying fitted APFs differ greatly in terms of fitted parameters
(see Appendix G), which impedes altogether any sensible economic
interpretation. For instance, all CES APFs with quality adjusted FoPs
collapse to a two FoPs CES neglecting energy consumption when fitted
for the period 1960–2008 — which is shown by the values of 𝛿 and
𝛿1 in Appendix G. Two examples of sensitive changes in economic
interpretation for the CES APF of (𝑘𝑒), 𝑙 nesting structure are shown
in Table 4.

In the first example, when the fit is performed on the period 1960–
2008 with quality unadjusted FoPs, fitted parameters indicate a key
role of energy as a factor of production. Indeed, the output elasticity of
energy 𝛼𝑒 varies between 0 and 0.4 (suggesting a high productivity of
energy), and both elasticities of substitution 𝜎𝑘,𝑒 and 𝜎𝑘𝑒,𝑙 are relatively
low (inferior to unity), suggesting a low substitutability of the FoPs.
However, if the same fit is conducted with quality adjusted FoPs,
the fitted parameters (𝛿1; 𝛼𝑒) reject energy as a factor of production
altogether. Then, the second example shows that when the APF is fitted
with quality adjusted FoPs for a slightly longer period of time (2008–
2016), energy recovers a key role as a factor of production, with 𝜎𝑘,𝑒
and 𝜎𝑘𝑒,𝑙 indicating a situation of low substitutability between FoPs.

11 Only the time period 1990–2016 is displayed when extrapolating in order
to focus on the latests time span where a mismatch can be observed; the fits
perform well during the period 1960–1990 and are not particularly relevant.

4. Discussion

4.1. Insights gained on the Spanish energy-economy interplay

4.1.1. Aggregate energy-economy analysis: valuable insights into the energy-
economy nexus
An almost nonexistent historical absolute energy-GDP decoupling in Spain.
Most data points were identified in the hypercoupling space in Fig. 4,
which refutes both a long-term relative and absolute energy-GDP de-
coupling. It is noteworthy that the number of data points supporting
a situation of either absolute or relative decoupling decreased when
using useful exergy — the useful stage therefore provides less optimistic
insights than the conventional final energy stage. In short, Spain is
nowhere near achieving either relative or absolute energy-GDP decou-
pling, and the only economic period during which energy consumption
was found to decrease is the economic downturn following the 2008
economic crisis. Thus, the ‘‘green growth’’ strategy is at odds with
historical data in Spain, and consideration of an alternative post-growth
strategy appears urgently needed.

A growing final energy consumption fully offsetting efficiency gains. Most
data points in Fig. 5 support a situation of ‘‘backfire’’, i.e. of increasing
final energy consumption fully offsetting energy efficiency gains. Thus,
there is evidence that in the Spanish case, historical efficiency gains
have not led to actual energy savings. In addition, the only data points
corresponding to a situation of no rebound are found during the post-
2008 economic downturn, i.e. when economic activity was dropping.
While current efforts to reduce energy consumption focus on energy ef-
ficiency, the Spanish case study suggests that energy efficiency, within
a growing economy, may not lead to the desired outcome. Energy
efficiency appears therefore insufficient to reduce energy consumption,
and coupling energy efficiency with energy sufficiency (i.e. reducing
energy consumption by changing the quality or quantity of energy
services provided) seems to be a sounder approach than relying solely
on energy efficiency [106–108].

Energy intensities following a bell-shaped curve. While results regarding
decreasing primary and final energy intensities (Fig. 6) in recent years
aligns with the literature (for instance [38–41,44]), results regarding
the useful exergy intensity of the Spanish economy diverge from most
published studies. Indeed, while it has been generally found that useful
exergy intensities were somewhat constant over time for industrialised
countries [28,43–45], the Spanish useful exergy intensity has substan-
tially varied over time. However, like previous useful exergy intensity
studies, it was found that useful exergy (as well as useful energy)
intensities tend to support a considerably stronger energy-economy link
than primary or final energy intensities do.

Levelling off thermodynamic efficiencies. Fig. 7 shows that efficiency
gains have been an important driver of increasing useful exergy
consumption in Spain, although such gains are currently levelling off.
This trend of slowing down efficiency gains was already identified for
several industrialised countries, including Japan [48], the US [49], the
UK [28] and Austria [43]. A levelling off thermodynamic efficiency
suggests that the decrease in primary and final energy intensities
may neither decrease as fast as expected, nor carry on decreasing
indefinitely.

4.1.2. Inconclusiveness of energy-GDP causality testing and APF modelling
Inconclusive energy-GDP causality testing. Whether using the useful or
final stage perspective, no statistical evidence of causality between
Spain’s economic output and energy consumption growth rates was
found. In accordance to the literature, the econometric procedure, the
energy and economic output metrics, and the number of lags of the VAR
model were found to considerably influence the outcomes of causality
tests [54,55]. Consequently, the added value of using a useful stage
perspective for energy-GDP causality testing was found inconclusive.
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Fig. 10. Fits obtained for the Constant Elasticity of Substitution Aggregate Production Functions with the three possible nesting structures. On the left, actual GDP (dark circles), as
well as fitted GDP using quality unadjusted and quality adjusted factors of production for the whole period 1960–2016. On the right, GDP is fitted for the time period 1960–2008
and thereafter extrapolated (dashed lines), although only the time period 1990–2016 is displayed.

Unsatisfactory APF modelling. No notable difference was identified
when using APFs with final energy (quality unadjusted FoPs) and useful
exergy (quality adjusted FoPs). Indeed, fits performed similarly, either
when conducted over the whole time period, and when conducted over
the period 1960–2008 and thereafter extrapolated. In contrast to what
is suggested in the literature [58], fits were even found to perform
better in terms of SSE1 and SSE2 values (see Appendix G) when using
final energy in APFs (quality unadjusted). The added value of using
a useful stage perspective with APF modelling was therefore found
inconclusive.

4.2. Discussing the validity and robustness of energy-economy analysis
methods

4.2.1. Energy intensities may be highly sensitive to the economic output
metric

Fig. 6 showed the high influence of the economic output metric
chosen for computing energy intensities time series in the Spanish
case. This contrasts with a previous study conducted for Ghana and
the UK, where it was found that the influence of the economic output
metric was negligible [28]. Hence, energy intensities should be handled
carefully and sensitivity tests should be systematically conducted by
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varying the economic output metric before drawing any economic
interpretation. Most former studies did not include such a sensitivity
test, but recent methodological developments of datasets such as the
PWT [85] should from now on enable conducting systematic sensitivity
tests.

4.2.2. Energy-GDP causality testing: a dubious validity, and a need for
systematic sensitivity tests

Results suggest, on empirical grounds, serious concerns regarding
the validity of energy-GDP causality tests. Considering the high sen-
sitivity of results of causality tests on the parameters, any hypothesis
on causality could have been backed up by particular tests. It seems
therefore absolutely crucial that further causality studies include a
systematic sensitivity test. Unfortunately, previous studies often lack
a systematic sensitivity analysis, and it is therefore difficult to eval-
uate the validity of former published results. In addition, there are,
on theoretical grounds, crucial limitations related to the VAR models
underlying causality tests, which seriously question the validity of such
tests. (See Lütkepohl [109] for a description of VAR models.) Indeed,
VAR models are linear and static, assuming firstly that the influence
of a variable is always proportional to its growth rate, and secondly
that the coefficients describing the energy-economy interactions in the
model are constant over time [37]. Such assumptions are dubious
for statistical tests that need to be conducted for periods longer than
30 years, during which the economy evolves considerably. The inap-
propriateness of VAR models underlying causality tests may explain
the inconclusiveness of both the causality literature and of the Granger
causality tests conducted in this paper.

4.2.3. APF modelling: compelling caveats on empirical and theoretical
grounds

Likewise, serious concerns regarding the validity of APF modelling
can be drawn from results. First, although the conducted fits closely
follow actual economic output when fitted for the whole time period,
fitted parameters greatly differ (Section 3.3.2). Thus, the quality of
the fits obtained may disguise the considerable sensitivity of fitted
parameters and therefore, of economic interpretations, to modelling
assumptions [65]. Second, APFs providing the best fits may do so by
returning unreasonable values. Examples can be found in Tables G.1
and G.2 where specific elasticities of substitution tend to infinity,
thereby suggesting that a factor of production can perfectly and in-
definitely substitute for one another, which is hardly realistic. Third,
most of the fitted APFs were found unable to account for the 2008
economic crisis when fitted on the period 1960–2008 and thereafter
extrapolated. Therefore, obtaining a high quality fit does not ensure
that the fitted APF will be robust when facing a structural break,
which seriously questions the predictive capacity of APFs, as well as
their validity as energy-economy modelling tools. Fourth, it is note-
worthy that satisfactory fits were achieved while disregarding the
mainstream and ubiquitous TFP, which was a priori deemed unjustified.
Considering the implications of modelling assumptions on policy rec-
ommendations [65], the systematic inclusion of a TFP in APFs – without
questioning the extent to which this one is needed for obtaining a
plausible fit – may systematically overestimate the role of technological
progress in delivering economic output, and thus, sway unjustifiably
policy recommendations towards innovation and technology.

Finally, it is to be reminded that, on theoretical grounds, serious
caveats have been directed to APFs since their early formulations.
Firstly, aggregating the whole economy’s heterogeneous production in
a single metric is questionable, like aggregating heterogeneous capital
within a single metric [110,111]. Secondly, numerous authors claim
that APFs are ‘‘not even wrong’’ to the extent that an underlying
mathematical identity is responsible for the statistically very good fit
observed [112–115].

4.3. International perspectives and limitations

4.3.1. International perspectives
Although this paper has focused on Spain as a significant case study,

far-reaching international implications can be drawn from the findings.
First, it was shown that, at least for some methods, applying energy-
economy analysis methods at the useful stage does bring significant
advantages compared to applying methods are the final stage. While
findings may differ from country to country, and results detailed in this
paper for Spain are not generalisable, conducting the analysis at the
useful stage is likely to enhance final stage analysis results. Second, this
paper shows that two conventional and widely used methods (energy-
GDP causality testing and APF modelling) are not robust enough to
conduct reliable energy-economy analysis. Showing that such methods
are not applicable for Spain does invalidate the methods to the extent
that, at best, their general validity is poor. Consequently, studies ap-
plying any of these methods for another country or region need to bear
the burden of proof and justify that the method is robust for their case
study, by providing significant sensitivity analysis.

4.3.2. Limitations
Last, there are important limits to this study. The paper adopts

a perspective stemming from the Societal Exergy Analysis literature,
where the technological development of energy systems is studied
primarily in terms of the final-to-useful energy and exergy efficiencies.
These are crucial elements of the energy system, but are not sufficient
to capture its whole structure. Other important aspects of the energy
system, such as the development of local capacities and microgrids,
whether the energy system is centralised or decentralised, operated
under an open market regime or not, are regrettably outside the scope
of this work. Such aspects are particularly important for future studies
that attempt to model the future of energy grids, as numerous countries
are increasingly turning to decentralised energy systems operated in an
open market regime.

5. Conclusion

A critical assessment of insights gained on the Spanish energy-
economy interplay when moving from the final to the useful stage
was provided. Using aggregate energy-economy analysis, a very tight
energy-GDP coupling was found for Spain (and even tighter when mov-
ing to the useful stage), with only rare (post-2008 recession) years of
absolute energy-GDP decoupling. Regarding energy intensities, useful
stage intensities are found to suggest a stronger connection between
Spain’s economy and energy consumption than final energy intensities.
Furthermore, the useful stage analysis shows that thermodynamic effi-
ciency gains are levelling off, and that increasing energy consumption
has historically fully offset thermodynamic efficiency gains, which
evokes a high energy rebound. Such findings are policy-relevant as they
suggest that it is urgent to consider a post-growth economic strategy,
and to supplement energy efficiency policies with energy sufficiency
policies.

However, the attempt to gain insights on the energy-economy in-
terplay has proved unsuccessful when turning to energy-GDP causality
testing and Aggregate Production Function modelling, for which the
paper identified crucial caveats. Whether applied at the final or use-
ful stage, it was shown for both methods that arbitrary modelling
choices may result in large changes in results, and, therefore, eco-
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nomic interpretations. Hence, findings highlight that such methods lack
robustness and are not appropriate for studying and modelling the
energy-economy nexus. Despite their sophistication, they are likely to
provide misleading results, and basing policy recommendation on these
two techniques seems unsound. This concurs with Heun et al. [65,
p. 27], who suggest ‘‘the possibility that energy-economy modelling
with APFs [...] may tell us more about theory and modelling approaches
than about the economy’’.

Thus, findings suggest that moving to the useful stage is crucial in
order to unlock new energy-economy insights, but is not sufficient. In
addition, useful stage analysis should be applied in combination with
alternative, robust, energy-economy analysis methods. Moving away
from energy-GDP causality testing and Aggregate Production Func-
tion modelling, towards alternative energy-economy modelling such as
system dynamics modelling [129–132], agent-based modelling [133],
stock-flow consistent modelling [133,134], and econometrics [135]
appears desirable. The energy-economy community is encouraged to
develop further research on such alternatives modelling methods, and
to apply them at the useful stage of energy use.
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Appendix A. Rational, objectives, and historical perspective of
each of the three methods used in this study

See Table A.1.

Table A.1
This table introduces the three methods used in this study (aggregate energy-economy analysis, energy-GDP causality testing, and Aggregate Production Function (APF) modelling)
in terms of rationale, objectives, as well as historical background.

Method Rationale and objectives Historical perspective

Aggregate
energy-economy
analysis

Aggregate energy-economy analysis encompasses
different tools such as decomposition analysis, the
study of energy intensities (ratio of energy
consumption per economic output), or econometric
techniques, that attempt to find relationships
between macro variables such as energy
consumption, energy efficiency, and economic
output, either as aggregate quantities or as growth
rates. Studies may look at historical data to gain
an understanding of past energy transitions and
derive future trends, or at cross-country analysis to
identify the spatial variation of relationships.

Aggregate energy-economy analysis has roots in the aftermath of the first oil crisis,
at a time (mid 1970s–mid 1980s) during which concerns regarding the finiteness of
the world’s natural resources led energy scientists to move away from energy
accounting towards energy analysis (see for instance Slesser [116], Cleveland et al.
[117], or Costanza [118]). Such trend was not without resistance from the
established economics field, which regarded energy analysis as a red herring [119].
Currently, many studies applying aggregate energy-economy analysis techniques at
the final stage can be found [38–41]. Such studies usually find that final energy
intensities are decreasing over time, and converging across countries. Conversely,
studies adopting a useful stage were recently pioneered by Serrenho et al. [44] and
tend to find that useful stage intensities are relatively constant over time [28,45].

Energy-GDP
causality testing

Granger defines statistical causality (sometimes
referred to as Granger causality) from a variable 𝑋
to a variable 𝑌 when the knowledge of the
previous values of 𝑋 adds information when
forecasting 𝑌 , in comparison to the reference
situation in which only the past values of 𝑌 are
known [91,120]. In energy-economy analysis,
energy-GDP causality testing has been used to
determine whether energy consumption was
entailing economic growth, or whether economic
growth implied a raising energy consumption, with
the purpose of deriving policy implications.

Statistical procedures for identifying statistical causality between variables were
introduced in the late 1960s and early 1970s, notably by Granger [91] and Sims
[92]. At the final stage, causality testing was first used for energy-economy analysis
in 1978 by Kraft and Kraft [50], who found an unidirectional relationship suggesting
that economic growth entailed further energy consumption in the US — results
which were soon called into question (1980) by Akarca and Long [51], who
defended that Kraft and Kraft’s results were spurious and due to ‘‘the inclusion of
two additional years in the data sample.’’ Since then, the energy-GDP causality
literature has considerably expanded, with now dozens of studies available, while yet
remaining inconclusive [54]. Yet, at the useful stage, , Warr and Ayres (2010) [56]
produced the only study currently available, and found a unidirectional causality
running from useful exergy consumption to economic output.

Energy Extended
Aggregate
Production
Function
modelling

APF modelling attempts to model economic output
(often quantified by GDP) as function of factors of
production (i.e. capital, labour, and sometimes
other factors, such as energy). Such APF modelling
claims to isolate the effect of each factor of
production on economic growth (e.g. its marginal
productivities and elasticities of substitution), and
to derive policy implications. Empirical
applications of APFs include the analysis of
technological change and exogenous growth [70],
the estimation and analysis of elasticities of
substitution [65,121,122] and contribution of
factors of production (FoPs) to economic growth
[123]. The popularity of APFs is due to their
alleged capacity to represent the complexity of a
whole economy within a simple functional form.

The APF approach stems from the first formulation by Solow [124,125] and Swan
[126] of the well-known neoclassical Solow–Swan growth model (1956–1957). In its
early formulation of a Cobb–Douglass APF, Solow [125] found that exogenous
technological progress accounted for 87.5% of economic growth in the US. Currently,
technological progress remains usually a crucial parameter to explain economic
growth when adopting a neoclassical APF approach [70], even when energy is
included [57]. Indeed, the neoclassical cost share theorem, although dubious [99],
requires the role of energy in APFs to be marginal [127]. In contrast, ecological
economists have adopted the final energy perspective as soon as in 1985 with
Kümmel et al. seminal work that introduced the Linex APF [102,128], and defended
a crucial role for energy. At the useful stage, the APF approach was first introduced
by Ayres and Warr in 2005, who accounted for growth over a century in the US
[34], and later on Japan [71], without relying on exogenous technological progress.
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Fig. B.1. Economic output (rgdpna) growth rate versus final energy and useful exergy growth rates, for different values of 𝑛 varying from 1 to 10 in each row. 𝑛: number of years
included in the calculation of the average growth rate.

Appendix B. Sensitivity test: calculation of the average growth
rates

Growth rates displayed in the main article (Figs. 4 and 5) are the
computed 5-years average growth rates (𝑛 = 5). Here, the influence of
the growth rate calculation for 𝑛 varying from 1 to 10 is presented for
these two figures. Fig. B.1 presents the economic output (measured as
rgdpna) growth rate as function of the final energy and useful exergy
growth rate for the different values of 𝑛. With any value of 𝑛, most
data points are in the hypercoupling space (the number of data points

increases as 𝑛 increases), and only a few data points correspond to a
relative decoupling space when 𝑛 is superior to three.

Likewise, Fig. B.2 shows final energy consumption growth rate as
function of both final-to-useful energy efficiency and final-to-useful
exergy efficiency for the different values of 𝑛. Most of data points are
in the ‘‘backfire’’ area for any value of 𝑛, and this trend increases as 𝑛
increases. Most of the data points in the ‘‘no rebound’’ area correspond
to the years of the economic downturn following the 2008 economic
crisis. Thus, results presented in Section 3 can be said to be robust to the
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Fig. B.2. Final energy growth rate versus final-to-useful energy and exergy efficiencies, for different values of 𝑛 varying from 1 to 10 according to the number of each row. 𝑛:
number of years included in the calculation of the average growth rate.

calculation of the average growth rate, and that increasing the number
𝑛 enables discarding outliers.

Appendix C. Primary energy and useful energy growth rates ver-
sus GDP growth rates

Fig. C.1 presents primary and useful energy growth rates versus GDP
(measured as rgdpna) growth rates. One can note that the correlation

observed in Fig. 4 can equally be observed. Thus, the results presented
in Section 3.1.2 are robust to the choice of energy metric.

Appendix D. Influence of the GDP metric on the study of growth
rates

The influence of the GDP metric on the study of growth rates is
shown in Fig. D.1. The obtained charts are similar to the ones presented
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Fig. C.1. Energy consumption versus economic output growth rates. On the left, energy consumption is measured as primary energy, and on the right, as useful energy. Economic
output values are measured as the rgdpna measure. The linear best fit is displayed for both energy metrics, and the R2 value is 0.82 when using primary energy and 0.84 when
using useful energy. Graphical areas corresponding to hypercoupling, relative decoupling, and absolute decoupling, are identified.

Fig. D.1. Energy consumption and economic output growth rates (measured as rgdpe) over time. Energy consumption measured as final energy on the left, and as useful exergy
on the right. R2 value is 0.66 when using final energy and 0.60 when using useful exergy. Graphical areas corresponding to hypercoupling, relative decoupling, and absolute
decoupling, are identified.

in Fig. 4. Hence the influence of the GDP metric on the study of growth
rates is negligible.

Appendix E. National thermodynamic efficiencies

Fig. E.1 confirms that the national final-to-useful and primary-
to-useful exergy efficiencies have been stagnating in Spain since the
mid-2000s.

Appendix F. APFs: Fits obtained with the Linex APF

Fig. F.1 shows the fits obtained for the Linex APFs. The Linex APF
with quality unadjusted FoPs is able to account for economic output
both when fitted over the whole time period (1960–2016) and when
fitted over the period 1960–2008 and thereafter extrapolated. To this
extent, the Linex APF with quality unadjusted FoPs performs better
than all the CES APFs presented in Section 3.3. However, the Linex
APF with quality adjusted FoPs departs significantly from actual GDP in
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Fig. E.1. National Spanish primary-to-useful and final-to-useful exergy efficiencies.

Fig. F.1. On the left, actual GDP (dark circles), as well as fitted GDP with a Linex APF using quality unadjusted (red) and quality adjusted factors of production (blue) for the
whole period 1960–2016. On the right, GDP is fitted for the time period 1960–2008 and thereafter extrapolated (dashed lines), although only the time period 1990–2016 is
displayed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the period predating the 2008 economic crisis, even though it is able to
account for the economic output during the economic downturn period.
(See Appendix G for the SSE1 and SSE2 values.) This result evidences
that APFs with quality adjusted FoPs do not necessarily perform better
than APFs with quality unadjusted FoPs.

Appendix G. APFs: fitted parameters

The fitted parameters and SSE indicators as defined in Section 2.5.3
are introduced in the following tables. Table G.1 presents parameters
for the (𝑘𝑙), 𝑒 CES APF, Table G.2 for the (𝑙𝑒), 𝑘 CES APF, Table G.3 for

Table G.1
Fitted parameters for the Constant Elasticity of Substitution Aggregate Production Function with 3 factors of production and
(𝑘𝑙), 𝑒 nesting.
Quality Time period log(𝜃) 𝜎𝑘,𝑙 𝜎𝑘𝑙,𝑒 𝛿 𝛿1 SSE 10−2 SSE2 10−2

Unadjusted 1960–2016 1.0812 0.72034 ∞ 0.72948 0.78554 3.5449 NA
1960–2008 1.1087 0.84832 ∞ 0.86140 0.75953 3.0542 2.4187

Adjusted 1960–2016 0.98250 0.32520 ∞ 0.95666 0.94532 8.0538 NA
1960–2008 1.0261 0.40283 NA 1.0000 0.90409 4.8432 1.9941
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Table G.2
Fitted parameters for the Constant Elasticity of Substitution Aggregate Production Function with 3 factors of production and
(𝑙𝑒), 𝑘 nesting.
Quality Time period log(𝜃) 𝜎𝑒,𝑙 𝜎𝑒𝑙,𝑘 𝛿 𝛿1 SSE 10−2 SSE2 10−2

Unadjusted 1960–2016 1.0850 ∞ 0.45947 0.19152 0.81236 2.8390 NA
1960–2008 1.1026 ∞ 0.58292 0.21759 0.86903 2.8197 1.2532

Adjusted 1960–2016 0.99404 0.73436 0.30337 0.086399 0.77189 7.2196 NA
1960–2008 1.0261 NA 0.40283 0.095906 1.0000 4.8432 1.9941

Table G.3
Fitted parameters for the Constant Elasticity of Substitution Aggregate Production Function with 3 factors of production and
(𝑘𝑒), 𝑙 nesting.
Quality Time period log(𝜃) 𝜎𝑘,𝑒 𝜎𝑘𝑒,𝑙 𝛿 𝛿1 SSE 10−2 SSE2 10−2

Unadjusted 1960–2016 1.1029 0.23214 0.84423 0.80319 0.83959 3.0405 NA
1960–2008 1.1166 0.068745 0.88828 0.77375 0.99240 3.0501 2.0842

Adjusted 1960–2016 1.0018 0.070090 0.39182 0.91292 0.66295 5.5627 NA
1960–2008 1.0261 NA 0.40283 0.90410 1.0000 4.8432 1.9941

Table G.4
Fitted parameters for the Linex Aggregate Production Function.

Quality Time period 𝜃 𝑎0 𝑎1 SSE 10−2 SSE2 10−2

Unadjusted 1960–2016 1.1558 0.40608 0.84985 6.8448 NA
1960–2008 1.1531 0.33270 0.75384 6.4129 0.95165

Adjusted 1960–2016 1.2603 0.065832 1.0231 29.374 NA
1960–2008 1.2574 0.043238 1.0038 28.941 0.51698

the (𝑘𝑒), 𝑙 CES APF, and Table G.4 for the Linex APF. Fitted elasticities
of substitution are available in a graphical formats for the fitted CES in
SI, Section 5.

Supplemental Information And Data Repository

Supplemental information related to this article can be found online
at https://doi.org/10.1016/j.apenergy.2020.116194. Input data and R
code for energy-GDP causality testing and Aggregate Production Func-
tion modelling are available under a CC-BY-4.0 license at the University
of Leeds Data Repository, at http://dx.doi.org/10.5518/931.
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