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A CONSTRUCTIVE APPROACH TO HIGHER HOMOTOPY

OPERATIONS

DAVID BLANC, MARK W. JOHNSON, AND JAMES M. TURNER

Abstract. In this paper we provide an explicit general construction of higher
homotopy operations in model categories, which include classical examples such
as (long) Toda brackets and (iterated) Massey products, but also cover unpointed
operations not usually considered in this context. We show how such operations,
thought of as obstructions to rectifying a homotopy-commutative diagram, can be
defined in terms of a double induction, yielding intermediate obstructions as well.

Introduction

Secondary homotopy and cohomology operations have always played an important
role in classical homotopy theory (see, e.g., [Ada, BJM, MP, PS] and later [P1, P2,
Ald, MO, Sn, CW]), as well as other areas of mathematics (see [AlS, FGM, GL, Gr,
SS]).

Toda’s construction of what we now call Toda brackets in [T1] (cf. [T2, Ch. I])
was the first example of a secondary homotopy operation stricto sensu, although
Adem’s secondary cohomology operations and Massey’s triple products in cohomology
appeared at about the same time (see [Ade, Ms]).

In [Ada, Ch. 3], Adams first tried to give a general definition of secondary stable
cohomology operations (see also [Ha]). Kristensen gave a description of such oper-
ations in terms of chain complexes (cf. [Kr, KK]), which was extended by Maunder
and others to n-th order cohomology operations (see [Mau, Hol, K1, K2]).

Higher operations have also figured over the years in rational homotopy theory,
where they are more accessible to computation (see, e.g., [Ald, Bu, Re, Ta]). In more
recent years there has been a certain revival of interest in the subject, notably in
algebraic contexts (see for example, [Bk, Ga, S, E, CF, HW]).

In [Sp2], Spanier gave a general theory of higher order homotopy operations (ex-
tending the definition of secondary operations given in [Sp1]). Special cases of higher
order homotopy operations appeared in [Wa, K, Mo, BBG], and other general defini-
tions may be found in [BM, BJT2].

The last two approaches cited present higher order operations as the (last) ob-
struction to rectifying certain homotopy-commutative diagrams (in spaces or other
model categories). In particular, they highlight the special role played by null maps
in almost all examples occurring in practice. Implicitly, they both assume an induc-
tive approach to rectifying such diagrams. However, in earlier work no attempt was
made to describe a useable inductive procedure, which should (inter alia) explain
precisely which lower-order operations are required to vanish in order for a higher
order operation to be even defined.
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The goal of the present note is to make explicit the inductive process underlying our
earlier definitions of higher order operations, in as general a framework as possible.
We hope the explicit nature of this approach will help in future work both to clarify
the question of indeterminacy of the higher operations, and possibly to produce an
“algebra of higher operations,” in the spirit of Toda’s original “juggling lemmas” (see
[T2, Ch. I]).

An important feature of the current approach is that we assume that our indexing
category is directed, and we consistently proceed in one direction in rectifying the
given homotopy-commutative diagram (say, from right to left, in the “right justified”
version). As a result, when we come to define the operation associated to an indexing
category of length n, we use as initial data a specific choice of rectification for the
right segment of length n − 1. This sequence of earlier choices will appear only
implicitly in our description and general notation for higher operations, but will be
made explicit for our (long) Toda brackets (see §1.7-4.9).

Since our higher operations appear as obstructions to rectification, they fit into the
usual framework of obstruction theory: when they do not vanish, one must go back
along the thread of earlier choices until reaching a point from which one can proceed
along a new branch. From the point of view of the obstruction theory, the important
fact is their vanishing or non-vanishing (see Remark 4.9 for the relation to coherent
vanishing). Nevertheless, since our higher operations are always described as a certain
set of homotopy classes of maps into a suitable pullback, at least in some cases it is
possible to describe the indeterminacy more explicitly. However, this would only be
a part of the total indeterminacy, since the most general obstruction to rectification
consists of the union of these sets, taken over all possible choices of initial data of
length n− 1.

After a brief discussion of the classical Toda bracket from our point of view in
Section 1, in Section 2.A we describe the basic constructions we need, associated to the
type of Reedy indexing categories for the diagrams we consider. The changes needed
for pointed diagrams are discussed in Section 2.B. We give our general definition of
higher order operations in Section 3: it is hard to relate this construction to more
familiar examples, because it is intended to cover a number of different situations,
and in particular the less common unpointed version. In all cases the “total higher
operation” serves as an obstruction to extending a partial rectification of a homotopy-
commutative diagram one further stage in the induction.

In Section 4 we provide a refinement of this obstruction to a sequence of intermedi-
ate steps (in an inner induction), culminating in the total operation for the given stage
in the induction. Section 5 is devoted to a commonly occurring problem: rigidifying
a (reduced) simplicial object in a model category, for which the simplicial identities
hold only up to homotopy. This serves to illustrate how the general (unpointed)
theory works in low dimensions.

In Section 6 we define pointed higher operations, which arise when the indexing
category has designated null maps, and we want to rectify our diagram while simul-
taneously sending these to the strict zero map in the model category. This involves
certain simplifications of the general definition, as illustrated in the motivating ex-
amples of (long) Toda brackets and Massey products, described in Section 7.

Finally, in Section 8 we make a tentative first step towards a possible “algebra of
higher operations,” by showing how we can decompose our pointed higher operations
into ordinary (long) Toda brackets for a certain class of fully reduced diagrams.
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In Appendix A we review some basic facts in model categories needed in the pa-
per; Appendix B contains some preliminary remarks on the indeterminacy of the
operations.

0.1. Acknowledgements. We wish to thank the referee and editor for their detailed and
pertinent comments. The research of the first author was supported by Israel Sci-
ence Foundation grants 74/11 and 770/16, and the third author by National Science
Foundation grant DMS-1207746.

1. The classical Toda Bracket

We start with a review of the classical Toda bracket, the primary example of a
pointed secondary homotopy operation. In keeping with tradition we give a left
justified description, in terms of pushouts, although for technical reasons our general
approach will be right justified, in terms of pullbacks.

1.1. Left Justified Toda Brackets.

A classical Toda diagram in any pointed model category consists of three compos-
able maps:

(1.2) Y(3)
h // Y(2)

g
// Y(1)

f
// Y(0)

with each adjacent composite left null-homotopic. We shall assume that all objects in
(1.2), and the analogous diagrams throughout the paper, are both fibrant and cofi-
brant, so we may disregard the distinction between left and right homotopy classes).
To define the associated Toda bracket, we first change h into a cofibration (to avoid
excessive notation, we do not change the names of h or its target). By Lemma A.11
we can alter g within its homotopy class to a g′ to produce a factorization:

(1.3)

Y(3)

p

// h //

��

Y(2)

��
g′

~~

∗ // //

0

++

cof(h)
��
g2

��
Y(1)

so g′ ◦ h is the zero map (not just null-homotopic).
We use i : Y(2) →֒ CY(2) (an inclusion into a reduced cone) to extend (1.3) to

the solid diagram:

Y(3)

p

// h //

��

Y(2)

p��

g′

��

// // CY(2)

p
�� φ

��

❱ ❙ P ▼
■

❉
❃

✽
✹

✵
✱

✮
✬

✩

∗ // // cof(h)

p

��
g2

��

// // Σ′Y(3)

p

ψφ

--

✴
✷

✺
✽

❁
❆

❊
■

▲ P ❘ ❯ ❲ ❩

//
��

j

��

∗
��

��
Y(1) // i //

f //

Mg′
//

κ

..

■
▼

◗
❚ ❲ ❩ ❪

cof(g2)

##
Y(0)
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where all squares (and thus all rectangles) are pushouts, with cofibrations as indicated.
In particular, Σ′Y(3) is a model for the reduced suspension of Y(3), Mg′ is

a mapping cone on g′, and φ is a nullhomotopy for f ◦ g′. Note that any choice
of such a nullhomotopy φ induces maps ψφ : Σ′Y(3) → Y(0) and κ : Mg′ → Y(0),
with κ◦ j = ψφ. Suppose that for some choice of φ, the map ψφ is null-homotopic,
so κ ◦ j = ψφ ∼ 0. Then by Lemma A.11, we could alter κ within its homotopy
class to κ′ such that κ′ ◦ j = 0, whence the pushout property for the lower right
square would induce the dotted map cof(g2) → Y(0). As a consequence, choosing
f ′ = κ′ ◦ i ∼ κ ◦ i = f provides a replacement for f in the same homotopy class
satisfying f ′ ◦ g′ = κ′ ◦ i ◦ g′ = 0, rather than only agreeing up to homotopy.

1.4.Definition. Given (1.2), the subset of the homotopy classes of maps [Σ′Y(3), Y(0)]
consisting of all classes ψφ (for all choices of φ and g2 as above) forms the Toda
bracket 〈f, g, h〉. Each such ψφ is called a value of 〈f, g, h〉, and we say that the
Toda bracket vanishes (at ψφ : Σ′Y(3) → Y(0) as above) if ψφ ∼ ∗ – that is, if
〈f, g, h〉 includes the null map.

1.5. Remark. By what we have shown, 〈f, g, h〉 vanishes if and only if we can vary
the spaces Y(0), . . . , Y(3) and the maps f, g, h within their homotopy classes
so as to make the adjacent composites in (1.2) (strictly) zero, rather than just
null-homotopic.

In fact, by considering the cofiber sequence

Y(3)→ Y(2)→ cof(h)→ Σ′Y(3)

one can show that 〈f, g, h〉 is a double coset in the group [Σ′Y(3), Y(0)]: In
fact, the choices for homotopy classes of a nullhomotopy for any fixed pointed map
ϕ : A→ B are in one-to-one correspondence with classes [ΣA, B] (see [Sp1, §1]),
and thus the contribution of the choices for φ and g2 respectively to the value of
〈f, g, h〉 are given by (Σ′h)#[Σ′Y(2), Y(0)] and f#[Σ

′Y(3), Y(1)], respectively.
The two subgroups

(1.6) (Σ′h)#[Σ′Y(2), Y(0)] and f#[Σ
′Y(3), Y(1)],

of [Σ′Y(3), Y(0)] are referred to as the indeterminacy of 〈f, g, h〉; when Y(3) is
a homotopy cogroup object or Y(1) is a homotopy group object, the sum of (1.6)
is a subgroup of the abelian group [Σ′Y(3), Y(0)].

In any case, vanishing means precisely that the (well-defined) class of 〈f, g, h〉 in
the double quotient

[(Σ′h)#Σ′Y(2), Y(0)]\[ΣY(3), Y(0)]/f#[Σ
′Y(3), Y(1)]

is the trivial element in the quotient set.

1.7. Remark. The ‘right justified’ definition of our ordinary Toda bracket is given in
Step (c) of Section 7.A below. This will depend on a specific initial choice of maps f
and g with f ◦ g = ∗ (rather than f ◦ g ∼ ∗), and will be denoted by 〈f, g, h〉, so

〈f, g, h〉 =
⋃

f◦g=∗

〈f, g, h〉

where the union is indexed over those pairs with f and g in the specified homotopy
classes.
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The reader is advised to refer to that section for examples of all constructions in
Sections 3-4 below, since the example of our long Toda bracket 〈f, g, h, k〉 in Section
7 was the template for our more general setup.

2. Graded Reedy Matching Spaces

Our goal is now to extend the notions recalled in Section 1 – of Toda diagrams,
and Toda brackets as obstructions to their (pointed) realization – to more general
diagrams Y : J → E, where E is some complete category (eventually, a pointed
model category).

2.A. Reedy indexing categories

Since our approach will be inductive, we need to be able to filter our indexing
category J , for which purpose we need the following notions. Recall that a category
is said to be locally finite if each Hom-set is finite.

2.1.Definition. We define a weak lattice to be a locally finite Reedy indexing category
J (see [Hir, 15.1]), equipped with a degree function deg : Obj J → N, written
|x| = deg(x), such that:

• J is connected,
• there are only finitely many objects in each degree,
• all non-identity morphisms strictly decrease degree, and
• every object maps to (at least) one of degree zero.

2.2. Remark. Note that a weak lattice J has no directed loops or non-trivial endo-
morphisms, and x ∈ Obj J has only Idx mapping out of it if and only if |x| = 0.
Moreover, each object is the source of only finitely many morphisms, although there
may be elements of arbitrarily large degree.

2.3. Notation. For a weak lattice J as above:

(a) We denote by Jk the full subcategory of J consisting of the objects of
degree ≤ k, with Ik : Jk → J the inclusion.

(b) For any x ∈ Obj J in a positive degree, J x will denote the full subcategory
of J whose objects are those t ∈ J with J (x, t) non-empty. Thus x ∈ J x

and J x ∩ J0 6= ∅ (by §2.1).
(c) We denote by J x

k the full subcategory of J x containing x and all objects
(under x) of degree at most k, with Ixk : J x

k → J
x the inclusion. We

implicitly assume that |x| > k when we use this notation. Similarly, ∂J x
k

is the full subcategory of J x
k containing all objects other than x.

(d) Given |x| ≥ k > 0 and a functor Y : J x
k−1 → E we have maps

σxk−1 : Y(x)→
∏

J (x,t)
|t|=k−1

Y(t) and σx<k : Y(x)→
∏

J (x,t)
|t|<k

Y(t)

given by Y(f) : Y(x)→ Y(t) into the factor Y(t) indexed by f : x→ t.
(e) Given Y : J x

k−1 → E as above, there is a natural generalized diagonal map:

(2.4) Ψ = Ψx
k :

∏

J (x,v)
|v|<k

Y(v) −→
∏

J (x,s)
|s|=k

∏

J (s,v)
|v|<k

Y(v)
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mapping to the copy of Y(v) on the right with index x
g
→ s

f
→ v by

projection of the left hand product onto the copy of Y(v) indexed by the

composite x
fg
−→ v (followed by IdY(v)).

2.5. Example. Consider the following weak lattice J :

a //

&&▼▼▼▼▼▼▼ u // s

x

88qqqqqq

%%❑❑❑❑❑❑❑ v

88qqqqqqq

%%▲▲▲▲▲▲▲

b //

99rrrrrrr
w // t

deg : 3 2 1 0

where all subdiagrams commute, and the degrees are as indicated. Then

s u // s

(J x
0 ) x

<<②②②②②②②

""❉❉❉❉❉❉❉ (J x
1 ) x //

;;①①①①①①①

""❊❊❊❊❊❊❊ v

<<①①①①①①①

""❊❊❊❊❊❊❊

t w // t

with J x
2 = J , and ∂J x

0 is the discrete category with objects {s, t}. Furthermore
we have:

a //

##❋❋❋❋❋❋❋ u // s u // s

(∂J x
2 ) v

<<①①①①①①①

""❊❊❊❊❊❊❊ (∂J x
1 ) v

;;✈✈✈✈✈✈✈✈

##●●●●●●●

b //

<<②②②②②②②
w // t w // t .

2.6. Definition. For a weak lattice J as above and any x ∈ J of degree > k:

(a) The comma category (x ↓ Jk) = (x ↓ ∂J x
k ) has as objects the morphisms in

J from x to objects in Jk, with maps in (x ↓ Jk) given by commutative
triangles in J of the form

x

���������

  ❇❇❇❇❇❇❇❇

t // s .

(b) For any functor Y : ∂J x
k → E and k < |x|, we define the object Mx

k(Y )
(functorial in Y ) to be the limit in E

Mx
k(Y ) := lim

(x↓J x
k
)
Ŷ ,

where Ŷ (f : x→ s) = Y (s) (see [Mc, X.3]).
We often write Mx

k for Mx
k(Y ) when Y is clear from the context.

(c) For any slightly larger diagram Y : J x
k → E , there is a canonical map in E

defined using the universal property of the limit, mx
k(Y ) : Y(x) → Mx

k(Y ),
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and σx<k+1 is the composite of mx
k with the forgetful map (inclusion)

Mx
k

�

� forget
//
∏

J (x,t)
|t|≤k

Y(t)

from the limit to the product, so it is closely related to the Reedy matching
map when k = |x| − 1.
Note that Mx

0 is simply a product of entries of degree zero, indexed by
the set of maps from x to the discrete category J x

0 , and mx
0 = σx0 . When E

is a model category, Y is called Reedy fibrant if each mx
|x|−1(Y ) is a fibration;

the special case k = |x| − 1 is the standard Reedy matching construction
(cf. [Hir, Defn. 15.2.3 (2)]).

2.7. Lemma. Given a functor Y : ∂J x
k → E as above, an extension to Y : J x

k → E
is (uniquely) determined by a choice of an object Y (x) ∈ E , together with a map
Y (x)→Mx

k(Y ).

Proof. Recall that there is an adjoint pair given by forgetting and the right Kan
extension over Ikx . The fact that Ikx is fully faithful implies that the right Kan
extension restricts back to the original functor (hence the term extension). Moreover,

Mx
k(Y ) is the formula for the value of the right Kan extension, Ran

J x
k

∂J x
k
(Y ), at the

entry x (see [Mc, X.3, Thm 1]).
Because of the adjunction, Y extends Y on ∂J x

k precisely when there is a natural

transformation Y → Ran
J x
k

∂J x
k
(Y ) restricting to the identity away from x. It is thus

completely determined by the entry Y (x)→Mx
k(Y ). �

Embedding the limit Mx
k(Y ) as usual into

∏
J (x,u),|u|≤k Y(u), we see that there

are two kinds of conditions needed for an element in this product to be in the limit
(when E is a concrete category):

(a) Those not involving Y(s) with |s| = k, yielding Mx
k−1(Y ) in the lower

left corner of (2.9);
(b) Those which do involve Y(s) with |s| = k, where the compatibility con-

ditions necessarily involve objects in degree < k, since all maps in J lower
degree.

This implies:

2.8. Lemma. If J is a weak lattice and |x| > k > 0, a functor Y : ∂J x
k → E

induces a pullback square:

(2.9)

Mx
k(Y )

y

��

//
∏

J (x,s)
|s|=k

Y(s)

∏
J (x,s) σ

s
<k

��

Mx
k−1(Y ) �

� forget
//
∏

J (x,t)
|t|<k

Y(t)
Ψ //

∏

J (x,s)
|s|=k

∏

J (s,v)
|v|<k

Y(v).

Here Ψ = Ψx
k is the generalized diagonal map of (2.4), and the maps σs<k on

the right (given by §2.3(d)) all have sources in ∂J x
k , where Y(f) is defined.
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Proof. Note that the existence of Y suffices to define each component of the diagram.
In particular, Y(f) is defined for each morphism f in ∂J x

k , and even forms part
of the definition of the factors of the right vertical, but such maps are not defined for
any g : x→ v with |v| ≥ k.

Denote the pullback of the lower right part of the diagram by Rx
k. We first show

that Rx
k induces a cone on (x ↓ J x

k ), thus inducing a map Rx
k → Mx

k by the
universal property of the limit: projecting off to the right for targets of degree k,
or projecting after moving down followed by the forgetful map for targets of lower
degree, yields maps Y (g) : Rx

k → Y(s) for each g : x→ s in (x ↓ J x
k ). We must

verify that whenever h = fg for h : x→ t we have a commutative diagram in E ,
so that Y (h) = Y(f)Y (g). If the codomain of g has degree less than k, the upper
right corner is not involved, and commutativity follows from the fact that the map
from Rx

k factors through Mx
k−1(Y ) in the lower left. On the other hand, if the

codomain of g has degree exactly k, then projecting off at the chosen pair (g, f) in
the assumed (commutative) pullback diagram, we see that

(2.10)

Rx
k

Y (h)
��

Y (g)
// Y(s)

Y(f)

��
Y(t)

= // Y(t)

commutes by the definition of the generalized diagonal Ψ, which establishes the cone
condition. Thus, the universal property of the limit yields a unique map Rx

k →Mx
k.

On the other hand, the forgetful map forget : Mx
k →֒

∏

J (x,t)
|t|≤k

Y(t) can be split into

factors with |t| = k, and the factors with |t| < k, thereby defining maps to the two
corners of the pullback which will make the outer diagram commute, by inspection.
Thus, there is also a map Mx

k → Rx
k and the induced cone, as above, is the standard

one, so the composite is the identity on Mx
k.

Finally, starting from Rx
k, building the cone as above and then projecting as just

discussed recovers the same maps Y (h) as entries, so this composite is the identity
on Rx

k as well. �

2.B. Pointed Graded Matching Objects

Higher homotopy operations have traditionally appeared as obstructions to van-
ishing in a pointed context, so we shall need a pointed version of the constructions
above.

2.11. Definition. When E is any category with limits (such as a model category), a
pointed object in E is one equipped with a map from the final object (or empty limit),
denoted by ∗. The most commonly occurring case is where ∗ is a zero object (both
initial and final in E). Similarly, a pointed map in E is one under ∗. This defines the
pointed category E∗ (which inherits any model category structure on E – cf. [Hov,
1.1.8]). Note that there is a canonical zero map, also denoted by ∗, between any two
objects in E∗.
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2.12. Definition. We say that a small category J as in §2.1 is a pointed indexing

category if the set of morphisms has a partition Mor(J ) = J̃ ⊔ J (and thus

J (x, t) = J̃(x, t) ⊔ J (x, t) for each x, t ∈ Obj J ) such that:

(a) J (x, x) contains IdX if and only if x is a zero object in J .
(b) The subsets J (x, t) are absorbing under composition – that is, if f and g

are composable and either of f or g lies in J , then so does their composite.

Thus J behaves like a (2-sided) ideal and J̃ like the corresponding cosets.

Given E∗ and a pointed weak lattice J – that is, a pointed indexing category
which is also a weak lattice – a pointed diagram in E∗ is a functor Y : J → E∗ such
that Y(g) = ∗ whenever g ∈ J (x, t).

2.13. Example. We can make the decreasing poset category

J = [n] = {n > n− 1 > · · · > 0}

pointed by setting J (t, s) := J (t, s) whenever t− s > 1, so only indecomposable

maps lie in J̃. A pointed diagram J → E∗ is then simply a chain complex in E∗.

2.14. Remark. Making a diagram commute while also forcing certain maps to be zero
is more restrictive than simply making it commute. Thus, we would like to construct
an analog of Mx

k tailored to the pointed case.

Note that in a pointed category E∗ there is a canonical map ∗ →
∏

J (x,t)

Y(t) for

any t, hence a section

(2.15) Θ :
∏

J̃(x,t)

Y(t)→
∏

J (x,t)

Y(t)

of the projection map.

2.16. Definition. Given any diagram Y : J → E∗, where J is a pointed weak
lattice, define its reduced matching space (for x and k) as the object of E defined
by the pullback:

M
x

k(Y )
y

forget

��

ιx
k // Mx

k(Y )

forget

��∏

J̃(x,t)
|t|≤k

Y(t)
Θ //

∏

J (x,t)
|t|≤k

Y(t)

which also determines the maps ιxk and forget. In effect, we have replaced any
factor indexed on a map in J by ∗, like reducing modulo the ideal J , precisely as
one would expect for a pointed diagram.

We then have the following analogues of Lemmas 2.7 and 2.8:

2.17. Lemma. Given a pointed functor Y : ∂J x
k → E∗, a pointed extension to

Y : J x
k → E∗ is (uniquely) equivalent to a choice of an object Y (x), together with

a morphism in E∗, Y (x)→M
x

k(Y ).
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2.18. Lemma. If |x| > k > 0, a pointed functor Y : ∂J x
k → E∗ (for J and E∗

as above) induces a pullback square:

(2.19)

M
x

k(Y )
y

��

//
∏

J̃(x,s)
|s|=k

Y(s)

∏

J̃(x,s)
|s|=k

σs<k

��

M
x

k−1(Y ) �
� forget

//
∏

J̃(x,t)
|t|<k

Y(t)
Ψ //

∏

J̃(x,s)
|s|=k

∏

J̃(s,v)
|v|<k

Y(v)

where σs<k is as in §2.3, and Ψ = Ψ
x

k is defined by analogy with (2.4).

Proof. Follow the proof of Lemma 2.8, with J̃ replacing J . The absence of factors
indexed in J implies that the structure maps Y (h) from the pullback of (2.19)
to the copy of Y(s) indexed by h : X → s is the zero map whenever h ∈ J , so
the result follows from the absorbing property of J . �

From the two lemmas we have:

2.20. Corollary. Any pointed diagram Y : J x
k → E∗ induces a structure map

mx
k : Y(x)→M

x

k for each |x| > k > 0.

2.21. Definition. If E is a model category, and J is a pointed weak lattice, a pointed
diagram Y : J → E∗ is called pointed Reedy fibrant if each map mx

|x|−1 is a
fibration.

2.22. Lemma. If E is a model category and J is a pointed weak lattice, a pointed
diagram Y : J → E which is Reedy fibrant in the sense of §2.6 is also pointed Reedy
fibrant. Moreover, for any pointed Reedy fibrant Y , M

x

k(Y ) is fibrant in E∗ for each
k.

Proof. Let k = |x| − 1, and consider a lifting square for mx
k with respect to an

acyclic cofibration α; extend the diagram to include mx
k:

C
��

α

��

// Y(x)

mx
k
��

mx
k

''
D // M

x

k

ιx
k // Mx

k .

Note that a lift in the outer, distorted square will serve as a lift for the inner square,
since ιxk is a base change of another monomorphism, so is itself monic.

To show that M
x

k(Y ) is fibrant in E∗ whenever Y is pointed Reedy fibrant, we
adapt the argument of Lemma 15.3.9(2) through Corollary 15.3.12(2) of [Hir], as
follows:

Given a lifting diagram in E∗,

(2.23)

C
��

∼

��

// M
x

n

��
D //

h
>>

∗
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we construct the dotted lift by induction on 0 ≤ k < n. For a pointed Reedy fibrant
object, we assume the zero entries are each fibrant, so their product M

x

0 will also
be fibrant. For the induction step, suppose we have a lift in the diagram

(2.24)

C
��

∼

��

// M
x

n
// M

x

k−1

��
D //

h−1

66

∗

Note that the structure for any f : x → s with |s| = k induces a commutative
diagram

(2.25)

M
x

k−1
//

##●●●●●●●●
Y(s)

��

M
s

k−1

so in the new lifting diagram:

(2.26)

C
��

∼

��

// M
x

n
// Y(s)

����

D //

hf

66

M
s

k−1

combining the previous two, the lift hf exists because Y was assumed to be pointed
Reedy fibrant. All of these maps together define h0 : D →

∏
Y(s).

Compatibility with lower degree pieces then implies that h0 factors through the
limit defining M

x

k which completes our induction step, showing that M
x

n is fibrant
in E∗. �

2.27. Lemma. Each pointed diagram Z has a pointed Reedy fibrant replacement Y
which is weakly equivalent to its Reedy fibrant replacement Y as an unpointed diagram.

Proof. In the following commuting diagram:

Z(x)

α

��

// M
x

k(Z) // M
x

k(Y )

��
Mx

k(Z)
// Mx

k(Y )

factor the top horizontal composite as an acyclic cofibration Z(x) →֒ Y (x). followed
by a fibration Y (x)→→M

x

k(Y ). A lift in the diagram

Z(x)
��
∼
��

// ∼ // Y (x)

����
Y (x)

∼

44❥❥❥❥❥❥❥❥❥❥❥
// // M

x

k(Y ) // Mx
k(Y )

will allow us to construct inductively a weak equivalence between the new diagram
Y and the standard Reedy fibrant replacement Y for Z. �
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3. General Definition of higher order operations

From now on E will be a model category, and we assume given a “homotopy

commutative diagram” in E – that is, a functor Ỹ : J → ho(E), with J as in §2.1.
Our higher homotopy operations will serve as obstructions to rectification of such a

Ỹ – that is, lifting it to Y : J → E .
We may assume for simplicity that each Ỹ (s) is both cofibrant and fibrant, which

can always be arranged without altering any homotopy types (see §3.2).

3.1. The double induction. We attempt to construct the rectification Y by a
double induction:

I. In the outer induction, we assume we have succeeded in finding a functor Yn :

Jn → E (Yn is assumed to be Reedy fibrant), realizing Ỹ |Jn
. In fact, for our

induction step it suffices to assume only the existence of Ỹn+1 : Jn+1 → ho(E)
extending Yn.

II. By the Reedy conditions, lifting Ỹn+1 to Yn+1 : Jn+1 → E extending Yn
is equivalent to extending the latter to a point-wise extension Y x

n : J x
n → E

for each x ∈ Obj J of degree n+ 1 separately.
Given such an x, the restriction of Yn produces a diagram Yk : ∂J x

k →

E for each k ≤ n and the restriction of Ỹn+1 produces a diagram

Ỹ x
k : J x

k → ho(E), with the two remaining compatible. Thus, for our inner
induction hypothesis, assume a pointwise extension of Yk−1 at x (agreeing
with appropriate restrictions of both of these) has been chosen, so Y x

k−1 :

J x
k−1 → E . Our inner induction step then asks if it is possible to lift Ỹ x

k to
Y x
k : J x

k → E strictly extending both Y x
k−1 and Yk, with the final case of

the inner induction being k = n.

Notice, our inner induction step is equivalent to making coherent choices for each
homotopy class of maps out of x to an object of degree k, leaving all maps not
involving x (so those from Yk) or maps into objects of lower degree (so those from
Y x
k−1) unchanged. By Lemma 3.3 below, we may start the inner induction with Y x

0

defined by the values on objects of Ỹ x
0 . The assumption that Yn is Reedy fibrant

implies that Y1 is Reedy fibrant, too, which will allow us to use the homotopy
pullback property to extend Y x

0 to Y x
1 . The general step in the inner induction

will use Lemma 2.8: By assumption, we have a map into the lower left corner of
(2.9), which we want to extend to a map into the upper left corner still representing

the appropriate class required by Ỹ x
k .

3.2. Remark. Our induction assumption that the diagram Yn is Reedy fibrant implies
that Yn(t) is fibrant in E for each t ∈ Obj Jn, and the same will hold for the
pullbacks that we consider below (see, e.g., §3.13). We will assume in addition that
in the inner induction, for each x ∈ Obj J , Y x

n (x) is cofibrant in E . Together this
will ensure that the left and right homotopy classes, appearing in various results from
the Appendix, coincide (cf. [Hov, 1.2.6]), and the distinction can thus be disregarded.

Theorem 4.24 then yields an obstruction theory for this step in the inner induction.

3.3. Lemma. In the setup described in §3.1 given x ∈ Obj J with |x| > 0:

(a) Any choice of representatives for a homotopy commutative Ỹ x
0 : J x

0 → ho(E)
provides a lift Y x

0 : J x
0 → E .
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(b) Any Reedy fibrant Y1 : ∂J x
1 → E as above has a pointwise extension to a

functor Y x
1 : J x

1 → E which lifts Ỹ x
1 .

Proof. For (a), note that J x
0 has no non-trivial compositions by definition.

For (b), consider the pullback diagram

(3.4)

Y(x)

mx
1

��

mx
0

""

σỸ1

%%

❛ ❵ ❫ ❪ ❬ ❩ ❳ ❲ ❯ ❙
◗

P
◆

▲

Mx
1(Y1)

y

����

//
∏

J (x,s)
|s|=1

Y(s)

∏
ms

0(Y1)

����

Mx
0(Y

x
0 )

∏

J (x,t)
|t|=0

Y(t)
Ψ //

∏

J (x,s)
|s|=1

∏

J (s,v)
|v|=0

Y(v) ,

where the right vertical is a fibration (being a product of fibrations by the Reedy
fibrancy assumption). This is a special case of (2.9) where the forgetful (inclusion)
map on the lower left is the identity, since ∂J x

0 is discrete.
Note that the outer diagram commutes up to homotopy, since it simply compares

composites representing maps in Ỹ x
1 in a somewhat unusual presentation. By

Lemma A.5, we can then alter the dashed map σỸ1 within its homotopy class to
obtain the dotted map mx

1 into Mx
1 . Equivalently, by Lemma 2.7 one can find a

representative of Ỹ x
1 extending to J x

1 without altering the restriction to ∂J x
1

(although this may not be the original Ỹ x
1 , since we might have altered σỸ1 within

its homotopy class when applying Lemma A.5). �

3.5. Remark. Using Lemma 3.3, we shall henceforth assume that in the inner induction
we may start with k ≥ 1. In order to ensure Reedy fibrancy for k = 1, we factor
mx

1 : Y(x) → Mx
1 as an acyclic cofibration Y(x) →֒ Ŷ (x) followed by a fibration

m̂x
1 : Ŷ (x) → Mx

1 . We must verify that Ŷ (x) and m̂x
1 may be chosen in such

a way that the maps to the other objects Ỹ (s) (with |s| > 1) have the correct

homotopy type. However, by assumption all such objects Ỹ (s) are fibrant, so we
can use the left lifting property for

Y(x)
��

∼
��

α // Ỹ (s)

����
Ŷ (x) //

α̂

77♣♣♣♣♣♣♣
∗

to ensure that α and α̂ have the same homotopy class.

In the inner induction on k, we build up the diagram under the fixed x ∈ Obj J
by extending Y x

k−1 to objects in degree k, using:

3.6. Lemma. Assume |x| > k. Given Y x
k−1 : J x

k−1 → E and |s| = k, any
g ∈ J (x, s) induces a map ρ(g) : Y(x)→Ms

k−1.
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Proof. Given g, the diagram Y x
k−1 induces a cone on (s ↓ J x

k−1), sending f : s→ v
to the value of Y x

k−1 at the target of fg. Moreover, given a morphism

s
f

~~⑦⑦⑦⑦⑦⑦⑦⑦
f ′

��
v

h
// u

in (s ↓ J x
k−1), precomposition with g yields

x
fg

~~⑦⑦⑦⑦⑦⑦⑦
f ′g

��
v

h
// u

which commutes in J – that is, a morphism in J x
k−1. Applying Y x

k−1 yields a
commutative diagram in E , showing that we have a cone, and thus a map ρ(g) to
the limit. �

3.7.Corollary. Combining all maps ρ(g) of Lemma 3.6, a functor Y x
k−1 : J

x
k−1 → E

induces a natural map ρk−1 : Y(x)→
∏

J (x,s)
|s|=k

Ms
k−1.

3.8. Definition. A pullback grid is a commutative diagram tiled by squares where
each square, hence each rectangle in the diagram, is a pullback.

Next, we embed the maps ρk−1 and mx
k−1 in a pullback grid, in order to apply

Lemma 2.8:

3.9. Lemma. Assuming |x| > n ≥ k ≥ 2, any functor Y x
k−1 : J

x
k−1 → E induces a

pullback grid defined by the lower horizontal and right vertical maps, with the natural
(dashed) maps into the pullbacks:

(3.10)

Y(x) ρk−1

''
βk−1

  ❇
❇

❇
❇

❇
❇

ηk−1

##

❩ ❨ ❲ ❱ ❯ ❙ ❘ P ◆ ▼ ❑ ■
❍

mx
k−1

$$

Nx
k−1
y

��

qk−1
// Qx

k−1
y

u

��

v //
∏

J (x,s)
|s|=k

Ms
k−1

∏
forget

��

Mx
k−1

�

� forget
//
∏

J (x,t)
|t|<k

Y(t)
Ψ //

∏

J (x,s)
|s|=k

∏

J (s,v)
|v|<k

Y(v) .

Proof. To verify commutativity of the outer diagram, note that for each composable

pair x
g
→ s

f
→ v in J , the projection of either composite from Y(x) onto the copy

of Y(v) indexed by (g, f) (in the lower right corner) is Y(fg), by definition. �

We now set the stage for our obstruction theory by combining all of these pieces
in a single diagram:
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3.11. Proposition. Assuming |x| > n ≥ k ≥ 2, any functor Yk : ∂J
x
k → E as in

§3.1 induces maps into a pullback grid:

(3.12)

Y(x)

mx
k−1

��

βk−1

��

ηk−1

))

σx
k
:=σx

k
(Ỹ x

k
)

((

❭ ❬ ❩ ❨ ❨ ❳ ❲ ❱ ❯ ❚ ❙ ❘
mx

k

��

αk

""
Mx

k
y

����

// Px
k
y

pk−1

����

rk //
∏

J (x,s)
|s|=k

Y(s)

∏
ms

k−1

����

Nx
k−1
y

��

qk−1

// Qx
k−1

y

u

��

v //
∏

J (x,s)
|s|=k

Ms
k−1

∏
forget

��

Mx
k−1

�

� forget
//
∏

J (x,t)
|t|<k

Y(t)
Ψ //

∏

J (x,s)
|s|=k

∏

J (s,v)
|v|<k

Y(v) .

Here σxk := σxk(Ỹ
x
k ) only makes the outermost diagram commute up to homotopy.

Furthermore, the map mx
k exists (after altering σxk within its homotopy class)

if and only if there is a map αk such that pk−1αk = ηk−1 and rkαk ∼ σxk .

Proof. The outer pullback is Mx
k by Lemma 2.8 and the fact that ms

k−1 followed
by the inclusion “forget” is σs<k (cf. §2.3).

Note that the lower half of the grid involves only objects of J in degrees < k, so
the fact that Yk agrees with Y x

k−1 : J x
k−1 → E implies that βk−1 and ηk−1

exist, by Lemma 3.9.
The outer diagram commutes up to homotopy because (Yk)|∂J x

k−1
agrees with

Y x
k−1 and lifts Ỹ x

k , which is homotopy commutative.
Since the upper left square is a pullback, producing a lift of βk−1 : Y(x) → Nx

k−1

to Mx
k is equivalent to choosing a lift of ηk−1 : Y(x)→ Qx

k−1 to αk : Y(x)→ Px
k

(with pk−1 ◦ αk = ηk−1 = qk−1 ◦ βk−1).
The fact that we only alter σxk within its homotopy class ensures that rk◦αk ∼ σxk ,

with the left hand side serving as the replacement for the right hand side. �

3.13. Remark. The problem here is that even though the two maps from Y(x) into∏
J (x,s)

∏
J (s,v) Y(v) (in the lower right corner of (3.12)) agree up to homotopy, this

need not hold for the two maps into
∏

J (x,s) M
s
k−1, the middle term on the right.

Thus we cannot simply apply Lemma A.5 to work with just the upper half of (3.12).
In connection with Remark 3.2, one should note that all three of the objects along

the right vertical edge of (3.12) are fibrant in E . The top and bottom objects are
products of entries we assumed were fibrant. However, the middle object is a product
of the usual Reedy matching spaces for the factors in the product above, so by [Hir,
Cor. 15.3.12 (2)], our assumption of Reedy fibrancy implies these factors are also
fibrant.

Lemma 2.22 implies that this holds in the pointed case, too.
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3.14. The Total Higher Homotopy Operation. Following our inner induction

hypothesis as in §3.1(II), assume given Ỹ x
k : J x

k → ho(E), Y x
k−1 : J

x
k−1 → E and a

Reedy fibrant Yk : ∂J
x
k → E .

Factor the generalized diagonal map Ψ = Ψx
k of (2.4) as a trivial cofibration

ι :
∏

J (x,t) Y(t)
≃
−→ F 1 followed by a fibration Ψ′ : F 1 →→

∏
J (x,s)

∏
J (s,v) Y(v).

(If we want a canonical choice of F 1, we will use the product of free path spaces
for the non-zero factors appearing in the target and the reduced path space for each
zero factor (see §2.B), with ι defined by the constant paths for non-zero factors.)

We then pull back the right vertical maps of (3.12) to produce the following
pullback grid, with fibrations indicated as usual by →→ :

(3.15)

Y(x)

ηk−1

$$

σx
k
:=σx

k
(Ỹ x

k
)

$$

ϕ

))

✣
✥

★

✪

✭

✱

✴
✹

✽
❃

❉
❍

▲
❖

❘

κ

""

❨ ❲ ❚
◗

▼
❏

❋

αk

!!

σx
<k

:=σx
<k

(Y x
k−1)

!!

Px
k
y

pk−1

����

w // F 3

y

µ

����

r′
k // //

∏

J (x,s)
|s|=k

Y(s)

∏
ms

k−1

����
∏
σs
<k

~~

Qx
k−1
y
u

��

γ
// F 2

y

q

��

s // //
∏

J (x,s)
|s|=k

Ms
k−1

∏
forget

��∏

J (x,t)
|t|<k

Y(t) ∼
ι //

Ψ

22
F 1 Ψ′

// //
∏

J (x,s)
|s|=k

∏

J (s,v)
|v|<k

Y(v)

where the outermost diagram commutes up to homotopy (and the map ηk−1 exists
by Lemma 3.9).

In order to construct a lift Y x
k : J x

k → E , by Proposition 3.11, we need to produce
the dotted map αk with pk−1 ◦ αk = ηk−1 and rk ◦ αk = r′k ◦ w ◦ αk ∼ σxk . The
problem is that the large square is a strict pullback, but not a homotopy pullback, so
the outermost diagram commuting up to homotopy is not enough.

However, the top left square is a pullback over a fibration, so by Lemma A.5
producing αk is equivalent to finding a map κ with µ ◦ κ ∼ γ ◦ ηk−1 and
r′k ◦ κ ∼ σxk .

Moreover, Lemma A.5 applies to the right vertical rectangle, which implies that
choosing κ is equivalent to finding a map ϕ in the same homotopy class as the com-
posite ι ◦ σx<k, making the outer diagram commute. Thus, the only question is
whether the two composites Y(x) → F 2 agree: that is, given ϕ, with the map κ
induced by ϕ (for which necessarily r′k ◦ κ ∼ σxk), is it true that µ ◦ κ ∼ γ ◦ ηk−1?

3.16. Definition. We define the total higher homotopy operation for x to be the set
〈Y x

k−1〉 of all homotopy classes of maps θ : Y(x) → F 2 with ϕ := q ◦ θ ∼ ι ◦ σx<k
and Ψ′ ◦ ϕ = (

∏
σs<k) ◦ σ

x
k . We say that 〈Y x

k−1〉 vanishes at such a θ : Y(x)→ F 2

if also θ ∼ γ ◦ ηk−1, and we say that 〈Y x
k−1〉 vanishes if it vanishes at some

θ, or equivalently, if this subset of the homotopy classes contains the specified class
[γ ◦ ηk−1].
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3.17. Remark. By Corollary A.10 and the fact that
∏

forget is a monomorphism,
the homotopy classes [θ] making up 〈Y x

k−1〉 are precisely those of the form [µ ◦κ]
for a κ with r′k ◦ κ = σxk and q ◦ µ ◦ κ ∼ ι ◦ σx<k. We may apply Corollary
A.10 to the right vertical rectangle with horizontal fibrations, since by assumption
the outer diagram commutes up to homotopy. This implies that the subset 〈Y x

k−1〉
of Definition 3.16 is non-empty: i.e., some such ϕ and so some κ and in turn some θ,
exist. Thus the total higher homotopy operation is defined at this point. The total
higher homotopy operation vanishes if there is such a κ with µ ◦ κ ∼ γ ◦ ηk−1.

This somewhat incongruous terminology of “vanishing” is explained by the follow-
ing.

3.18. Proposition. Assume given Ỹ : J → ho(E) with J a weak lattice, and

x ∈ Obj J with |x| > n ≥ k ≥ 2, and let Yk : ∂J
x
k → E , Y x

k−1, and Ỹ x
k be as

in §3.1. We can then extend Yk to Y x
k : J x

k → E if and only if 〈Y x
k−1〉 vanishes.

Proof. Note that
∏

forget is a monomorphism, since the class of monomorphisms
is closed under categorical products and the inclusion of a limit into the underlying
product is always a monomorphism. Thus, the last statement in Corollary A.10
implies each value θ of 〈Y x

k−1〉 satisfies θ ∼ µ◦κ for some κ with r′k ◦κ = σxk and
q ◦µ ◦κ ∼ ι ◦σx<k. As a consequence, if we assume 〈Y x

k−1〉 vanishes at θ, then there
is a choice of κ which satisfies µ ◦ κ ∼ θ ∼ γ ◦ ηk−1. After possibly altering κ (and
so µ ◦ κ, ϕ, and r′kκ) within their homotopy classes, by Lemma A.5 applied to the
upper left square in (3.15) we then have a dotted map αk with pk−1 ◦αk = ηk−1.
Replacing σxk with r′k ◦ κ

′, we still have the same homotopy commutative diagram
since κ′ ∼ κ. Moreover, if we disregard the dashed arrows κ and ϕ, the remaining
solid diagram commutes on the nose, since q ◦ µ ◦ κ′ = q ◦ γ ◦ ηk−1 = ι ◦ σx<k,
s ◦ γ ◦ ηk−1 = s ◦ µ ◦ κ′ =

∏
ms
k−1 ◦(r

′
k ◦ κ

′), and the lower right square commutes
by construction. The upper left pullback square in (3.12) then yields mx

k and so
defines the required extension Y x

k : J x
k → E by Lemma 2.7.

On the other hand, if 〈Y x
k−1〉 does not vanish, then no choice of ϕ yields a map

κ with µ ◦ κ ∼ γ ◦ ηk−1. Thus ηk−1 does not lift over pk−1, so no such map mx
k

exists. Thus there is no extension Y x
k , by Lemma 2.7. �

3.19. Remark. As a consequence of Proposition 3.18, our total higher homotopy op-
erations are the obstructions to extending a certain choice of representative of a
(k)-truncation of a homotopy commutative diagram in order to produce a (k + 1)-
truncated representative. As in any obstruction theory, if the obstruction does not
vanish at a certain stage, we must backtrack and reconsider earlier choices, to see
whether by altering them we can make the new obstruction vanish at the stage in
question.

It is natural to ask more generally whether there is any (k + 1)-truncated (strict)
representative of the given homotopy commutative diagram. Rephrasing this in our
context, we ask whether for any choice of a (k)-truncated representative our ob-
struction sets contain the particular class which constitutes “vanishing”. In those
cases where one can identify the ambient collections of homotopy classes of maps
with one another, a positive answer to the more general question is equivalent to that
particular class lying in the union of our obstruction subsets.
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4. Separating Total Operations

At this level of generality, we cannot expect Proposition 3.18 to be of much help
in practice: its purpose is to codify an obstruction theory for rectifying certain
homotopy-commutative diagrams, using the double induction described in §3.1.

We now explain how to factor the right vertical map of (3.12) or (3.15) as a
composite of (mostly) fibrations with a view to decomposing the obstruction 〈Y x

k−1〉
into more tractable pieces. A key tool will be the following

4.1. The Separation Lemma. Assume given a solid commutative diagram as
follows:

Y(x)
f

""

ηk−1

��

κ1

((

❞ ❝ ❝ ❜ ❜ ❛ ❵ ❵ ❴ ❫ ❫ ❪ ❭ ❭ ❬ ❩ ❨ ❨ ❳ ❲ ❲ ❱ ❯ ❯ ❚ ❙ ❘ ❘ ◗

κ2

((

❝ ❜ ❜ ❛ ❵ ❵ ❴ ❴ ❫ ❪ ❪ ❬ ❩ ❨ ❲ ❲ ❱ ❯ ❚ ❚ ❙ ❘ ❘ ◗
κ3···

''

❵ ❴ ❫ ❭ ❬ ❩ ❳ ❲ ❱ ❚ ❙ ❘
P

κk−1

&&

❪ ❭ ❩ ❨ ❳ ❲ ❱ ❚ ❙ ❘ P ❖

κ0

((

❞ ❝ ❝ ❜ ❜ ❛ ❵ ❵ ❴ ❴ ❫ ❪ ❪ ❭ ❬ ❬ ❩ ❩ ❨ ❳ ❳ ❲ ❱ ❱ ❯ ❚ ❚ ❙ ❘

Px
k
y
pk−1

����

// F k−1,k+1
x,k

y
µk−1
����

F 3,k+1
x,k

y

����

u3
// // F 2,k+1

x,k

y

����

u2
// // F 1,k+1

x,k
y

s
����

u1
// // F 0,k+1

x,k

����

Qx
k−1

γk //

ϕk−1

))

ϕ3

...

--

ϕ2 --

ϕ1 --

F k−1,k
x,k

y
rk−1

��

F 3,k
x,k

y

// // F 2,k
x,k

��

y

// // F 1,k
x,k

y

��

// // F 0,k
x,k

z

��

F k−1,k−1
x,k F 3,k−1

x,k
y

// // F 2,k−1
x,k

y

// // F 1,k−1
x,k

y
// // F 0,k−1

x,k

F 3,3
x,k q3

// // F 2,3
x,k

y
r2
����

p2
// // F 1,3

x,k
y

����

// // F 0,3
x,k

����

F 2,2
x,k q2

// // F 1,2
x,k

y
r1
����

p1
// // F 0,2

x,k

����

F 1,1
x,k q1

// // F 0,1
x,k

in which:

• all rectangles are pullbacks,
• the indicated maps are fibrations,
• the objects F 0,1

x,k and F j,k
0,k are fibrant, and

• the vertical map z is a monomorphism.

Note that as a consequence, all objects in the diagram, other than possibly Px
k

and Qx
k−1, are fibrant, while all vertical maps F j,k

x,k → F j,k−1
x,k are monomorphisms.

Denote the horizontal composite Qx
k−1 → F 1,k

x,k by Γk−1 and the vertical

composite F j,k+1
x,k → F j,j+1

x,k by Φj , so Φk−1 = µk−1, and also define ϕk to be the
identity on Qx

k−1 with qk = γk. In addition, let βj denote the vertical composite

F j,k+1
x,k → F j,j+2

x,k .

Now assume that we also have a map κ0 : Y(x) → F 0,k+1
x,k such that Φ0 ◦ κ0 ∼

q1 ◦ ϕ
1 ◦ ηk−1. Then by Lemma A.5 applied to the right vertical rectangle (with
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horizontal fibrations) there exists κ1 with u1◦κ1 = κ0 and r1◦Φ
1◦κ1 ∼ ϕ1◦ηk−1.

We are interested in decomposing the question of whether s◦κ1 ∼ Γk−1◦ηk−1 into a
series of smaller questions. This question will become important once we demonstrate
it to be an instance of asking for a total higher homotopy operation to vanish.

If it is true that q2 ◦ ϕ
2 ◦ ηk−1 ∼ Φ1 ◦ κ1, then Lemma A.5 for the next vertical

rectangle imply the existence of the dashed map κ2, such that u2 ◦ κ2 = κ1 and
r2 ◦ Φ

2 ◦ κ2 ∼ ϕ2 ◦ ηk−1. Proceeding in this manner, and assuming the maps into
the indicated “staircase terms” remain homotopic, even though we are only certain
they agree up to homotopy after applying the relevant rj , one produces κk−1 such
that uk−1 ◦ κk−1 = κk−2 and rk−1 ◦ µk−1 ◦ κk−1 = rk−1 ◦Φ

k−1 ◦ κk−1 ∼ ϕk−1 ◦ ηk−1,
since µk−1 = Φk−1. The final step is then to ask whether µk−1κk−1 ∼ qk ◦ ϕ

k ◦
ηk−1 = γk ◦ ηk−1, and if so, it follows by composing with most of the rectangle
across the top of the diagram that s ◦ κ1 ∼ Γk−1 ◦ ηk−1. In fact, we will be able to
characterize when this procedure is possible in terms of obstructions, which we will
view as “separated” versions of the total higher homotopy operation corresponding
to the original question.

4.2. Separation Lemma. Given the pullback grid as indicated above along with a
choice of κ0 satisfying Φ0 ◦ κ0 ∼ q1 ◦ ϕ

1 ◦ ηk−1, there exists the indicated κ1
satisfying u1 ◦ κ1 = κ0 and r1 ◦ Φ

1 ◦ κ1 ∼ ϕ1. Then κ1 also satisfies the
constraint Γk−1 ◦ ηk−1 ∼ s ◦ κ1 if and only if there exists an inductively chosen
sequence of maps κj : Y(x)→ F j,k+1

x,k for 1 ≤ j < k (starting with the given κ1)
satisfying

(4.3) qj+1 ◦ ϕ
j+1 ◦ ηk−1 ∼ Φj ◦ κj and κj−1 = uj ◦ κj .

The reader should note that with our conventions, in the final case j = k− 1, the
conclusion is that γk ◦ ηk−1 ∼ µk−1 ◦ κk−1.

4.4. Corollary. If either of the two equivalent conditions of Lemma 4.2 holds, then
by changing κ1 : Y(x)→ F 1,k+1

x,k within its homotopy class, (and so using its image
under u1 to replace κ0 within its homotopy class as well) but without altering
Γk−1, we can lift ηk−1 to the dotted map f : Y(x)→ Px

k shown in the diagram.

Proof of Corollary 4.4. This follows from Lemma A.5, since the long horizontal rec-
tangle across the top of the diagram is a pullback over a vertical fibration. �

4.5. Remark. In the case we have in mind, F 0,1
x,k will be a product of objects Y(s),

as will F 0,k+1
x,k , this time with |s| = k, and F 0,k

x,k will be the corresponding product
of matching objects Ms

k−1, which will be fibrant by [Hir, Cor. 15.3.12 (2)]. Later,
we will also have a pointed version, instead relying on pointed Reedy fibrancy and
Lemma 2.22. Note that the second vertical map in each column of the grid is not
required to be a fibration, but instead a monomorphism. Recall that monomorphisms
are closed under base change and forgetting from a limit to the underlying product
is always a monomorphism, so its first factor in any factorization must also be a
monomorphism, hence these conditions will arise naturally in our cases of interest.

Proof of Lemma 4.2. We will repeatedly apply Lemma A.5 using a vertical rectangle
with horizontal fibrations, with κj−1 as p and ϕj ◦ ηk−1 as f , showing κj exists
and satisfies

(4.6) rj ◦ Φ
j ◦ κj ∼ ϕj ◦ ηk−1
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provided that

(4.7) Φj−1 ◦ κj−1 ∼ qj ◦ ϕ
j ◦ ηk−1 .

Since κ1 exists by the assumption on κ0, which is really (4.7) for j = 1, we begin
the induction by assuming κ1 satisfies (4.7) for j = 2, in which case κ2 exists
and satisfies (4.6) for j = 2. Now assuming the stricter condition (4.7) for j = 3
implies the existence of κ3 satisfying (4.6) for j = 3, and so on.

When our induction constructs κk−1 satisfying (4.6) for j = k − 1, we assume
the stricter condition (4.7) for j = k, which, as noted above, is the statement that
γk◦ηk−1 ∼ µk−1◦κk−1. However, then composing with the horizontal rectangle across
the top of the diagram from µk−1 to s implies the constraint Γk−1 ◦ ηk−1 ∼ s ◦ κ1.

On the other hand, if κ1 satisfies the constraint Γk−1 ◦ ηk−1 ∼ s ◦ κ1, then
we proceed by applying Lemma A.5 inductively to each square along the top of the
diagram using κj−1 for p and γk ◦ ηk−1 followed by the composite F k−1,k

x,k → F j,k
x,k

for f , exploiting the horizontal fibrations in the rectangle. This yields κj satisfying

more than (4.7), since the homotopy relation is satisfied up in F j,k
x,k , and this also

implies (4.6) by construction. �

Given Ỹ x
k : J x

k → ho(E), Y x
k−1 : J

x
k−1 → E and a Reedy fibrant Yk : ∂J

x
k → E

as in §3.1(II), assume that we can refine diagram (3.15) (used to define 〈Y x
k−1〉,

the total higher homotopy operation for x) to a pullback grid as in Lemma 4.2. Then

F 0,k+1
x,k =

∏
|s|=k

∏
J (x,s) Y(s) and F 0,1

x,k =
∏

|s|=k

∏
|v|<k

∏
J (x,s)

∏
J (s,v) Y(v), in

conformity with Remark 4.5, while one of the two equivalent conditions in Lemma 4.2
is the vanishing of the total higher homotopy operation. Recall the vertical composite
F j,k+1
x,k → F j,j

x,k in this diagram is the composite rj ◦ Φ
j .

4.8. Definition. If we can produce a pullback grid as in Lemma 4.2 refining diagram
(3.15), then for each 1 ≤ j < k, the associated separated higher homotopy operation
for x of order j + 1, denoted by 〈Y x

k−1〉
j+1, is the set of homotopy classes of maps

θ : Y(x)→ F j,j+1
x,k such that:

• if j < k − 1, rj ◦ θ ∼ ϕj ◦ ηk−1 and pj ◦ θ equals the composite

Y (x)
κj
→ F j,k+1

x,k

βj
→ F j,j+2

x,k , or

• if j = k− 1, rk−1 ◦ θ ∼ ϕk−1 ◦ ηk−1 and qk−1 ◦ rk−1 ◦ θ = rk−2 ◦ µk−1 ◦ κk−2

(using the notation of the top two rows of vertical arrows in §4.1).

We say that 〈Y x
k−1〉

j+1 vanishes at θ : Y(x) → F j,j+1
x,k as above if θ ∼

qj+1 ◦ ϕ
j+1 ◦ ηk−1 (in the notation of the Lemma), and we say it vanishes if it

vanishes at some value.

Note that if we assume qj ◦ ϕ
j ◦ ηk−1 ∼ Φj−1 ◦ κj−1 then by Lemma A.5, κj

exists, while 〈Y x
k−1〉

j+1 can then be defined and by Corollary A.10 each θj+1 will
satisfy θj+1 ∼ Φj ◦κj . Thus, the vanishing of some value θj+1 becomes equivalent
to assuming qj+1 ◦ϕ

j+1 ◦ ηk−1 ∼ Φj ◦ κj . In other words, the vanishing of 〈Y x
k−1〉

j+1

(scilicet at some map θj+1) is a necessary and sufficient condition for 〈Y x
k−1〉

j+2 to
be defined. (For comments on coherent vanishing, see Remark 4.9).

4.9. Remark. Those familiar with other definitions of higher homotopy operations
may have expected a stricter, coherent vanishing condition in order for a subsequent
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operation to be defined. However, this need not be made explicit in our framework,
as it is a consequence of compatibility with previous choices.

For example, our version of the ordinary Toda bracket, denoted by 〈f, g, h〉, is
the obstruction to having a given (2)-truncated commuting diagram, satisfying just
f ◦ g = ∗, extending to a (3)-truncated diagram simply by altering h within its
homotopy class to satisfy g ◦ h = ∗, without altering g or f . Each choice of (2)-
truncation (of which there is at least one, by Lemma 3.3) has an obstruction which is
a subset of the homotopy classes of maps [Y(3),Ω′Y(0)]. The usual Toda bracket is
the union of these subsets: 〈f, g, h〉 = ∪〈f, g, h〉. Thus, the more general existence
question has a positive answer (i.e., a vanishing Toda bracket) exactly when, for some
choice of (2)-truncation, the obstruction vanishes in our sense.

When defining our long Toda brackets, say 〈f, g, h, k〉, we will begin by building
the (3)-truncation only if the “front” bracket 〈f, g, h〉 vanishes for some choice
of (2)-truncation, and we make an appropriate choice of h. At that point, we only
consider values of the “back” bracket 〈g, h, k〉 which use the previously chosen maps
g and h. Thus asking that our obstruction vanish is automatically a kind of coherent
vanishing. If it does not vanish, we must alter our choice of (3)-truncation until we
obtain a coherently vanishing “back” bracket. Once again, one interpretation of the
traditional long Toda bracket would then be a union ∪〈f, g, h, k〉, this time indexed
over all possible strict rectifications of 〈f, g, h〉, so all such 3-truncations.

4.10. Applying the Separation Lemma. By Proposition 3.18, a necessary
and sufficient condition for the inner induction step in §3.1 is the vanishing of the
total higher homotopy operation 〈Y x

k−1〉 – that is, by Lemma 2.7, the existence
of a suitable map mx

k in (3.12). According to Proposition 3.11, this in turn is
equivalent to having a map κ in (3.15) satisfying a certain homotopy-commutativity
requirement.

In order to apply Lemma 4.2, we need to break up the lower right square of (3.15)
into a pullback grid (which then induces a horizontal decomposition of the upper right
square). This will be done by decomposing the lower right vertical map, which is a
product (over J (x, s), with |s| = k) of the forgetful maps Ms

k−1 →
∏

J (s,v) Y(v)

(with |v| ≤ k − 1). The target of this forgetful map can be further broken up as in
(2.9) to a product over |v| = k − 1 and one over |v| < k − 1.

4.11. Example. When |s| = 3, we factor the top horizontal arrow in (2.9) as a
weak equivalence followed by a fibration:

(4.12) Ms
2

∼
→ F 1,3

s,2 →→
∏

J (s,v)
|v|=2

Y(v) .

Similarly, we can factor the map in (3.10) from Ns
1 to the product of lower degree

copies of Y(t) to produce a factorization

(4.13) Ms
2 → Ns

1

≃
→֒ G1,3

s,2 →→
∏

J (s,t)
|t|<2

Y(t)
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for the lower degree forgetful map in (2.9). Together these yield a factorization of
the full forgetful map:

(4.14) Ms
2 → F 1,3

s,2 ×G
1,3
s,2 →→

∏

J (s,v)
|v|<3

Y(v) ,

with the second map a fibration and the first necessarily a monomorphism, since the
composite is a monomorphism as the inclusion of a limit into the underlying product.
Precomposing with structure maps Y(s) →→ Ms

2 (which are fibrations, because we
assumed our diagram Y was Reedy fibrant) yields

(4.15)
∏

J (x,s)
|s|=3

Y(s) →→
∏

J (x,s)
|s|=3

Ms
2 →

∏

J (x,s)
|s|=3

(F 1,3
s,2 ×G

1,3
s,2) →→

∏

J (x,s)
|s|=3

∏

J (s,v)
|v|≤2

Y(v) .

This is a refinement of the right column in (3.15), in which all but the second map
is a fibration, and that second map is a monomorphism.

Taking (4.15) as the right column in the diagram of Lemma 4.2, we pull it back
along the bottom row of (3.15) to get the two right columns of the intended diagram,
as shown in (4.16).

For the next column, note that the two maps out of Qx
2 in (3.15) induce a

map Qx
2 → F 1,2

x,3 , in the notation of (4.16). Factoring this as an acyclic cofibration
followed by a fibration:

Qx
2

≃
→֒ F 2,2

x,3 →→ F 1,2
x,3

and taking pullbacks yields the required pullback grid:

(4.16)

Px
3
y

p2

����

// F 2,4
x,3
y

����

// // F 1,4
x,3
y

����

// //
∏

J (x,s)
|s|=3

Y(s)

����

Qx
2

��

//

∼

��❁❁❁❁❁❁❁❁❁❁❁❁❁❁
F 2,3
x,3

y

��

// // F 1,3
x,3

y

��

// //
∏

J (x,s)
|s|=3

Ms
2

��

F 2,2
x,3

// // F 1,2
x,3

y

����

// //
∏

J (x,s)
|s|=3

F 1,3
s,2 ×G

1,3
s,2

����∏

J (x,t)
|t|<3

Y(t) // F 1,1
x,3

// //
∏

J (x,s)
|s|=3

∏

J (s,v)
|v|<3

Y(v) .

Note that F 1,1
x,3 is the F 1 of Definition 3.16, while F 1,3

x,3 is F 2 – that is,
the target of our total higher operation θ. Separation Lemma 4.2 tells us that this
operation vanishes precisely when the following two “separated” operations vanish:

(a) The first, landing in F 1,2
x,3 , being defined by the two composite maps from

Y(x);
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(b) The vanishing of the first yields a second map into F 2,3
x,3 , where this second

map defines the values of the second of the “separated” operations, and the
formally defined first map defines the possible vanishing of such operations.

This example is indicative of the general pattern, described by:

4.17. Lemma. Assume given Ỹ x
k : J x

k → ho(E), Y x
k−1 : J x

k−1 → E and a Reedy
fibrant Yk : ∂J

x
k → E as in §3.1(II). If for each Ms

k−1 we have a pullback grid as
in Lemma 4.2, these induce a pullback grid:

(4.18)

Px
k
y

pk−1

����

// F k−1,k+1
x,k

y

����

// // F k−2,k+1
x,k

y

����

// // F 1,k+1
x,k

y

����

// //
∏

J (x,s)
|s|=k

Y(s)

����

Qx
k−1

��

//

∼

##

∼

))

F k−1,k
x,k

y

��

// // F k−2,k
x,k

y

��

// // F 1,k
x,k

y

��

// //
∏

J (x,s)
|s|=k

Ms
k−1

��

F k−1,k−1
x,k

// // F k−2,k−1
x,k

y

����

// // F 1,k−1
x,k

y

����

// //
∏

J (x,s)
|s|=k

F k−2,k
s,k−1 ×G

k−2,k
s,k−1

����

// // F 1,2
x,k

y

����

// //
∏

J (x,s)
|s|=k

F 1,k
s,k−1 ×G

1,k
s,k−1

����∏

J (x,t)
|t|<k

Y(t)
∼ // F 1,1

x,k
// //
∏

J (x,s)
|s|=k

∏

J (s,v)
|v|<k

Y(v)

suitable for lifting ηk−1 : Y(x)→ Qx
k−1 to Px

k.

Note that the two top right slots in (4.18) are consistent with Remark 4.5.

Proof. We prove the Lemma by induction on k, beginning with (4.16) for k = 3.
We start with a decomposition

(4.19) Ms
k−1 → F k−2,k

s,k−1 →→ . . .→→ F 2,k
s,k−1 →→ F 1,k

s,k−1 →→
∏

J (s,v)
|v|=k−1

Y(v)

of the top map in (2.9), where all but the first map are fibrations; this first map
is a monomorphism since the composite is such, being the inclusion of a limit into
the underlying product. This is generated using Step k − 1 in the induction, by
precomposing the top row in (4.18) for k − 1 with the map Ms

k−1 → Ps
k−1 of

(3.12).
For Ns

k−1 → Qs
k−1 →

∏
|s|=k Ms

k−1 (the middle row of (3.12)), we pull back the

right column of (4.18) for k − 1 along the generalized diagonal Ψ of (2.4) to
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obtain a sequence of pullbacks

(4.20)

Gj,k
s,k−1

y

����

//
∏

J (s,v)
|v|=k−1

F j,k−1
v,k−2 ×G

j,k−1
v,k−2

����∏

J (s,t)
|t|<k−1

Y(t)
Ψ //

∏

J (s,v)
|v|=k−1

∏

J (v,u)
|u|<k−1

Y(u),

for each 1 ≤ j ≤ k − 3, where the right vertical map is a fibration by the induction
assumption.

For j = k − 2, we instead factor the composite of the top row in:

(4.21)

Ns
k−2

qk−2
//

''
≃

i
''❖❖❖❖❖❖❖❖❖❖❖❖
Qs
k−2

// Gk−3,k
s,k−1

Gk−2,k
s,k−1

r

77 77♦♦♦♦♦♦♦♦♦♦♦♦♦

into an acyclic cofibration i followed by a fibration r, as shown (where the top maps
are those of (3.12) and (4.18) for k − 1, respectively). Precomposing this with
the map Ms

k−1 → Nx
k−2 of (3.12) and then taking products as in Example 4.11

yields the desired factorization of the forgetful map:
(4.22)

Ms
k−1 → F k−2,k

s,k−1 ×G
k−2,k
s,k−1 . . .→→ F 2,k

s,k−1 ×G
2,k
s,k−1 →→ F 1,k

s,k−1 ×G
1,k
s,k−1 →→

∏

J (s,v)
|v|<k

Y(v).

Now factor the next generalized diagonal Ψx
k−1 as an acyclic cofibration followed

by a fibration p1,1 : F 1,1
x,k →→

∏

J (s,v)
|v|<k

Y(v). Pulling back the tower (4.22) along p1,1

yields the second column on the right in our new grid (4.18). The total higher

operation will then land in the twice-boxed pullback object F 1,k
x,k .

To construct the j-th column from the right (j ≥ 2), with entries F j+1,•
x,k , factor the

previously defined map Qx
k−1 → F j,j+1

x,k as an acyclic cofibration Qx
k−1

∼
→ F j+1,j+1

x,k

followed by a fibration p : F j+1,j+1
x,k →→ F j,j+1

x,k . We then pull back the (j − 1)-st
column along p to form the j-th column of (4.18).

Note that upon completion of this process, the map Qx
k−1 → F k−1,k

x,k need not be
a fibration, but the vertical maps in the upper left square are fibrations, by successive
base-change from the product of maps Y(s)→→Ms

k−1, each of which is a fibration by
Reedy fibrancy of Yk. �

4.23. Definition. The diagram of Lemma 4.2, when constructed inductively as in
Lemma 4.17, will be called a separation grid for Yk.

Combining Lemma 4.17 with the Separation Lemma 4.2 and Corollary 4.4 yields
the following refinement of Proposition 3.18:
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4.24. Theorem. Assume given Ỹ x
k : J x

k → ho(E), Y x
k−1 : J

x
k−1 → E and a Reedy

fibrant Yk : ∂J x
k → E as in §3.1(II) for |x| > n ≥ k ≥ 2. Then our total higher

homotopy operation separates into a sequence of k − 1 obstructions and the following
are equivalent:

(1) A further extension to Y x
k : J x

k → E exists;
(2) The total operation 〈Y x

k−1〉 vanishes;
(3) The associated sequence 〈Y x

k−1〉
j+1 (1 ≤ j < k) of separated higher

homotopy operations of §4.8 vanish (so in particular each in turn is defined).

4.25. Remark. The machinery of the separated higher homotopy operations has been
formulated to agree with (long) Toda brackets in pointed cases. We shall deal with
these in Section 7, after a more detailed study of the special issues involving pointed
diagrams. In particular, the role of Qx

k−1 will be played by a point, so the weak
equivalence followed by a fibration factorizations out of it will be provided by taking
reduced path objects on the target. However, we first present a simple example of
the (less familiar) general unpointed situation before focusing on the details for the
pointed situation.

5. Rigidifying Simplicial Diagrams up to Homotopy

A commonly occurring instance of a homotopy-commutative diagram which needs
to be rectified are restricted (co)simplicial objects, also known as ∆-simplicial objects
(i.e., without (co)degeneracies). Examples appear in [BJT1, §6], [BJT3, §4.1], [B2,
§5], and implicitly in [May, Se, Pr], and more. We now show how the double inductive
approach described in §3.1 applies to such diagrams.

We denote the objects of the simplicial indexing category ∆ by 0, 1, . . . ,n, . . . ,
with the value of Y : ∆→ E at n thus denoted by Y(n) instead of the usual Yn.

5.1. 1-Truncated ∆-Simplicial Objects. We start the outer induction with
n = 0. Our 1-truncated diagram in ho(E) then consists of a pair of parallel
arrows, so we have only the stage k = 0 in the inner induction: this means choosing
representatives for each of the two face maps d0, d1 : Y(1) → Y(0). Making this
Reedy fibrant means changing the combined map (d0, d1) : Y(1) → Y(0)d0 × Y(0)d1

into a fibration (i.e., factoring this as Y(1)
≃
→֒ Y(1)′ →→ Y(0) × Y(0) and replacing

Y(1) by Y(1)′).

5.2. 2-Truncated ∆-Simplicial Objects. For n = 1, x is 2 and Y1 : ∂J
1
0 → E

is the Reedy fibrant diagram just constructed.
To define Y 2

0 : J 2

0 → E at stage k = 0 in the inner induction, pick representatives
for each of the full length composites: in this case, the three maps Y(2) → Y(0)
denoted by d0d1, d0d2, and d1d2 in canonical form. This means M2

0 is the
product of three copies of Y(0) indexed by didj (0 ≤ i < j ≤ 2), and our choice
of representatives yields a single map m2

0 into the product.

At stage k = 1, we must first choose representatives for the components of σ2

1 (Ỹ
2

1 )
– that is, for the maps d0, d1, and d2 : Y(2) → Y(1), which are all the maps
2 → 1 in J ). The generalized diagonal map Ψ = Ψ2

1 of (2.4) takes Y(0)didj

(i < j) to the product Y(0)didj × Y(0)dj−1di , in accordance with the simplicial
identities. Note that the target of σ2

1 is
∏

0≤j≤2 Y(1)
dj .
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Thus we have a pair of maps into a pullback diagram:

(5.3)

Y(2)

m2

0

��

σ21 (Ỹ
2

1 )=(d0,d1,d2)

))

❪ ❪ ❭ ❬ ❩ ❩ ❨ ❳ ❲ ❱ ❯ ❯ ❚

m2

1

��

M2

1 y

����

//
∏

j≤2

Y(1)dj

����

M2

0

∏

i<j≤2

Y(0)didj
Ψ //

∏

j≤2

∏

i≤1

Y(0)didj .

where the outer diagram commutes up to homotopy (for any choice of representatives
for d0, d1, and d2). The dotted map exists by Lemma A.5 (after possibly altering
the dashed map within its homotopy class), yielding a full 2-truncated ∆-simplicial

object (which rectifies Ỹ 2

1 ) by Lemma 2.7. Changing m2

1 into a fibration provides
us with a Reedy fibrant replacement Y2 : ∂J2 → E .

5.4. 3-Truncated ∆-Simplicial Objects. At stage n = 2 (with x = 3), for
the first time we are in the situation of §3.16, somewhat simplified by the fact that
we have a single object n in each grading n of J = ∆. In particular, we will have
no separated operations yet.

In the inner induction, for k = 0, we choose representatives for each full length

map in Ỹ 3

2 to obtain Y 3

0 ; the full length composites are the four maps didjdℓ
with 0 ≤ i < j < ℓ ≤ 3, so M3

0 is a product of four copies of Y(0) indexed by
these maps, and the generalized diagonal of (2.4) takes each copy of Y(0)didjdℓ to
the product

Y(0)didjdℓ × Y(0)dj−1didℓ × Y(0)dℓ−2didj .

We make an initial choice (to be modified below) of σ2

1 (Ỹ
2

1 ) (i.e., of each composite
djdℓ : 3 → 1 for 0 ≤ j < ℓ ≤ 3 within its homotopy class). Again this yields a
pair of maps into a pullback diagram:

(5.5)

Y(3)

m3
0

��

σ2=1(Ỹ
2
1 )

**

❫ ❪ ❪ ❪ ❪ ❭ ❭ ❭ ❬ ❬ ❬ ❩ ❩ ❩ ❨ ❨ ❨ ❳ ❳ ❳ ❲ ❲ ❲ ❱ ❱ ❱

m3
1

��

M3

1 y

����

//
∏

j<k≤3

Y(1)djdℓ

����

M3

0

∏

i<j<k≤3

Y(0)didjdℓ
Ψ3

1 //
∏

j<ℓ≤3

∏

i≤1

Y(0)didjdℓ .

where the right vertical is a product of fibrations Y(1) → M1

0 =
∏

i≤1 Y(0)
di (by

Reedy fibrancy of Y
2
).

Since Ỹ 3

2 is homotopy commutative, by Lemma A.5 we obtain a dotted map m3

1

(after altering the dashed map – that is, our choice for each djdℓ – within its

homotopy class). By Lemma 2.7 this yields Y 3

1 , still representing Ỹ 3

2 .
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It is at stage k = 2 in the inner induction that we first encounter a possible
obstruction: we must now choose representatives for dℓ : 3 → 2 (0 ≤ ℓ ≤ 3) in

the homotopy class given by Ỹ 3

2 .
As in (2.9), we know that the target of the forgetful map from M3

1 is the product
of the lower left and upper right corners of (5.5). Thus Ψ = Ψ3

2 is a product of
two maps: the first taking each factor Y(1)djdℓ (0 ≤ j < ℓ ≤ 3) diagonally to a
product Y(1)djdℓ×Y(1)dℓ−1dj , and the second taking Y(0)didjdℓ (0 ≤ i < j < ℓ ≤ 3)
diagonally to the product Y(0)didjdℓ × Y(0)didℓ−1dj × Y(0)dj−1dℓ−1di .

As in §3.16, we now factor Ψ as a trivial cofibration to F 1 followed by a fibration
Ψ′, and pull back the product of the forgetful maps

Ψ3

2 : M2

1 →
∏

j≤2

Y(1)dj ×
∏

i<j≤2

Y(0)didj

as in (5.3), indexed by the first face maps dℓ : 3→ 2 (0 ≤ ℓ ≤ 3) along Ψ′ to
obtain a “potential mapping diagram” as in (3.15):

Y(3)

η1

''

σ32 (Ỹ
3

2 )=(d0,d1,d2,d3)

((

❵ ❵ ❴ ❴ ❫ ❫ ❪ ❭ ❭ ❬ ❬ ❩ ❩ ❨ ❳ ❳ ❲ ❲ ❱ ❯ ❯ ❚ ❚ ❙ ❘ ❘ ◗ P

ϕ

++

✭
✮

✯
✰

✱
✲

✴
✵

✷
✸

✺
✼

✽
✿

❂
❄

❆
❉

❋
❍

■
❑

▼ ◆ ❖ ◗ ❘ ❙ ❚ ❯ ❱

κ

''

❩ ❩ ❨ ❳ ❲ ❱ ❯ ❚ ❙ ❘
◗

P
P

◆

α2

%%

σ3<2(Y
3

1 )

##

P3

2y

p1

����

// F 3

y

µ

����

r′2 // //
∏

ℓ≤3

Y(2)

∏
ms

k−1

����

Q3

1y

��

γ
// F 2

y

q

��

s // //
∏

ℓ≤3

M2

1

��∏

j<ℓ≤3

Y(1)djdℓ ×
∏

i<j<ℓ≤3

Y(0)didjdℓ ∼
// F 1 Ψ′

// //
∏

ℓ≤3

(
∏

j≤2

Y(1)djdℓ ×
∏

i<j≤2

Y(0)didjdℓ)

Note that as in §3.16, we may choose F 1 to be a product of free path spaces, so we
can think of ϕ as a choice of homotopies between the various decompositions in Y2
of maps 3→ 0 in ∆.

As the right vertical rectangular pullback has horizontal fibrations, we can apply
Lemma A.5 and the fact that the original outermost diagram commutes up to homo-

topy (because Ỹ 3

2 is homotopy commutative) to deduce that there is a map ϕ in
the correct homotopy class, yielding κ as indicated.

The question is whether µκ ∼ γη1. By Corollary A.10, our secondary operation
consists precisely of those [θ] satisfying θ ∼ µ ◦ κ. Thus, the question is answered
in the affirmative precisely when our secondary operation 〈Y 3

2 〉 vanishes. In that
case, by Lemma A.5 applied to the upper left square, with µ a fibration, we can find
κ′ ∼ κ satisfying µ ◦ κ′ = γ ◦ η1, so inducing the dotted α2 by the pullback
property. We then alter the map labeled (d0, d1, d2, d3) within its homotopy class
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by instead using r′2 ◦ κ
′, which will make the entire diagram now commute, since

∏
ms
k−1 ◦(r

′
2 ◦ κ

′) = s ◦ µ ◦ κ′ = s ◦ γ ◦ η1

and q ◦ µ ◦ κ′ = q ◦ γ ◦ η1 = ι ◦ σ3

<2. Thus, we obtain a full 3-truncated ∆-simplicial
object Y3 (if we wish to proceed further, we take a Reedy fibrant replacement).

If 〈Y 3

2 〉 does not vanish, then there is no way to extend this Y2 to a full
3-truncated object.

5.6. Remark. As with any obstruction theory, when 〈Y 3

2 〉 does not vanish, we need
to backtrack, and see if we can get our obstruction to vanish by modifying previous
choices. We observe that in special cases, given a truncated ∆-simplicial object, there
is a formal procedure for adding degeneracies to obtain a full (similarly truncated)
simplicial object (see, e.g., [B1, §6]).

6. Pointed higher operations

Most familiar examples of higher homotopy operations are pointed, so we now
describe the modifications needed in our general setup when the indexing category
J , as well as the model category E , are pointed (see §2.B). This will also cover
“hybrid” cases, where certain composites in the diagram are required to be zero in
E , rather than just null homotopic.

6.1. Lemma. If E∗ is a pointed model category, Ỹ : J → ho(E∗) a pointed
diagram, and x ∈ Obj J with |x| > 0, then

(a) Any choice of a representative Y x
0 (g) of Ỹ (g) for every g ∈ J̃x0 yields a

lifting of Ỹ |J x
0

to Y x
0 : J x

0 → E∗.
(b) Any pointed Reedy fibrant Y1 : ∂J x

1 → E∗ as in §3.1(II) has a pointwise

extension to a functor Y x
1 : J x

1 → E∗ which lifts Ỹ x
1 .

Proof. For (a), note that if g ∈ J , Y(g) must be the zero map, but otherwise
any choice of lifting will do, since J x

0 has no non-trivial compositions. For (b),

follow the proof of Lemma 3.3 with J̃ replacing J , using reduced matching spaces
and Definition 2.21 for the fibrancy. �

We also have the following version of Lemma 3.9:

6.2. Lemma. Assuming 2 ≤ k ≤ n < |x|, any pointed functor Y : Jn → E∗ with
a pointed extension to J x

k−1 induces a pullback grid with natural dashed maps :

(6.3)

Y(x)
ρk−1

((
βk−1

  ❆
❆

❆
❆

❆
❆

ηk−1

##

❩ ❳ ❲ ❱ ❚ ❙ ◗ P ◆ ▲ ❑ ■
●

mx
k−1

""

N
x

k−1
y

��

qk−1
// Q

x

k−1
y

��

//
∏

J̃(x,s)
|s|=k

M
s

k−1

∏
J̃(x,s)

forget

��

M
x

k−1
�

� forget
//
∏

J̃(x,t)
|t|<k

Y(t)
Ψ //

∏

J̃(x,s)
|s|=k

∏

J̃(s,v)
|v|<k

Y(v) .
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We then deduce the following analogue of Proposition 3.11 (with a similar proof):

6.4. Proposition. Assuming 2 ≤ k ≤ n < |x|, any pointed functor Yk : ∂J
x
k → E

as in §3.1 induces maps into a pullback grid:

(6.5)

Y(x)

mx
k−1

��

σx=k
(Ỹ x

k
)

((

❭ ❬ ❩ ❨ ❳ ❲ ❲ ❱ ❯ ❚ ❙ ❘

βk−1

��

ηk−1

$$

mx
k

��

αk

!!

M
x

k
y

��

// P
x

k
y

pk−1

��

rk //
∏

J̃(x,s)
|s|=k

Y(s)

∏
ms

k−1

��

N
x

k−1
y

��

qk−1

// Q
x

k−1
y

��

//
∏

J̃(x,s)
|s|=k

M
s

k−1

∏
forget

��

M
x

k−1
�

� forget
//
∏

J̃(x,t)
|t|<k

Y(t)
Ψ //

∏

J̃(x,s)
|s|=k

∏

J̃(s,v)
|v|<k

Y(v) .

Again, the dashed map only makes the outermost diagram commute up to homotopy.

Furthermore, the dotted map mx
k exists (after altering σx=k(Ỹ

x
k ) within its

homotopy class) if and only if there is a dotted map αk such that pk−1αk = ηk−1

and rkαk ≃ σx=k(Ỹ
x
k ).

With this at hand, we may modify Definition 3.16 as follows to obtain a sequence
of obstructions to extending pointed diagrams:

6.6. Total Pointed Higher Homotopy Operations. Assume given pointed

functors Ỹ x
k : J x

k → ho(E∗), Y x
k−1 : J x

k−1 → E∗ and a pointed Reedy fibrant

Yk : ∂J
x
k → E∗ as in §3.1(II). This means each ms

k−1 : Y(s)→M
s

k−1 is a fibration.

Factor Ψ = Ψ
x

k (see Lemma 2.18) as a weak equivalence followed by a fibration Ψ
′
,

and pull back the right column of (6.5) along Ψ
′

to obtain the following pullback
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grid:

(6.7)

Y(x)

ηk−1

%%

σx
k
(Ỹ x

k
)

&&

ϕ

**

✧
★

✩
✪

✫
✭

✯

✲

✶

✺

✾
❃

❈
❍

▲
❖ P ❘ ❙ ❚

κ

%%

❩ ❨ ❳ ❲ ❱ ❯ ❚ ❙ ◗ P ❖ ▼
▲

αk

$$

σx
<k

(Y x
k−1)

""

P
x

k
y

pk−1

����

// F 3

y

µ

����

r′
k // //

∏

J̃(x,s)
|s|=k

Y(s)

α

����

Q
x

k−1
y

��

γ
// F 2

y

q

��

s // //
∏

J̃(x,s)
|s|=k

M
s

k−1

β

��∏

J̃(x,t)
|t|<k

Y(t)
ι

∼
// F 1 Ψ

′

// //
∏

J̃(x,s)
|s|=k

∏

J̃(s,v)
|v|<k

Y(v)

As in §3.16, Lemma A.5 allows us to modify ϕ so as to obtain a map κ : Y(x)→ F 3

into the pullback.

6.8. Definition. We define the total pointed higher homotopy operation for x to be

the set 〈Y x
k−1〉 of homotopy classes of maps θ : Y(x)→ F 2 with Ψ

′
◦q◦θ = β◦α◦σxk

with q ◦ θ ∼ ϕ, where ϕ is defined to be the composite

Y(x)
σx
<k
−→

∏

J̃(x,t)
|t|<k

Yk(t)
ι
−→ F 1 .

We say 〈Y x
k−1〉 vanishes at θ : Y(x) → F 2 as above if θ is homotopic to the

composite

Y(x)
ηk−1
−→ Q

x

k−1

γ
→ F 2 ,

and that 〈Y x
k−1〉 vanishes if it vanishes at some value θ.

6.9. Remark. In many cases of interest we will have Q
x

k−1 ≃ ∗, in which case the
pointed operation 〈Y x

k−1〉 vanishes at θ precisely when θ ∼ ∗, as one might expect,
so the subset vanishes precisely when it contains the zero class.

We have chosen our definitions so as to have the following analogue of Proposition
3.18:

6.10. Proposition. Assume given pointed functors Ỹ x
k : J x

k → ho(E∗), Y x
k−1 :

J x
k−1 → E∗ and a pointed Reedy fibrant Yk : ∂J x

k → E∗ as in §3.1(II) for
|x| > n ≥ k ≥ 2. Then there exists a further pointed extension to Y x

k : J x
k → E∗ if

and only if the total higher homotopy operation 〈Y x
k−1〉 vanishes.

Proof. Once again, the definition of 〈Y x
k−1〉 together with Corollary A.10 implies

that each value θ is homotopic to µ ◦ κ for some κ with r′k ◦ κ = σxk and
q ◦µ ◦ κ ∼ ι ◦ σx<k. Thus the obstruction vanishes at θ if and only if there exists such
a κ with µ ◦ κ ∼ γ ◦ ηk−1, precisely as in the proof of Proposition 3.18. The upper
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left pullback square in (6.7) then produces the lift into P
k

x, or equivalently, a map

Y(x)→M
k

x, yielding the required pointed extension by Lemma 2.17.
If 〈Y x

k−1〉 does not vanish, then there is no choice of ϕ for which such a lift exists,
and so there is no pointed extension compatible with the given choices. �

6.11. Remark. Given pointed functors Ỹ x
k : J x

k → ho(E∗), Y x
k−1 : J

x
k−1 → E∗ and a

pointed Reedy fibrant Yk : ∂J
x
k → E∗ as in §3.1(II) for |x| > n ≥ k ≥ 2, we may

define separated pointed higher homotopy operations 〈Y x
k−1〉

j+1 for x as in Definition
4.8, using a refinement of (6.7) constructed mutatis mutandis with products over

J (x, s) replaced everywhere by products over J̃(x, s).
Separation Lemma 4.2 is stated in sufficient generality to apply here, too, with

Remark 4.5 modified accordingly, yielding the following variant of Theorem 4.24:

6.12. Theorem. Assume given pointed functors Ỹ x
k : J x

k → ho(E∗), Y x
k−1 : J

x
k−1 →

E∗ and a pointed Reedy fibrant Yk : ∂J
x
k → E∗ as in §3.1(II) for |x| > n ≥ k ≥ 2.

Then the total pointed higher homotopy operation separates into a sequence of k − 1
pointed operations, and the following are equivalent:

(1) A further extension to Y x
k : J x

k → E∗ exists;
(2) The total pointed operation 〈Y x

k−1〉 vanishes;
(3) The associated sequence 〈Y x

k−1〉
j+1 (1 ≤ j < k) of separated pointed higher

homotopy operations of §4.8 vanish (so in particular each in turn is defined).

7. Long Toda Brackets and Massey Products

We are finally in a position to apply our general theory to the two most famil-
iar examples of higher order operations: (long) Toda brackets and (higher) Massey
products. Since both are cases of the (pointed) higher operations fully described
in Sections 3-4 and 6, we thought it would be easier for the reader to consider two
specific examples in detail, briefly indicating what needs to be done for the higher
version.

7.A. Right justified Toda brackets

Since the ordinary Toda bracket (of length 3) was treated in Section 1, we start
with the next case, the Toda bracket of length 4 (the first example of a long Toda
bracket in the sense of [Wa]).

Thus, if E∗ is a pointed model category, assume given a diagram Ỹ : J → ho E∗
of the form

(7.1) Y(4)
[k]

// Y(3)
[h]

// Y(2)
[g]

// Y(1)
[f ]

// Y(0)

with each adjacent composite null-homotopic: that is, a chain complex of length 4
in ho E∗, as in Example 2.13 (compare (1.2)). Without loss of generality, we can
assume all objects involved are both cofibrant and fibrant.

Applying the double induction procedure of §3.1, we see that we must deal with
chain complexes of length n ≤ 4, as follows:

(a) When n = 0, we have no inner induction, and making the result Reedy fibrant
consists of factoring the representative to produce a fibration f : Y(1)→→ Y(0)
in the specified class [f ].
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(b) When n = 1, note that J̃(x, t) is empty if |x| − |t| > 1, for this pointed
indexing category, so as a consequence M

x

k = ∗ if |x| − |k| > 1. Thus

M
2

0 = ∗, so M
2

1 is simply the fiber of f . Since [f ] ◦ [g] = ∗, by Lemma
A.5 we can choose a representative g for [g] which factors as a fibration

Y(2)→→M
2

1 = Fib(f) followed by the inclusion Fib(f) →֒ Y(1).

(c) When n = 2, again M
3

0 = ∗ = M
3

1, while the case k = 2 is just that of
our (length 3) Toda bracket 〈f, g, h〉.
In this case, the indexing set for products in the right column of (6.7) is

the singleton J̃(3, 2), while the forgetful map in the bottom row of (6.5) is
the identity of the zero object, with Ψ the zero map.
Factoring Ψ as a trivial cofibration ι followed by a fibration Ψ′, as in the

bottom row of (6.7), and pulling back the right column yields the diagram:

(7.2)

Y(3)

  ##

h

&&

θ

..

✱
✳

✶
✺

✾
❂

❈
❍

▲ P ❙ ❱ ❳ ❬ ❪

P
3

2
y

��

// F 3

y

��

// // Y(2)

���� g

��

∗ // F 2

y

��

// // M
2

1

forget

��

// // ∗

��
∗ ∼

ι // F 1 Ψ′

// // Y(1)
f

// // Y(0) .

Thus F 1 is a model for the reduced path space on Y(1), with Ψ′ the
path fibration. However, since f was chosen above to be a fibration, the
composite F 1 → Y(0) is a fibration, too, with F 1 contractible, so we see
that F 2, being the pullback of the dotted rectangle, is a model for the loop

space ΩY(0), which we denote by Ω′Y(0). Similarly, M
2

1 is a model for
Fib(f).
Our total secondary pointed homotopy operation 〈Y 3

1 〉 (cf. §6.8) is thus a
set of maps θ : Y(3)→ Ω′Y(0), and it vanishes when this set contains the zero
map (cf. Remark 6.9). This is our usual Toda bracket 〈f, g, h〉, described in
the language of Section 6.

(d) In order for our four-fold Toda bracket 〈f, g, h, k〉 (denoted by 〈Y 4

2 〉 above)

to be defined, 〈Y 3

1 〉 must vanish. This allows us to choose a pointed extension

Y3 : J3 → E∗ of Y2 which realizes Ỹ |J3
. The fact that the diagram Y3

has realized Ỹ through filtration degree 3 means that each of the maps g
and h factors through the fiber of the previous one, as in the following solid
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commutative diagram:

(7.3)

Y(4)
k1 //

k $$■■■■■■■■■
Fib(h1)

��

// ∗

��
Y(3)

h1 // //

h %%❑❑❑❑❑❑❑❑❑❑
Fib(g1) // //

��

∗

��
Y(2)

g1
// //

g
%%❏❏❏❏❏❏❏❏❏
Fib(f) // //

g2

��

∗

��
Y(1)

f
// // Y(0) .

Making Y3 pointed Reedy fibrant (§2.21) just means ensuring that the maps
h1 and g1 are fibrations.

(e) At stage n = 3 in the outer induction, we attempt to find the dotted
lift k1 in (7.3), after having chosen a suitable representative h for the
given homotopy class [h], which is possible by the vanishing of the previous
obstruction.
Again we have M

4

0 = ∗, M
4

1 = ∗, and M
4

2 = ∗ = Q
4

2 = N
4

2, so the only
interesting case is k = 3 in the inner induction.
The separation grid of Lemma 4.2 then takes the form:

(7.4)

Y(4)

k1

    

❳ ❚ P
▲

●

κ

##

❵ ❫ ❪ ❬ ❨ ❲ ❯ ❙ ◗ ❖ ▼ ❏
❍

k

$$

!!

P
4

3
y

��

// F 2,4
4,3
y

��

// // F 1,4
4,3
y

��

// // Y(3)

h1
����

h

��

∗

∼
��❅❅❅❅❅❅❅❅❅
// F 2,3

4,3
y

��

// // F 1,3
4,3
y

��

// // M
3

2

��

// // ∗

��

∗

∼

��

F 2,2
4,3

// // F 1,2
4,3
y

����

// // F 1,3
3,2

����

// // F 1,2
3,2
y

����

// F 1,1
3,2

����
∗ // ∗

∼ // F 1,1
4,3

// // Y(2)
g1

// //

g

55M
2

1

∗

��

g2
// Y(1)

f

����
∗ // Y(0)

where we have extended the pullback grid downwards, and to the right, to
show how it was constructed from the previous case (diagram (7.2)) using
Lemma 4.17. We have also indicated how (representatives of) the maps of
(7.3) fit in.
As in Step (c) above, we can identify F 1,2

3,2 as a model for ΩY(0), and

M
2

1 as a model for Fib(f). Similarly, F 1,2
4,3 is a model for ΩY(1), using

the vertical fibrations in the rectangle with diagonal corners F 1,2
4,3 and Y(1).
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Likewise F 1,3
4,3 a model for ΩM

2

1 (using horizontal fibrations in the larger

square beneath it), and F 2,3
4,3 is a model for Ω2Y(0) (now using the rectangle

with diagonal corners F 2,3
4,3 and F 1,2

3,2 , along with the previous identification

of the latter). Similarly, M
3

2 is a model for Fib(g1) of (7.3), while P
4

3

is Fib(h1) (which is also the homotopy fiber). See (7.11) below for the
full identification.
Therefore, the final obstruction to having a dotted lift k1 in (7.3) (or

(7.4)) is the composite k ◦ h1.

Note that there are no factors of type Gk,ℓ
i,j as in (4.18) here, since we can always

choose the zero map as our factorization of the zero map between zero objects.

7.5. Remark. Our total pointed tertiary homotopy operation 〈Y 4

2 〉 is a set of homo-

topy classes θ : Y(4)→ ΩM
2

1. However, using Lemma 4.2, we can replace it by two
separated higher homotopy operations for 4, in the sense of §4.8:

(1) The second order operation 〈Y 4

2 〉
2 ⊆ [Y(4), ΩY(1)].

(2) If 〈Y 4

2 〉
2 vanishes, the third order operation 〈Y 4

2 〉
3 ⊆ [Y(4), Ω2Y(0)] is

defined, and serves as the final obstruction to lifting Ỹ . By definition, this is
our four-fold Toda bracket 〈f, g, h, k〉.

7.6. Lemma. Given a pointed Reedy fibrant diagram Y3 realizing (7.1) through
filtration 3, the associated second order separated higher homotopy operation 〈Y 4

2 〉
2

is our usual Toda bracket 〈g, h, k〉.

Proof. Note that F 1,3
3,2 is a model for the homotopy fiber of g : Y(2)→ Y(1) (which

is not-itself a fibration). Thus, the rectangle with corners F 1,3
3,2 and Y(1) in (7.4)

is a homotopy invariant version of the rectangle with corners F 2 and Y(0) in
(7.2), used to define our Toda bracket in Step (c) above – this time, applied to the
left 3 maps in (7.1). The map corresponding to θ in (7.2) – the value of the
Toda bracket – is the map Y(4)→ F 1,2

4,3 obtained by composing κ with the vertical

maps F 1,4
4,3 → F 1,2

4,3 , which is indeed the definition of the value of 〈Y 4

2 〉
2 associated

to our choices (see Definition 4.8). �

7.7. Aside. Note that if the dotted forgetful map M
2

1 → Y(1) in (7.4) were a fibra-
tion, the horizontal dotted map above it would be a fibration, too, so right properness

would imply that the vertical map M
3

2 → F 1,3
3,2 would be a weak equivalence.

7.8. Length n Toda brackets.

The general procedure described in Section 6 tells us what needs to be done for

Toda diagrams (chain complexes Ỹ in ho E∗):

(7.9) Y(n)
[fn]

// Y(n− 1)
[fn−1]

// . . . // Y(3)
[f3]

// Y(2)
[f2]

// Y(1)
[f1]

// Y(0)

of arbitrary length n. We sketch the main features of the general construction, already
discernible in the case n = 4 described above:

In the double induction of §3.1, we can concentrate on the last stage – assuming
the vanishing of shorter brackets on the right, which guarantees the existence of a
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solid diagram

(7.10)

Y(n)
gn

//

fn %%❑❑❑❑❑❑❑❑❑
Fib(gn−1)

y
g2n

��

// ∗

��
Y(n− 1)

gn−1
// // Fib(gn−2)

y
// // ∗

Y(3)
g3

// //

f3 &&▲▲▲▲▲▲▲▲▲▲▲
Fib(g2)

y
// //

g23
��

∗

��
Y(2)

g2
// //

f2 %%❑❑❑❑❑❑❑❑❑❑
Fib(f1)

y
// //

g22
��

∗

��
Y(1)

f1

// // Y(0)

analogous to (7.3); our length n Toda bracket, 〈f1, f2, . . . fn−1, fn〉, will be the final
obstruction to finding the dotted map gn in (7.10), perhaps after altering fn
within its homotopy class.

The existence of the fibrations gk for 2 ≤ k < n, and the fact that f1 is a

fibration, mean that we have a lifting Yn−1 : Jn−1 → E∗ of Ỹ |Jn−1
, which we have

made pointed Reedy fibrant. The underlining in the notation represents our intention
to leave that portion fixed.

The construction of the separation grid for Yn−1 (§4.23) greatly simplifies, in this
case, as we see in comparing (7.2) to (7.4): at each step, one writes the previous
separation grid vertically (instead of horizontally) on the right (after changing the
previously chosen gn−1 into a fibration, thus altering Y(n− 1) up to homotopy).
We then factor the zero map Ψ and pull back the leftmost existing column to form a
new column to its left. Factoring the zero map from Q

x

k−1 to the second place from
the bottom in this new column and again pulling back, we note that the intermediate
object produced by this factorization is a reduced path object, so by induction the
entry immediately above it is a loop object (being the pullback over a fibration with
upper right and lower left corners contractible – one because it is the reduced path
object, and the other by induction). Moreover, the number of loops increases as we
move up and to the left (see Lemma 8.3).

Repeat this step until the new column involves just two maps (so the second object
from the bottom is at the same height as the product of the objects M

s

k−1 on the
right). The pullback in the upper left corner is now the actual fiber of gn−1. To
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illustrate, we reproduce diagram (7.4) with the pieces identified up to homotopy:

(7.11)

Y(4)

k1

!! ##

❭ ❨ ❱ ❘
◆

❏
%%

❵ ❴ ❪ ❭ ❩ ❳ ❲ ❯ ❙ ❘ P ◆
▲

k

&&

""

Fib(h1)
y

��

// F 2,4
4,3
y

��

// // F 1,4
4,3
y

��

// // Y(3)

h1
����

h

��

∗

∼
##❍❍❍❍❍❍❍❍❍❍❍ // Ω2Y(0)

y

��

// // ΩFib(f)
y

��

// // Fib(g1)

��

//∗

��

∗

∼

��
PΩY(1) // // ΩY(1)

y

����

// // Fib(g)

����

// // ΩY(0)

����

// PY(1)

����
∗

∼ // PY(2) // // Y(2)
g1
// //

g

55Fib(f)
g2

// Y(1)

Note that while not all the pullbacks in the grid can be easily identified, the targets
of the separated operations (boxed) are iterated loop spaces on the original objects of
(7.9), as one would expect for long Toda brackets. This last obstruction, consisting
of a subset of the homotopy classes of maps into the top left iterated loop space, then
represents our length n Toda bracket, 〈f1, f2, . . . fn−1, fn〉, with the lower separated
higher homotopy operations corresponding to the vanishing of the lower obstructions
necessary in order to define it (together with those already assumed to vanish in order
to build the current commuting diagram).

7.B. Massey Products as a Hybrid Case

The classical Massey product (cf. [Ms]) is defined for three cohomology classes of
the same space X [α], [β], [γ] ∈ H∗(X ;R) for some ring R, equipped with null
homotopies F : µ(α, β) ∼ 0 and G : µ(β, γ) ∼ 0 for the two products. Like a
Toda bracket, the Massey product serves as the obstruction to simultaneously making
both products strictly zero (see [BBG, §4]).

This situation may be described by the pointed indexing category J :

(7.12)

g

��

��✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

��✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻

$$❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍
❍

❍

zz✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

✈

rr

❨ ❨ ❨ ❳ ❳ ❲ ❱ ❱ ❯ ❙ ❘ ❖
●

✺
✤

✠
✇

♦♠❦❥❤❤❣❢❢❢❡❡

f

uu❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

zz✈✈✈✈✈✈✈✈✈✈✈✈

$$❍❍❍❍❍❍❍❍❍❍❍❍

))❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

��

✜
✢

✣✤
✥

✦
✧


b

**❚❚❚❚❚❚❚❚❚❚❚ c

$$❏❏❏❏❏❏❏❏❏❏❏oo d

zzttttttttttt
// e

tt❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥ ❥

a

Here the dashed maps are in J and the others are in J̃. The inner diamond com-
mutes (with the solid composite) and the outer diamond commutes (with the dashed
composite).
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The corresponding pointed diagram Ỹ : J → ho T∗ has products of Eilenberg-
Mac Lane spaces Ki := K(R, i) in all but the top slot:

(7.13)

Y(g)

(α,β,γ)

��

��☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎

��✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

µ(α,β)

%%❑
❑

❑
❑

❑❑
❑

❑
❑

❑
❑

❑
❑

❑
❑

❑
❑

µ(β,γ)

yys
s

s
s

s s
s

s
s

s
s

s
s

s s
s

s

Kr ×Ks ×Kt

tt✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(π1,µ)
xxrrrrrrrrrrrrrrr

(µ,π2)
&&▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

**❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

��

✢

✣

✣
✤

✥

✥

✦

µ

��

∗ ×Ks+t

--

◆ ❖ P ❘ ❙ ❚ ❯ ❱ ❲ ❳ ❨ ❩ ❬

Kr ×Ks+t

µ

&&▲▲▲▲▲▲▲▲▲▲▲▲▲▲π2
oo Kr+s ×Kt

µ

xxrrrrrrrrrrrrrr π1
// Kr+s × ∗

qq

♣♦♥❧❦❥✐❤❣❢❡❞❝Kr+s+t

where the central diamond represents associativity of the cup product maps µ; π1
and π2 are the two projections; and we have omitted the zero map from top to
bottom that appears in (7.12) in the interest of clarity.

Choose a strictly associative model of the Eilenberg-Mac Lane Ω-spectrum in ques-
tion (cf. [Ro]), with strictly pointed multiplication, so in particular at each level Kr

is a simplicial (or topological) abelian group. We can then make all of (7.13) be-
low Y(g) (involving only the cup product maps) strictly commutative. Our Massey
product will be the total pointed higher homotopy operation 〈Y g

1 〉 (for n = k = 2).

From §2.16 we see that if we let K := Kr ×Ks+t ×Kr+s ×Kt, then M
f

1 is the
pullback of the two multiplication maps Kr ×Ks+t → Kr+s+t ← Kr+s ×Kt, with a

natural inclusion (forgetful map) i1 : M
f

1 → K. The pullback grid of (6.7) then
takes the form:
(7.14)

P
g

2 y

pk−1
����

// F 3
y

����

r′
k // // Kr ×Ks ×Kt

����

Q
g

1 y

��

γ
// F 2

y

q

��

s // // M
f

1

(π2i1,π3i1,i1,µi1)

��
K

∼ // PKr+s × PKs+t ×K× PKr+s+t
Ψ

′

// // Kr+s ×Ks+t ×K×Kr+s+t

Thus a point in F 2 is given by (U, V, x, u, v, z,W ) ∈ PKr+s×PKs+t×M
f

1×PKr+s+t

with U : u ∼ ∗, V : v ∼ ∗, and W : xu = vz ∼ ∗. We thus have a natural map
λ : F 2 → ΩKr+s+t ×ΩKr+s+t sending (U, V, x, u, v, z,W ) to (xU −W,V z −W ).
Postcomposition with the difference map d : ΩKr+s+t×ΩKr+s+t → ΩKr+s+t yields
(xU − V z).

Now Y(g) maps into the top right corner of (7.14) by (a lift of) (α, β, γ), and

thereby on to M
f

1 , and into the bottom middle term by

ϕ := 〈F, G, α, µ(β, γ), µ(α, β), γ, L〉 ,

with L some nullhomotopy of µ(α, β, γ). Together these two maps induce the map
θ : Y(g)→ F 2 of §6.8.
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Postcomposing θ with d ◦ λ gives the usual Massey product

〈α, β, γ〉 ∈ [Y(g), ΩKr+s+t] = Hr+s+t−1(Y(g);R) .

The two factors of λ◦θ merely give the usual indeterminacy for the Massey product,
as we can see by choosing L := µ(F, γ) or L := µ(α,G).

7.15. Remark. An alternative definition of the usual (higher) Massey products, more
in line with that given for the Toda bracket, appears in [BBG, §4.1].

8. Fully reduced diagrams

Ultimately, we would like to develop an “algebra of higher order operations,” along
the lines of Toda’s original juggling lemmas (see [T2, §1]). As a first step in this
direction, we consider a special type of pointed diagram, which most closely resembles
the long Toda diagram of (7.9).

The most useful property of the separated higher operations associated to Toda
diagrams is that we can often identify their targets F j,j+1

x,k as loop spaces (as we
saw in (7.11)).

It turns out the property of the pointed indexing category J needed for this to
happen is the following:

8.1. Definition. A pointed indexing category J as in §2.12 is called fully reduced if
any morphism decreasing degree by at least 2 lies in J .

8.2. Remark. If J is fully reduced, for |x| ≥ k + 1 we have
∏

J̃(x,t),|t|<k Y(t) = ∗

and so M
x

k−1 = ∗ (cf. §2.16) as well. We deduce that N
x

k−1 = ∗ = Q
x

k−1, too (cf.
(6.3)), since both are fibers of a product of monomorphisms, by Lemma 6.2 (under
mild assumptions on E∗).

Furthermore, the map forget of §2.16 factors through
∏

J̃(s,t),|t|=|s|−1 Y(t), so no

factors of type Gk+1,j
x,k (cf. (4.20)) are needed when constructing the separation

grid (4.18). This also implies that F j,j
x,k is contractible for j < k, which is the

key ingredient for identifying the targets of the separated operations as loop spaces.

Our key decomposition result is the following.

8.3. Lemma. If J is a fully reduced pointed indexing category and n ≥ k ≥ j ≥ 2,
we have:

F j−1,j
x,k ∼

∏

(fk−j, . . . , fk)

fk−j◦ · · · ◦ fk : x→ v

Ωj−1Y(v)

in (4.18), where each fi is a non-identity map in J̃, with target of degree i.

Proof. We prove this by induction on k (for fixed n and x), as in Lemma 4.17. In
each case, we combine two pullbacks over fibrations, one of which has fiber identified
at an earlier stage, with two corners contractible; the upper left corner (source) is
then homotopy equivalent to the loop space on the lower right corner, (see Step (e)
of §7.A).
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For 2 = j < k, we use the basic pullback rectangle

(8.4)

F 1,3
s,2 y

����

// //
∏

J̃(s,u)
|u|=1

Y(u)

����

F 1,2
s,2 y

��

// //
∏

J̃(s,u)
|u|=1

M
u

0

��

F 1,1
s,2

// //
∏

J̃(s,u)
|u|=1

∏

J̃(u,v)
|v|=0

Y(v)

to construct the pullback rectangle

(8.5)

F 1,2
x,3
y

����

// //
∏

J̃(x,s)
|s|=3

F 1,3
s,2

y

//

����

∏

J̃(x,s)
|s|=3

F 1,1
s,2

����

F 1,1
x,3

// //
∏

J̃(x,s)
|s|=3

Y(u) //
∏

J̃(x,s)
|s|=3

∏

J̃(s,u)
|u|=1

∏

J̃(u,v)
|v|=0

Y(v)

where the vertical maps are fibrations, and both
∏

J̃(x,s)
|s|=3

F 1,1
s,2 and F 1,1

x,3 contractible,

as in Remark 8.2.
For 2 < j < k, we similarly use the pullback rectangle

(8.6)

F j−1,j
x,k

y

����

// //
∏

J̃(x,s)
|s|=k

F j−1,k
s,k−1

y

����

//
∏

J̃(x,s)
|s|=k

F j−1,j−1
s,k−1

����

F j−1,j−1
x,k

// //
∏

J̃(x,s)
|s|=k

F j−2,k
s,k−1

//
∏

J̃(x,s)
|s|=k

F j−2,j−1
s,k−1

in which the vertical maps are fibrations, together with the fact that F j−1,j−1
x,k and

each F j−1,j−1
s,k−1 are contractible, to prove the claim by induction on j (since loops

commute with products).
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For 2 ≤ j = k, recall that when |s| = 2 the first non-trivial case (with k−1 = 1)
involves the first pullback diagram

(8.7)

M
s

1y

����

forget
//
∏

J̃(s,u)
|u|=1

Y(u)

����

∗ //
∏

J̃(s,u)
|u|=1

∏

J̃(u,v)
|v|=0

Y(v)

For 2 < j = k we have the second pullback diagram

(8.8)

M
s

k−1
y

����

// P
s

k−1
y

����

// F k−2,k
s,k−1

����

∗ = N
s

k−1
// ∗ = Q

s

k−1
// F k−2,k−1
s,k−1

and combining (products of) either type into

(8.9)

F k−1,k
x,k

y

// //

��

∏

J̃(x,s)
|s|=k

M
s

k−1

y

// //

��

∗

��

F k−1,k−1
x,k

// //
∏

J̃(x,s)
|s|=k

F k−2,k
s,k−1

// //
∏

J̃(x,s)
|s|=k

F k−2,k−1
s,k−1

yields a pullback with horizontal fibrations and with F k−1,k−1
x,k (and of course ∗)

contractible, so the result (with 2 ≤ j = k) also follows by induction. �

With these conventions, each factor in the product Y(x) → Ωj−1Y(v) is a j-ary
Toda bracket by construction, and vanishing of the product is equivalent to vanishing
of each factor.

8.10. Theorem. In the fully reduced case, all higher operations decompose into a
sequence of Toda brackets of order no greater than the degree of the first target object
in the string.

Appendix A. Background Material

We collect here a number of basic facts about model categories needed in this paper
and one non-standard lemma included for ease of reference elsewhere. We refer the
reader to [Hir, §§7.1-7.3] for the basics on model categories and homotopy assumed
for this appendix.

A.1. Notation. Given two maps f, g : X → Y , we write f ∼r g if the maps are
right homotopic, and f ∼l g if the maps are left homotopic.
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A.2. Lemma (Homotopy Lifting Property). Suppose we have the solid diagram with
q a fibration and T cofibrant:

(A.3)

T

ψ ��❅❅❅❅❅❅❅❅
f

// Y

q
����
Z

Then there is a homotopy ψ ∼l q ◦ f if and only if there is a map f ′ : T → Y
with a homotopy f ′ ∼l f such that ψ = q ◦ f ′.

Dually, if Z is fibrant and f is a cofibration then there is a homotopy ψ ∼r q ◦ f
precisely when there is a map q′ : Y → Z with a homotopy q′ ∼r q such that
ψ = q′ ◦ f .

Proof. Assume q is a fibration. Let

T ∐ T
i1⊔i2−→ Cyl(T )

p
−→ T

be a factorization of the fold map T ∐ T
1T∐1T−→ T such that i1 ⊔ i2 is a cofibration

and p is a weak equivalence. Cofibrancy of T implies i1 : T → Cyl(T ) is an acyclic
cofibration by [Hir, 7.3.7]. Given a homotopy H : Cyl(T )→ Z with H ◦ i1 = q ◦ f
and H ◦ i2 = ψ, we may use the left lifting property in

(A.4) T
��

≃ i1
��

f
// Y

q
����

Cyl(T )

Ĥ

<<

H // Z

to factor H as q ◦ Ĥ , and set f ′ := Ĥ ◦ i2. If f is instead a cofibration, use the
dual argument. �

A.5. Lemma (Homotopy Pullback Property). Suppose we have the following solid
diagram where the square is a pullback, T is cofibrant, and the two vertical maps are
fibrations.

(A.6)

T
g

  

p

""

f

��
W
y

r
����

j
// Y

q
����

X
i

// Z

Then there is a dotted map f : T → Y with a homotopy q ◦ f ∼l ip precisely
when there is a dotted map g : T →W with a homotopy j ◦ g ∼l f and r ◦ g = p.

Proof. Suppose there is a homotopy q ◦ f ∼l i ◦ p. Since T is cofibrant and q is a
fibration, the Homotopy Lifting Property (with ψ = i ◦ p) produces f ′ : T → Y
homotopic to f , such that q ◦ f ′ = i ◦ p. Since the square is a pullback, there is a
map g : T →W such that j ◦ g = f ′ and r ◦ g = p. Since f ∼l f ′, we conclude
that f ∼l j ◦ g. �

A.7. Corollary. If X is cofibrant, k : X → Y is any pointed map, and h : Y → Z
is a pointed fibration, then the composite h ◦ k : X → Z is null-homotopic if and
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only if there exists some k′ : X → Y , left homotopic to k, which factors through
Fib(h).

A.8. Lemma (Homotopy Ladder Property). Suppose we are given the following di-
agram in which both squares are (strict) pullbacks, T is cofibrant, the indicated hori-
zontal maps are fibrations, and the outer diagram commutes up to homotopy:

(A.9)

T
κ

  ❆
❆

❆
❆

ϕ

��

θ

""

σ

��
U
y

r // //

Φ
��

V

t
��

W
y

p
// //

q

��

X

s
��

Y
u
// // Z .

Consider the following three statements:

(1) There is a map κ : T → U such that σ = r ◦ κ, and there are (left)
homotopies θ ∼l Φ ◦ κ and ϕ ∼l q ◦ Φ ◦ κ.

(2) ϕ ∼l q ◦ θ, and there is a map θ′ : T → W homotopic to θ such that
p ◦ θ′ = t ◦ σ.

(3) There is a map θ′ : T → W homotopic to θ such that ϕ is homotopic to
ϕ′ := q ◦ θ′ and u ◦ ϕ′ = s ◦ t ◦ σ.

Then (1) ⇔ (2) ⇒ (3). Furthermore, if s is a monomorphism, then (1), (2), and
(3) are all equivalent.

Proof. (1) =⇒ (2): Since θ ∼l Φ ◦ κ, it follows that ϕ ∼l q ◦Φ ◦ κ ∼l q ◦ θ. Since
p ◦ θ ∼l p ◦Φ ◦κ = t ◦ σ, applying the Homotopy Lifting Property (with q = p and
f = θ), to ψ = t ◦ σ there exists θ′ ∼l θ with p ◦ θ′ = t ◦ σ.
(2)⇒ (1): Let θ′ ∼l θ with p ◦ θ′ = t ◦ σ, and let ϕ′ := q ◦ θ′. Then

u ◦ ϕ′ = u ◦ q ◦ θ′ = s ◦ p ◦ θ′ = s ◦ t ◦ σ

Since the outside rectangle is a pullback, there exists κ : T → U such that θ′ = Φ ◦κ
and σ = r ◦ κ. Thus θ ∼l θ′ = Φ ◦ κ. Also, ϕ ∼l q ◦ θ ∼l q ◦ Φ ◦ κ.
(2) ⇒ (3): Given θ′ ∼l θ such that p ◦ θ′ = t ◦ σ, set ϕ′ := q ◦ θ′; then
ϕ ∼l q ◦ θ ∼l q ◦ θ′ = ϕ′. Also, from the squares commuting

u ◦ ϕ′ = u ◦ q ◦ θ′ = s ◦ p ◦ θ′ = s ◦ t ◦ σ

Finally, we assume that s : X → Z is a monomorphism. We show that (3)⇒ (2).
From the squares commuting, we have

s ◦ t ◦ σ = u ◦ ϕ′ = u ◦ q ◦ θ′ = s ◦ p ◦ θ′

Thus t ◦ σ = p ◦ θ′, because s is a monomorphism, and ϕ ∼l q ◦ θ as above. �

A.10. Corollary. In (A.9) assume again that the squares are pullbacks, T is cofi-
brant, and the horizontal maps are fibrations. Assume further that u ◦ ϕ ∼l s ◦ t ◦ σ.
Then we have the following:

(1) There exists a map κ : T → U such that σ = r ◦ κ and ϕ ∼l q ◦ Φ ◦ κ.
(2) There exists a map θ : T →W such that ϕ ∼l q ◦ θ and p ◦ θ = t ◦ σ.

Moreover, if s is additionally a monomorphism then there is a homotopy θ ∼l Φ ◦ κ.
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Proof. For (1), since u ◦ ϕ ∼l s ◦ t ◦ σ, by the Homotopy Pullback Property, there
is a map ϕ′ : T → U homotopic to ϕ such that u ◦ ϕ′ = s ◦ t ◦ σ. Since the outer
rectangle is a pullback, there is a map κ : T → U such that ϕ′ = q ◦ Φ ◦ κ and
σ = r ◦ κ. Thus ϕ ∼l q ◦ Φ ◦ κ.

For (2), we have u ◦ ϕ ∼l s ◦ t ◦ σ. Again, by the Homotopy Pullback Property,
there is a map ϕ′ ∼l ϕ such that u ◦ ϕ′ = s ◦ t ◦ σ, so since the bottom square is
a pullback, there is a map θ : T → W with t ◦ σ = p ◦ θ and ϕ′ = q ◦ θ, and so
ϕ ∼l q ◦ θ.

Finally, u ◦ ϕ′ = u ◦ q ◦ θ = s ◦ p ◦ θ = s ◦ t ◦ σ, so if s is a monomorphism, we
may conclude from Lemma A.8 that θ ∼l Φ ◦ κ. �

We have the duals of Lemma A.5, Corollary A.7, Lemma A.8 and Corollary A.10:

A.11. Lemma. Suppose the following square is a pushout, V is fibrant, and the two
horizontal maps are cofibrations:

(A.12)

W

p

// i //

α
��

Y

β
�� f

��

X //
j

//

p ..

Z
g

!!
V .

Then there is a dotted map f : Y → V with a homotopy p ◦ α ∼r f ◦ i precisely
when there is a dotted map g : Z → V with a homotopy g ◦β ∼r f and g ◦ j = p.

A.13. Corollary. If k : X → Y is a pointed cofibration and h : Y → Z is any
pointed map with Z fibrant, the composite h ◦ k : X → Z is null-homotopic if and
only if there exists a map h′ : Y → Z, right homotopic to h, which factors through
cof(k).

A.14. Lemma. Suppose we are given the following diagram in which both squares are
(strict) pushouts, T is fibrant, the indicated horizontal maps are cofibrations, and the
outer diagram commutes up to homotopy:

(A.15)

U

p

// r //

Φ
��

V

t
��

ϕ

��

W

p

// p //

q

��

X

s
��

θ

��

Y //
u

//

σ ..

Z
κ

!!❈
❈

❈
❈

T .

Consider the following three statements:

(1) There exists a map κ : Z → T such that σ = κ ◦ u and there are (right)
homotopies θ ∼r κ ◦ s and ϕ ∼r κ ◦ s ◦ t.

(2) ϕ ∼r θ ◦ t and there is a map θ′ : X → T , homotopic to θ, such that
θ′ ◦ p = σ ◦ q.

(3) There is a map θ′ : X → T homotopic to θ such that ϕ is homotopic to
ϕ′ := θ′ ◦ t, and ϕ′ ◦ r = σ ◦ q ◦ Φ.
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Then (1) ⇔ (2) ⇒ (3). Furthermore, if Φ is an epimorphism, then (1), (2), and
(3) are all equivalent.

A.16.Corollary. In (A.15), assume again that the squares are pushouts, T is fibrant,
and the horizontal maps are cofibrations. Assume further that ϕ ◦ r ∼r σ ◦ q ◦ Φ.
Then we have the following:

(1) There exists a map κ : Z → T such that σ = κ ◦ u and ϕ ∼r q ◦ κ ◦ s ◦ t.
(2) There exists a map θ : X → T such that ϕ ∼r θ ◦ t and θ ◦ p = σ ◦ q.

Moreover, if Φ is additionally an epimorphism then there is a homotopy θ ∼r κ ◦ s.

We define the reduced path object PW associated to a pointed object W by the
pullback

(A.17)

PW
y

pW
����

j
// Path(W )

p1×p2
����

W
1W×0

// W ×W

A.18. Lemma. If W is fibrant, then PW is weakly contractible. Furthermore, if
f : X → W is pointed, then f is right null-homotopic precisely when f factors as

X → PW
pW→ W .

Proof. First, the diagram A.17 can be expanded to the pullback

(A.19)

PW
y

����

j
// Path(W )

pr2 ◦(p1×p2)
����

∗ // W

Since W is fibrant, the right hand vertical map is a trivial fibration, by [Hir, 7.3.7].
Hence the left hand vertical map is a trivial fibration, by [Hir, 7.2.12]. Thus PW is
weakly contractible.

If f : X → W is null-homotopic, there is a map H : X → Path(W ) with
p1 ◦H = f and p2 ◦H = 0. From the first factorization, and the pullback property
of (A.17), there is a map φ : X → PW such that f = pW ◦ φ. �

We similarly define the reduced cone CX on a pointed object X by the pushout

(A.20)

X ∐X

p

��

i1∐i2
��

1X∐0
// X
��

iX
��

Cyl(X) // CX

A.21. Lemma. If X is cofibrant, then CX is weakly contractible. Furthermore, if
f : X →W is a pointed map, then f is left null-homotopic precisely when f factors

as X
iX→ CX →W .

A.22. Lemma. Let X be cofibrant and both Z andW fibrant. If the composite g◦h◦k
is right null-homotopic, then the shorter composite h◦k is also right null-homotopic
if and only if there is a null homotopy φ of g ◦h◦k such that the solid commutative
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diagram

(A.23)

X
k //

ψ

''

φ

..

Y

h
��

PFg
pFg

// // Fg
y
j

��

i // // Z

g

��
PW

pW
// // W

extends to the full diagram above, with ψ a null homotopy for h ◦ k and Fg the
pullback of g along pW .

Proof. Suppose the composite g ◦ h ◦ k is null-homotopic. Then Lemma A.18 gives
a factorization g ◦ h ◦ k = pW ◦ φ in (A.23). Since pW is a fibration, so is i.
If h ◦ k is also null-homotopic then this composite factors as h ◦ k = pZ ◦ κ, for

some κ : X → PZ. Now factor κ as X
κ′

→ V
q
→ PZ, with κ′ a cofibration and q

a trivial fibration. Since X is cofibrant and PZ is weakly contractible by Lemma
A.18, ∗ → V is a trivial cofibration. Therefore, pZ ◦ q lifts to a map η : V → PFg
with i◦pFg

◦η = pZ ◦q. Setting ψ := η◦κ′ makes the whole diagram commute. �

The dual version is:

A.24. Lemma. Let Y be fibrant and both Z and W cofibrant. Suppose the composite
k ◦h◦ g is known to be left null-homotopic. Then the shorter composite k ◦h is also
left null-homotopic if and only if for some null homotopy φ of k ◦ h ◦ g, the solid
commutative diagram

(A.25)

W

p

// iW //

g

��

CW

��

φ

��

Z // //

h
��

Mg
// // CMg

ψ

''
X

k // Y

extends to the full diagram above, with ψ giving a null homotopy for k ◦ h and Mg

the pushout of g along iW .

Appendix B. Indeterminacy

For most higher homotopy operations, one cannot expect a closed formula for the
indeterminacy of operations of the type provided by [T2, Lemma 1.1] for the classical
(secondary) Toda bracket. This is because tertiary and higher operations depend
on choices made for the vanishing of the lower order operations, and the amount of
choice remaining might vary for different sets of earlier choices.

However, if we take these earlier choices as given, within the inductive framework
described here the only remaining source of indeterminacy is in the choice of the
specific map ϕ′ which makes the outer diagram in (A.9) commute on the nose,
and how that choice affects the resulting lift θ′. Note that the homotopy class
[ϕ′] = [ϕ] is then fixed, as is the actual map u◦ϕ′ = s◦ t◦σ : T → Z. To help keep
track of all this, in this appendix ϕ will denote our initial choice of the map with the
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induced lift θ, while ϕ′ will denote some other choice, with induced lift θ′. We
now investigate how changing ϕ to ϕ′ changes θ to θ′, as maps T →W :

Given ϕ, a choice of ϕ′ such that u ◦ϕ = u ◦ϕ′ corresponds uniquely to a map
into the pullback

(B.1)

T

ϕ

##

ϕ′

  

❭ ❨ ❯ ◗
▼

❍
❇!!❉

❉
❉

❉

Y 〈u〉
y

u′

��

// Y

u

��
Y

u // Z

while a choice of such a map ϕ′ equipped with a (right) homotopy H : ϕ ∼r ϕ′

corresponds to a map into the pullback

(B.2)

T

ϕ

""

H

##

❪ ❩ ❲ ❙
P

▲
●!!❈

❈
❈

❈

Y 〈u〉
y

u′

��

// Path(Y )

(1×u)◦m

��
Y

1⊤u // Y × Z

where Y
iy
−→ Path(Y )

m
→→ Y ×Y is a path factorization as in (A.17). In fact, taking

a further pullback

(B.3)

W 〈p, u〉
y

p′
����

// Y 〈u〉

u′
����

W
q

// Y

we find that the image of the left vertical map p′ is essentially the indeterminacy
(see Corollary B.10 below).

Note that there is a canonical choice of induced map ψ : T → Y 〈u〉 in (B.1),
corresponding to ϕ′ = ϕ, and a similar canonical choice of induced map ψ : T →
Y 〈u〉 in (B.2), corresponding to the canonical self-homotopy Hϕ of ϕ (namely,

the composite T
ϕ
−→ Y

iy
−→ Path(Y )), which will be used below.

Given a map u : Y → Z, consider the following pullback grid:

(B.4)

Y 〈u〉
y

u
����✤
✤
✤

u′

�� ��

// Path(Y )

m
����

Y 〈u〉
y

u′
����

// Y × Y
y

1×u
����

pr2 // Y

u
����

Y
1⊤u // Y × Z

pr2 // Z

B.5. Notation. Assume given four maps u : Y → Z, ϕ : T → Y , v : B → Y ,
and ρ : A→ Y .

(a) The pointed set {ϕ′ : T → Y | u ◦ ϕ′ = u ◦ ϕ}, based at ϕ itself, will be
denoted by Varu(ϕ).
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(b) The pointed set {H : T → Path(Y ) | H : ϕ ∼r ϕ′, u ◦ ϕ′ = u ◦ ϕ} of (right)
homotopies, based at Hϕ, will be denoted by Varu(ϕ).

(c) The set {σ : A → B | v ◦ σ = ρ} of lifts of ρ with respect to v will be
denoted by Liftv(ρ).

In accordance with Remark 3.2, we can disregard the distinction between the left
homotopies appearing in the first half of Appendix A and the right homotopies we
have here.

B.6. Remark. From the pullback properties of the constructions above we see that
there are natural bijections of pointed sets Varu(ϕ) ∼= Liftu′(ϕ) and Varu(ϕ) ∼=
Liftu′(ϕ), where Liftu′(ϕ) is based at ψ and Liftu′(ϕ) is based at ψ.

We then have:

B.7. Lemma. Given ϕ = q ◦ θ : T → Y with p ◦ θ = t ◦ σ, there is a natural
bijection of sets Varu(ϕ) ∼= Liftp′(θ), where p′ := p′ ◦ p.

Proof. We may expand (B.4) into:

(B.8)

W 〈p, u〉

zz✉✉✉✉✉✉✉✉✉

✤
✤
✤
✤

p

����✤
✤
✤
✤

p′





// P rel

yysssssssssss

����

Y 〈u〉

u

����✤
✤
✤
✤
✤
✤
✤

// Path(Y )

����

W 〈p〉

q′zz✉✉✉✉✉✉✉✉✉

p′

����

//

p′′

**
Y ×W

1×q
yyrrrrrrrrrrr

1×p

����

pr2
// W

q
����������

p

����

Y 〈u〉

u′

����

//

u′′

22Y × Y

1×u

����

pr2 // Y

u

����

W

q
yysssssssssss

q⊤p
// Y ×X

1×sxxqqqqqqqqqq

pr2 // X

s
~~⑦⑦⑦⑦⑦⑦⑦⑦

Y
1⊤u // Y × Z

pr2 // Z

Since the rightmost face is a pullback (by assumption), as are both the front and left
long rectangular vertical faces (by construction), the lower leftmost face, and hence
the upper leftmost face, are pullbacks, too. We define P rel by making the upper
rightmost face a pullback, so that the back upper vertical face is, too.

We think of ϕ : T → Y as mapping to the front lower left Y , and θ : T → W
to the back lower left W , with ϕ′ : T → Y mapping to the front right Y , and
θ′ : T → W to the back right W . Since u ◦ ϕ′ = u ◦ ϕ, the lower pullback
rectangle in (B.4) implies that (ϕ, ϕ′) induce a map F : T → Y 〈u〉 and thus

F̂ : T → W 〈p〉. Since also u ◦ ϕ = s ◦ p ◦ θ = s ◦ t ◦ σ and a right homotopy
H : ϕ ∼r ϕ′ is a map H : T → Path(Y ) which, together with ϕ⊤θ′ : T → Y ×W ,

induces Ĥ : T → P rel, together with F̂ , these induce a lift of θ along p′. Conversely,

any lift θ̂ : T → W 〈p, u〉 of θ along p′ yields Ĥ , and thus H , by projecting along
the structure maps of the top pullback square. �

B.9. Remark. When Y ∼ ∗, we have Path(Y )
∼
→ Y × Y , so Y 〈u〉

∼
→ Y 〈u〉 ≃ ΩZ

and W 〈p, u〉 ≃W ×ΩZ. In this case a map T →W 〈p, u〉 thus corresponds up to
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homotopy, to a choice of map θ, together with a homotopy class in [T, ΩZ] (adjoint
to the indeterminacy construction of [Sp1, §1]). Note that each of the vertical faces
in (B.8) is a pullback over a fibration, so they are homotopy-meaningful.

The indeterminacy of our operations is then described by the following.

B.10. Corollary. Given ϕ = q ◦ θ : T → Y (also satisfying p ◦ θ = t ◦ σ) in
(A.9), the indeterminacy in our operation produced by varying ϕ lies in the image of
p′′# : [T,W 〈p, u〉]→ [T,W ], where p′′ = p′′ ◦ p.

In fact, we can restrict to the fiber of p′# over [θ] (the subset consisting of those
homotopy classes containing an element of Liftp′(θ)).

Proof. In (B.8) each choice of a lifting θ′ of ϕ′ ∼ ϕ has the form p′′ ◦ p ◦ ρ
for some ρ : T → W 〈p, u〉. Thus p′′#[ρ] = [θ′], as required. By restricting to
those ρ with [p′ ◦ ρ] = p′#[ρ] = [θ], we can apply Lemma A.2 to produce a different
representative [ρ′] = [ρ] with p′ ◦ ρ′ = θ, producing the improved θ′. �
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