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HIGHER HOMOTOPY INVARIANTS FOR SPACES AND MAPS

DAVID BLANC, MARK W. JOHNSON, AND JAMES M. TURNER

Abstract. For a pointed topological space X, we use an inductive construction of
a simplicial resolution of X by wedges of spheres to construct a “higher homotopy
structure” for X (in terms of chain complexes of spaces). This structure is then
used to define a collection of higher homotopy invariants which suffice to recover X
up to weak equivalence. It can also be used to distinguish between different maps
f : X→ Y which induce the same morphism f∗ : π∗X→ π∗Y.

Introduction

We describe two sequences of higher order operations constituting complete invari-
ants for the homotopy type of a topological space or map, respectively.

Higher homotopy and cohomology operations, such as Massey products and Toda
brackets, are among the earliest known examples of homotopy invariants which are
not primary. They have played an important computational role in algebraic topology
(see, e.g., [A, T]). However, no truly satisfactory theory of general higher homotopy
operations has been proposed so far, despite several attempts (see, e.g., [Sp1, Sp2]).
Here we follow the point of view taken in [BM, BJT2], where more precise definitions
are given.

0.1. Higher homotopy operations. A higher homotopy operation is an obstruc-
tion to rectifying a homotopy commutative diagram X : Γ→ ho C in some pointed
model category C, where Γ is a finite directed category with a weakly initial object vi
and weakly final object vf . When the longest composable sequence in Γ has length
n + 1, we have an n-th order operation, with a value in [Σn−1X(vi), X(vf)]. The
obstructions are constructed by induction on initial (or terminal) subdiagrams I of Γ
of increasing length: if the k-th order obstruction vanishes, we choose a rectification
for the appropriate subdiagram, which allows us to define the (k + 1)-st order ob-
struction. The various choices made along the way contribute to the indeterminacy
of the operation: we say that a (k+1)-st order operation vanishes if the obstruction
does so for some such choice. See [BM] and [BJT2, §3] for more details.

In general there is more than one way to define obstructions for a given rectification
problem. The point of view espoused here is that any two constructions of higher
order operations which yield the same answer at each stage are considered to be
equivalent.

In this paper we consider higher homotopy operations in the narrower sense, where
C is some model for Top∗, and all spaces X(v) (except perhaps X(vf)) are
wedges of spheres. The values of such an operation thus indeed lie in π∗X(vf), and
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in fact the whole diagram X can be described as a collection of elements in π∗X(vf ),
which vanish under the action of certain primary homotopy operations, together with
a system of (higher) relations among such primary operations.

0.2. Linear higher homotopy operations. We shall not need any more of
the general theory, but we briefly sketch the linear case, also known as a long Toda
bracket (see §2.10 below). This is not quite the version we need here, but is simpler
to describe, and best conveys the basic ideas we use.

Start with a “chain complex in ho C ” – that is, a finite sequence of maps

(0.3) Xn
∂n−→ Xn−1 → . . .→ X1

∂1−→ X0

in a pointed simplicial model category C with ∂k−1 ◦ ∂k ∼ 0 for every n ≥ k > 1.
Rectifying this homotopy-commutative diagram means replacing each space and map
∂Mk : Xk → Xk−1 by a weakly equivalent ′∂k : ′Xk →

′Xk−1, with ′∂k−1 ◦
′∂k now

actually zero.
In line with the general approach of §0.1, we use a double induction to try to

rectify (0.3): in the outer (ascending) induction on n ≥ 2, we use the vanishing
of the (n− 1)-st order Toda bracket to rectify (0.3) through dimension n. In the
inner (descending) induction on 1 ≤ k ≤ n, we calculate the next Toda bracket,
corresponding to the final segment of length k + 1.

The simplest case is n = 2, where there is no obstruction (and thus no descending

induction): by changing ∂1 : X1 → X0 into a fibration ∂
(1)
1 : X

(1)
1 → X

(1)
0 := X0,

a standard model category argument shows that we can then choose ∂
(1)
2 : X

(1)
2 :=

X2 → X
(1)
0 so that ∂

(1)
1 ◦ ∂

(1)
2 = 0 (see [BJT1, Lemma 5.11]).

In the n-th stage of the outer induction, we assume not only that we have rectified
(0.3) through dimension n−1, but also that we have made it into a fibrant (n−1)-

truncated chain complex X
(n−1)
• in C (in the injective model category structure).

This means that if we write ZnX
(n−1)
• := Ker(∂n), and use the rectification to factor

X
(n−1)
• through dimension n− 1 as

(0.4)

X
(n−1)
n−1

∂̂n−1// //

∂n−1

%%

Zn−2X
(n−1)
•

� �vn−2// X
(n−1)
n−2

∂̂n−2// //

∂n−2

%%

Zn−3X
(n−1)
•

� �vn−3// X
(n−1)
n−3

∂̂n−3// // · · ·X
(n−1)
0 ,

then we require each ∂̂k to be a fibration, so that

(0.5) ZkX
(n−1)
•

� � vk // X
(n−1)
k

∂̂k // // Zk−1X
(n−1)
•

is a (strict) fibration sequence (1 ≤ k < n).
Now we choose a nullhomotopy Fn : ∂n−1 ◦ ∂n ∼ 0; if we could lift it to a

nullhomotopy F̂n : ∂̂n−1 ◦ ∂n ∼ 0, we would be done (by the case n = 2). However,

in any case we see that ∂̂n−2 ◦ Fn is a self nullhomotopy 0 = ∂̂n−2 ◦ ∂n−1 ◦ ∂n ∼ 0,

so it induces a map an−1 : ΣX
(n−1)
n → X

(n−1)
n−3 . This is in fact a value of the ordinary

Toda bracket 〈∂n−2, ∂n−1, ∂n〉. If an−1 is nullhomotopic, we choose a nullhomotopy

Fn−1 : an−1 ∼ 0, and again see that ∂̂n−3 ◦Fn−1 is a self nullhomotopy so it induces

a map an−2 : Σ2X
(n−1)
n → X

(n−1)
n−4 , which is a value of the tertiary Toda bracket

〈∂n−3, ∂n−2, ∂n−1, ∂n〉. If an−1 is not nullhomotopic for any choice of Fn, we
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cannot proceed any further, and must backtrack to choose a different rectification of
a shorter final segment of (0.3).

As long as the intermediate Toda brackets vanish, we can proceed, until we end up
with the last obstruction, which is the (n− 1)-st order Toda bracket

(0.6) 〈∂1, . . . , ∂n−2, ∂n−1, ∂n〉 ⊆ [Σn−2X(n−1)
n , X

(n−1)
0 ] .

A more precise description of the process is given in §2.10 below.
In this paper we elaborate on the idea, first enunciated in [B4] (see also [BJT3]),

that there is a complete set of invariants for weak homotopy types of spaces consisting
of higher homotopy operations. The main improvements on previous results are:

(a) Using higher order operations which are linear – in the sense of requiring a
single choice in each simplicial dimension – rather than the more complicated
simplicial operations of [B4, BJT3];

(b) Making precise the relation between the vanishing of the (n − 1)-st order
operations and our ability to define the n-th order operation.

(c) Explaining how the higher operations based on different algebraic resolutions
are related.

(d) Constructing a similar set of invariants for maps.

0.7. Main results. We can now describe the most significant results of this paper.
For simplicity we state them here for our main motivating example – the usual
homotopy groups π∗Y of a pointed connected topological space, with their Π-
algebra structure coming from the action of the primary homotopy operations on
them – although in fact we prove them in a more general model category setting.

We start with two technical facts which play a central role in the proofs:

Theorem A. Any resolution V• of the Π-algebra π∗Y can be realized by an
augmented simplicial space W• → Y, with each Wn a wedge of spheres, obtained

as the limit of a sequence of n-truncated approximations 〈W
[n]
• 〉n∈N.

See Theorem 2.29 below.

We call the system of successive approximations W = 〈W
[n]
• 〉n∈N a sequential

realization of V• for Y (see §2.23). We then prove:

Theorem B. Any two sequential realizations W and ′
W of two CW resolutions V•

and ′V• for the same space Y are connected by a zigzag of split weak equivalences.

See Theorem 3.18 below.

This allows us to compare the system of higher operations 〈〈Y〉〉 associated to
different sequential realizations for Y, and then show that we can use any one such
W to determine their vanishing:

Theorem C. Given an abstract isomorphism of Π-algebras ϑ : π∗Y → π∗Z, the
associated system of higher homotopy operations vanishes coherently for some sequen-
tial realization W for Y if and only if it does so for every sequential realization if and
only if Y and Z are weakly equivalent.

See Theorem 6.5 below.
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By extending the ideas sketched above, one can use any sequential realization for
Y to define a system of higher homotopy operations associated to any two maps
f (0), f (1) : Y → Z which induce the same map in π∗, and show:

Theorem D. If Y and Z are CW complexes, the system of higher operations asso-
ciated to f (0), f (1) : Y → Z as above vanishes if and only if f (0) and f (1) are
homotopic.

See Theorem 7.10 below.

To illustrate our methods, in Section 8 we define a filtration index invariant for
mod p cohomology classes, dual to the Adams filtration on homotopy groups, and
show how it may be interpreted in terms of certain higher homotopy operations using
a reverse Adams spectral sequence.

0.8. Main techniques. As explained above, the “deconstruction” of a space Y (or
map) into its constituent higher order structure is carried out inductively, using a
sequence of (finite) approximations to a simplicial resolution of Y.

However, simplicial techniques tend to be rather complicated, and the main tech-
nical tool we shall be using is a sort of “Dold-Kan correspondence for spaces”, which
allows us to do the heavy work in the inductive step using chain complexes of spaces
(see Section 1.B below). As one might expect, the passage from simplicial objects
to chain complexes is straightforward, using Moore chains (see §1.21). The reverse
direction is functorial, and thus can be thought of as a formal black box (in which we
lose the ability to describe the resulting simplicial object explicitly).

Nevertheless, the first step in the reverse passage, in which we simply replace a
chain complex by the corresponding restricted simplicial object (with higher faces
zero and no degeneracies, and thus no change in the individual spaces) is completely
explicit, and contains precisely the information needed to fully describe our higher
homotopy operations.

0.9. Notation. Let ∆ denote the category of non-empty finite ordered sets and order-
preserving maps (see [Ma, §2]), and ∆res the subcategory with the same objects, with
only monic maps. Similarly, ∆+ denotes the category of all finite ordered sets (and
order-preserving maps), and ∆res,+ the corresponding subcategory of monic maps.
A simplicial object G• in a category C is a functor ∆op → C, a restricted simplicial
object is a functor ∆op

res → C, while an augmented simplicial object is a functor
∆op

+ → C, and a restricted augmented simplicial object is a functor ∆op
res,+ → C.

We write Gn for the value of G• at [n] = (0 < 1 < . . . < n). There is a
natural embedding c(−)• : C → C∆

op
, with c(A)• the constant simplicial object

and similarly c+(A)• for the constant augmented simplicial object. The inclusion

of categories σ : ∆ → ∆+ induces a functor σ∗(−) : C∆
op
+ → C∆

op
forgetting the

augmentation.
The category of compactly generated Hausdorff spaces (see [Ste] and [Hir, §7.10.1]),

called simply topological spaces, will be denoted by Top, that of pointed topological
spaces by Top∗, and that of pointed connected topological spaces by Top0.

The category of simplicial sets will be denoted by S = Set∆
op

, that of pointed
simplicial sets by S∗ = Set∆

op

∗ , and that of simplicial groups by G = Gp∆
op

(see
[GJ, I, §3]).
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For maps f : A→ X , g : B → X , and h : A→ Y in any (co)complete category
C, we denote by f⊥g : A ∐ B → X and f⊤h : A → X × Y , respectively, the
induced maps from the coproduct and into the product, and by incA : A → A ∐ B
the inclusion.

0.10. Caveat. The general results (though not the examples nor the application in
Section 8) are for the most part Eckmann-Hilton dual to those of [BS] and [BBS1].
Nevertheless, we feel that they deserve a separate treatment, since

(a) this duality is not formal, and the differences need to be spelled out carefully;
(b) a great deal of work is needed to translate these results to the dual setting, even

where the approach is the same; and
(c) the invariants here apply to arbitrary weak homotopy types of (connected) spaces,

rather than just to R-types of R-good spaces for R = Fp or Q. Therefore, they
can potentially be extended to topologically enriched categories.

0.11. Acknowledgements. We wish to thank the referee for his or her detailed
and pertinent comments. The first author was supported in part by Israel Science
Foundation Grant No. 770/16 and the third author by National Science Foundation
grant DMS-1207746.

1. Background

We first set up the framework in which our theory works, and recall some basic
facts and constructions about simplicial objects and algebraic theories.

1.1. Assumption. Throughout this paper we work in a cellular pointed simplicial
model category C (see [Hir, §9.1, 11.1, & 12.1.1]) with functorial factorizations (see
[Ho, §1.1.1]), and assume all objects in C are fibrant (so C is right proper, by [Hir,
13.1.3]). The main examples we have in mind are C = Top∗ or G (see [Q1, II, §3]
and [Hir, §11.1.9, 13.1.11]), but in §6.8 below we also consider the category dgL of
differential graded Lie algebras over Q.

In such a category C we define the standard cone CX and suspension ΣX of
a (cofibrant) object X by the pushouts of ∗ ← X →֒ X⊗∆1 and ∗ ← X →֒ CX,
respectively, with q : CX→ ΣX the induced map.

1.2. Definition. Given (cofibrant) X and Y in such a model category C, and maps
G : CX → Y and γ : ΣX → Y, note that the cofibration sequence X →֒
X⊗∆1 → CX induces a coaction ψ : CX→ CX ∨ ΣX (see [Q1, I, 3.5ff.]). The
concatenation G ⋆ (γ ◦ q) : CX→ Y is then defined to be (G⊥γ) ◦ ψ.

1.A. ΠA-algebras

Let A = ΣA′ be a fixed cofibrant suspension (and thus a homotopy cogroup
object) in a pointed model category C as in §1.1. Denote by A the full sub-category of
ho C generated by A under suspensions and arbitrary coproducts (so all objects in
A may be assumed cofibrant in C), and by ΠA the full sub-category of A consisting
of all coproducts of cardinality < κ, for a given limit cardinal κ (needed in order to
guarantee that ΠA is small, so the functor categories from it are well-behaved).
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1.3. Definition. A ΠA-algebra is a product-preserving functor Λ : Πop
A → Set∗

(where the products in Πop
A are the coproducts of C), and the category of such is

denoted by ΠA-Alg. We write Λ{B} for the value of Λ at B ∈ ΠA. There is

a forgetful functor Û : ΠA-Alg → grSet∗ to the category of non-negatively graded

pointed sets, with Û(Λ)k := Λ{ΣkA}. A free ΠA-algebra is one in the image of the

left adjoint of Û , denoted by F : grSet∗ → ΠA-Alg.
For each Y ∈ C we have a realizable ΠA-algebra πA

∗ Y, defined by setting
(πA

∗ Y){B} := [B,Y] for each B ∈ ΠA. We say that a map f : X→ Y in C is an
A-equivalence if the induced map f# : πA

∗ X→ πA
∗ Y is an isomorphism in ΠA-Alg

– or equivalently, if f# : mapC(A,X) → mapC(A,Y) is a weak equivalence of
pointed simplicial sets.

In particular, any ΠA-algebra of the form πA
∗ B for B ∈ Obj ΠA ⊆ Obj C is

free, as is any coproduct of such. However, we make the additional assumption that
for any B =

∐
i∈I ΣniA ∈ A and k ≥ 0, we have a natural isomorphism

(1.4) [ΣkA, B]C ∼= colimB′[ΣkA, B′]C ,

where the colimit is taken over all sub-coproducts B′ =
∐

i∈I′ Σ
niA with I ′ ⊆ I

of cardinality < κ (so that B′ ∈ ΠA). This implies that πA
∗ B =

∐
i∈I π

A
∗ Σ

niA,
(as a coproduct in ΠA-Alg), so πA

∗ B is free for all B ∈ A (see §1.8 below for a
specific example).

We can use the fact that a ΠA-algebra Λ preserves products in Aop to define
Λ{B} for any B ∈ A. The Yoneda Lemma then implies:

1.5. Lemma. If Λ is any ΠA-algebra and B ∈ A, there is a natural isomorphism
HomΠA-Alg(π

A
∗ B, Λ)

∼= Λ{B}.

This suggests the notation

(1.6) Λ{V } := HomΠA-Alg(V, Λ)

for any ΠA-algebras Λ and V with V free.
Moreover, we have:

1.7. Proposition (see [BP, §6]). For A as above, the category ΠA-Alg
∆op

of
simplicial ΠA-algebras has a model category structure, in which the weak equivalences
and fibrations are those of the underlying graded simplicial sets.

1.8. Example. When C = Top∗, A = S1, and κ = ω, we see that ΠA is the full
sub-simplicial category of Top∗ whose objects are finite wedges of spheres. In this
case a ΠA-algebra is just a Π-algebra, in the sense of [Sto, §4], with πA

∗ Y = π∗ΩY
(equipped with an action of the primary homotopy operations on it), and an A-
equivalence is just a weak equivalence of (base point components of) topological
spaces, in the usual sense. In this case our assumption (1.4) holds by compactness
of Sn and Sn × [0, 1] for all n ≥ 1.

We could also let A = Sn for some n > 1, or use localized spheres A = Sn
R in

the category C of R-local pointed spaces, for R a subring of Q, or algebraic models
thereof (such as differential graded Lie algebras, in the rational case – see §6.8
below). In the latter two cases we refer to either (equivalent) notion of a ΠA-algebra
as a ΠR-algebra.
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1.9. Assumptions. We shall henceforth assume that, in addition to (1.4), the
category ΠA-Alg (associated to the given A in C as in §1.1) satisfies the following
requirements:

(a) By definition, any free ΠA-algebra Λ ∼= F(X∗) is (non-canonically) isomorphic
to a coproduct Λ =

∐∞

n=0 Λn, where Λn is isomorphic to F(Xn) for
Xn ∈ grSet∗ concentrated in degree n. We assume that Ln := Λn{Σ

nA}
is a free R-module for some principal ideal domain R, or possibly a free group
when n = 0, and choices of generators for Ln are in bijection with choices of
generators for Λn.

(b) If j : Λ′ →֒ Λ is a map of free ΠA-algebras which has a retraction r : Λ ։ Λ′,
then Λ splits (non-canonically) as a coproduct Λ′ ∐ Λ′′ with Λ′′ also free.

(c) For any U and V in A, the inclusions iU : U→ U∐V and iV : V→ U ∐V

and their retractions ρU : U∐V→ U and ρV : U∐V→ V induce a natural
decomposition of groups

(1.10) [A′,U∐V] = [A′, U] × [A′, V] × CA′(U,V)

for any A′ := ΣnA (n ≥ 0), with the cross-term CA′(U,V) (the kernel of
(ρU)#⊤(ρV )#) represented by maps f : A′ → U∐V with ρU ◦f = ∗ = ρV ◦f .

We now show:

1.11. Lemma. If R ⊆ Q and W =
∨N

i=1 Sn
R for n ≥ 2, any basis B =

{κ1, . . . , κN} for πnW∼=
⊕N

i=1 R is a generating set for the free ΠR-algebra π∗W.

Proof. We first show that if R ⊆ Q and W=
∨N

i=1 Sn
R for n ≥ 2, then any basis

B = {κ1, . . . , κN} for πnW∼=
⊕N

i=1 R is a generating set for the free ΠR-algebra
π∗W:

Let E = {λ1, . . . , λN} be the basis for πnW corresponding to the standard
generators for π∗W (associated to the given coproduct decomposition of W), and
M ∈ SLN(Z) the change of basis matrix with respect to B. The corresponding map
ϕM : W→ W induces an automorphism of Hn(W;R), so it is a self-homotopy
equivalence by the R-local Hurewicz and Whitehead Theorems (cf. [HMR, II, 1.2]),
with homotopy inverse ψM : W→W, with ϕM

∗ (λi) = κi for 1 ≤ i ≤ N .
By Hilton’s Theorem (see [Hil] or [Wh, XI, Theorem 6.7]), for any t ≥ n and

α ∈ πtW, we may write β = ψM
∗ (α) uniquely in the form

(1.12) β =
∑

ℓ

η#ℓ ωℓ(λ1, . . . , λN)

where ωℓ(λ1, . . . , λN) is some kℓ-fold iterated Whitehead product in a chosen

Hall basis in the free Whitehead-Lie algebra on elements of E , and ηℓ ∈ πtS
kℓ(n−1)+1
R .

Therefore,

(1.13) α = ϕM
∗ (β) =

∑

ℓ

η#ℓ ωℓ(κ1, . . . , κN)

so B generates π∗W.
Conversely, the result of applying any primary operation φ to the set B can be

written in the form (1.13), so β := ψM
∗ (α) has the form (1.12) with respect to

E , and this vanishes if and only φ was trivial. Thus B generates π∗W freely. �
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1.14. Proposition. The assumptions of §1.9 hold for the motivating example of A =
Sn (n ≥ 1) in C = Top∗, with R = Z, as well for A = Sn

R an R-local
sphere in C = TopR (the R-local model category of pointed spaces), where R is any
sub-ring of Q.

Proof. The statement of §1.9(a) follows from Lemma 1.11 (with the non-finitely gen-
erated case following from (1.4), which follows in turn from the compactness of Sn

and Sn × [0, 1]).
If j : Λ′ →֒ Λ is a map of free Π-algebras with a retraction r : Λ ։ Λ′, we may

prove §1.9(b) by induction on the degree: by our convention we use the loop space
grading, so the fundamental group is in degree 0 and thus Λ0 (the sub-Π-algebra
generated by all elements in Λ{S1}) is just a free group, as is Λ′

0. One can show
that if we set Λ′′

0 := Ker(r0 : Λ0 → Λ′
0), which is also a free group (and thus a free

Π-algebra), then Λ0
∼= Λ′

0 ∐ Λ′′
0.

If we assume by induction that

Λ<n :=
n−1∐

k=0

Λk
∼=

n−1∐

k=0

Λ′
k ∐

n−1∐

k=0

Λ′′
k ,

we have a map of free Π-algebras j0 : Λ′
n →֒ Λn with retraction r0 : Λn ։ Λ′

n,
inducing a split inclusion of free R-modules L′

n →֒ Ln, and thus a decomposition
Ln
∼= L′

n ⊕ L
′′
n. Since R is a PID, L′′

n is also a free R-module. This allows us to
complete a basis for L′

n to one for Ln, yielding a corresponding decomposition of
free Π-algebras Λn

∼= Λ′
n ∐ Λ′′

n by Lemma 1.11.
Finally, §1.9(c) holds for any suspension A = ΣA′ in Top∗, by the Hilton-Milnor

Theorem (see [Mi]). Note that it also holds for any small A in a stable model category
(see [Ho, §7.2]), since all cross-terms then vanish. �

1.15. Remark. In fact, the A-equivalences as defined in §1.3 are the weak equiva-
lences in the right Bousfield localization of C with respect to A (see [Hir, §5.1]). In
particular, the natural map CWAY → Y is an A-equivalence, where the cellu-
larization CWAY serves as a functorial cofibrant replacement for Y (see [DF, §2
A]).

Two maps f, g : X→ Y in C are A-equivalent if and only if they are related by
a zigzag of A-equivalences. In particular, if all objects in C are fibrant (which will
be the case in the examples of interest to us), this implies that the induced maps

f̂ , ĝ : CWAX → CWAY are homotopic. We write [X,Y]A for the set of A-
equivalence classes of maps (i.e., the set of maps in the homotopy category ho C for
this model structure).

In the motivating example, where C = Top0 (see §0.9) and A = S1, if X and Y

are CW-complexes we see that A-equivalences are actually homotopy equivalences,
and two maps f, g : X→ Y are A-equivalent if and only if they are homotopic, so
[X,Y]A = [X,Y].
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1.B. Chain complexes

For C any pointed category, an augmented chain complex in C is a diagram A∗ of
the form

(1.16) . . . An+1

∂n+1 // An
∂n // An−1

∂n−1 // An−2 . . . A0
∂0 // A−1

with ∂n ◦ ∂n+1 = 0 for all n ≥ 0. We denote the category of such chain complexes
by ChC, that of n-truncated chain complexes by Ch

≤n
C , and that of bounded-below

chain complexes with Ai = ∗ for −1 ≤ i < n by Ch≥n
C , with the obvious

truncation functors skn : ChC → Ch≤n
C (the usual skeleton, or restriction) and

cskn : ChC → Ch
≥n
C .

1.17. Definition. For any object G in a pointed category C, let G ⊠ Sn be the
chain complex in ChC having G in dimension n (and ∗ elsewhere). Similarly, G⊠en

has G in dimensions n and n−1, with the identity between them as boundary (and
∗ elsewhere). We write ιn : G ⊠ Sn−1 →֒ G ⊠ en for the inclusion.

1.18. Model categories of chain complexes. When C is a pointed model category
as in §1.1, we will consider projective model category structures on ChC and Ch

≤n
C ,

in which the weak equivalences and fibrations are both defined levelwise, so all objects
will be fibrant. For Ch

≤n
C , the cofibrant objects are the strongly cofibrant n-chain

complexes A∗, where for each k ≤ n the natural map Cok(∂k+1) → Ak−1 is a
cofibration (with An+1 := ∗). See [Hir, §11.6].

There is a dual injective model category structure on ChC and Ch≤n
C , in which

the weak equivalences and cofibrations are defined levelwise, and the fibrant objects
are described in (0.5).

1.19. Attaching cells to chain complexes. The usual way to construct a chain
complex A∗ in ChC is by means of attaching maps ∂ : An ⊠Sn−1 → skn−1A∗ in
Ch≤n−1

C . The next skeleton sknA∗ is then the pushout

(1.20)

An ⊠ Sn−1

PO

ιn
��

∂ // skn−1A∗

��
An ⊠ en // sknA∗ ,

(see §1.17), with ∂ in degree n− 1 equal to ∂n : An → An−1.
When C is a model category, in order to make this process homotopy meaningful

we generally use a (strongly) cofibrant replacement of the source An ⊠ Sn−1 of the
attaching map ∂.

1.C. Augmented simplicial objects

We now collect some standard facts and constructions related to augmented sim-
plicial objects in a category C:



10 D. BLANC, M.W. JOHNSON, AND J.M. TURNER

1.21.Definition. In a pointed and complete category C, the n-thMoore chains object
of a restricted augmented simplicial object G• ∈ C

∆op
res,+ is defined to be:

(1.22) CM
n G• := ∩ni=1Ker{di : Gn → Gn−1} ,

that is, the limit of the diagram

(1.23) Gn

d1

...
))

dn

55 Gn−1 ∗oo

with differential
∂Mn := d0|CM

n G•
: CM

n G• → CM
n−1G• .

The n-th Moore cycles object is ZM
n G• := Ker(∂Mn ) (the analogous limit including

d0). Write wn : CM
n G• →֒ Gn−1 and vn : ZM

n G• →֒ CM
n G• for the inclusions.

We use the same notation for unrestricted or unaugmented G•, although the
reader should note that for non-trivial augmented G•, ZM

0 (G•) differs from
ZM

0 (σ∗(G•)) = G0.

1.24. Definition. For a (possibly (n − 1)-truncated) simplicial object G• ∈ C
∆op

in a cocomplete category C, the n-th latching object for G• is the colimit

(1.25) LnG• := colim
θop:[k]→[n]

Gk ,

where θ ranges over the surjective maps [n] → [k] in ∆ (for k < n). There is a
natural map σn : LnG• → Gn induced by the indexing maps θ of the colimit for any
n-truncated simplicial object, and any iterated degeneracy map sI = θ∗ : Gk → Gn

factors as

(1.26) sI = σn ◦ incθ ,

where incθ : Gk → LnG• is the structure map for the copy of Gk indexed by θ.
Note that the inclusion ∆res →֒ ∆ induces a forgetful functor U : C∆

op
→ C∆

op
res ,

and its left adjoint L : C∆
op
res → C∆

op
is given by (LG•)n = Gn ∐ LnG•, with

degeneracies given by (1.26) and face maps coming from the simplicial identities. It
follows that any augmentation of G• also serves as an augmentation of LG• and
vice versa, so this remains an adjunction for the augmented categories.

Dually, the n-th matching object for G• ∈ C
∆op

is defined to be

(1.27) MnG• := lim
φop:[n]→[k]

Gk ,

where φ ranges over the injective maps [k] → [n] in ∆. As above, there is a
natural map ζn : Gn → MnG• induced by the structure maps of the limit for any
n-truncated restricted simplicial object, and every (iterated) face map factors through
it (see [BK, X,§4.5]).

For an augmented G• ∈ C
∆op

+ , matching objects are defined similarly, but now
M0G• = G−1, and M1G• is the pullback of G0 → G−1 ← G0, rather than a
product.

1.28. Remark. When C is a model category, we shall use the Reedy model structure
of [Hir, §15.3], which differs from the projective structure, on C∆

op
, C∆

op
res , C∆

op
+ ,

and C∆
op
res,+ . Note that the constant augmented object c+(A)• for a fibrant object



HIGHER HOMOTOPY INVARIANTS FOR SPACES AND MAPS 11

A ∈ C is Reedy fibrant in C∆
op
+ but c(A)• is not Reedy fibrant in C∆

op
(see

§4.1 below).

1.29. Comparing chain complexes and simplicial objects. If C is a pointed
category, the Moore chain functor CM

∗ : C∆
op
res,+ → ChC just described has a left

adjoint (and right inverse) E : ChC → C
∆op

res,+ with (EA∗)n = An, dn0 = ∂Mn , and

dni = 0 for i ≥ 1. This also holds for Ch
≤n
C if we truncate C∆

op
res,+ . Moreover:

1.30. Lemma. For C = Top∗ or G = Gp∆
op

, the functor CM
∗ : C∆

op
res,+ → ChC

preserves fibrancy and weak equivalences among fibrant objects with respect to the
Reedy model structure of §1.28 in C∆

op
res,+ and the injective model structure of §1.18

on ChC.

Proof. See [DKS2, Proposition 5.7] and [Sto, Lemma 2.7]. �

We recall the following augmented dual of [BK, X, Proposition 6.3(ii)]:

1.31. Lemma. Let X• ∈ C
∆op

+ be a Reedy fibrant augmented simplicial object over
a model category C, and B a cofibrant homotopy cogroup object in C. Then for any
Moore chain β ∈ CM

n [B,X•] for the augmented simplicial group [B,X•]:

(a) β can be realized by a map b : B→ CM
n X•.

(b) If β is a Moore cycle, in ZM
n [B,X•], we can choose a nullhomotopy for ∂Mn ◦ b,

H : CB→ CM
n−1X•.

Proof. Since X• is Reedy fibrant (see [Hir, Ch. 15]), the augmented simplicial space

U• = map∗(B,X•) ∈ S
∆op

+
∗ is Reedy fibrant, so by [Sto, Lemma 2.7], for every j > 0

the inclusion ι : CM
n U• →֒ Un induces an isomorphism ι∗ : πjC

M
n U• → CM

n πjU•.

Since CM
n is a limit, CM

n U• = map∗(B, C
M
n X•). Since B is a homotopy cogroup

object, π0U• is still a group, so the above holds for j = 0 too.
Note that in both the augmented and non-augmented case CM

0 U• = U0, so the
result also holds in dimensions n = 0,−1. �

By analogy with the mapping cone for chain complexes (see [We, §1.5]) we have
the following notion, which will play a key technical role in what follows:

1.32. Definition. For any map f : A• → B• in C∆
op
res,+ we define the restricted

augmented simplicial object C• = Cone(f) by setting Cn := Bn ∐ An−1 (where
A−2 = ∗), with

dCn

i :=

{
incBn−1 ◦(d

Bn

0 ⊥ fn−1) if i = 0

dBn

i ∐ d
An−1

i−1 if i ≥ 1 ,

in the notation of §0.9, and a natural inclusion of restricted augmented simplicial
objects ℓ : B• →֒ Cone(f) which is the identity in degree −1.

For the required face identity, we may verify that

(d0 ◦ dj)|An−1 = (d
Cn−1

0 )|An−2◦d
An−1

j−1 = fn−2 ◦ d
An−1

j−1 = d
Bn−1

j−1 ◦ fn−1 = (dj−1 ◦ d0)|An−1

for all 0 < j, while

(di ◦ dj)|An−1 = d
An−2

i−1 ◦ d
An−1

j−1 = d
An−2

j−2 ◦ d
An−1

i−1 = (dj−1 ◦ di)|An−1

for all 1 ≤ i < j.
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1.33. Example. Suppose that A• is concentrated in one dimension, for example,
A• = E(Gn ⊠ Sn−1) and B• is (n − 1)-truncated. Then in dimensions k < n,
the inclusion ℓk is an isomorphism, Bk

∼= Bk ∐ ∗ (since C is pointed), with
the face maps defined through these isomorphisms. In dimension k = n, we have
Cone(f)n = ∗ ∐Gn

∼= Gn with d0 ∼= fn−1 and all higher face maps zero.

1.34. Definition. An unaugmented simplicial object G• ∈ C
∆op

over a pointed
category C is called a CW object if it is equipped with a CW basis (Gn)

∞
n=0 in C

such that Gn = Gn ∐ LnG•, and di|Gn
= 0 for 1 ≤ i ≤ n. By the simplicial

identities the restriction of the 0-th face map d0|Gn
: Gn → Gn−1 factors as the

composite

(1.35) Gn

∂
Gn
0 // ZM

n−1G•
� � vn−1 // CM

n−1G•
� � wn−1// Gn−1

(in the notation of §1.21, with vn−1 ◦ ∂
Gn

0 = (∂Mn )|Gn
), and we call ∂

Gn

0 the n-th
attaching map for G•.

The following observation essentially follows from Example 1.33 and the construc-
tion of L.

1.36. Lemma. Any CW object G• over C with CW basis (Gn)
∞
n=0 can be con-

structed inductively as follows, starting with sk0G• := c(G0)• (see §0.9): given

the (n − 1)-truncated simplicial object skn−1G•, the attaching map ∂
Gn

0 : Gn →
ZM

n−1(skn−1G•) is equivalent to a chain map f : Gn ⊠ Sn−1 → CM
∗ (skn−1G•) (see

§1.17) and so to an adjoint restricted simplicial map f̃ : E(Gn⊠Sn−1)→ U skn−1G•

(see §1.29); we define sknG• to be the pushout in n-truncated simplicial objects

(1.37)

LU skn−1G•

PO

Lℓ
��

ϑ // skn−1G•

��
LCone(f̃) // sknG• ,

where ϑ : LU → Id is the counit for the adjunction of §1.24, and ℓ is as in §1.32
(see (1.20)).

This yields an explicit description of Gn = Gn ∐ LnG•, since by induction we see
that the n-th latching object of G• is given by:

(1.38) LnG• :=
∐

0≤k≤n−1

∐

0≤i1<...<in−k−1≤n−1

Gk ,

where the iterated degeneracy map sin−k−1
. . . si2si1 , restricted to the basis Gk,

is the inclusion into the copy of Gk indexed by k (in the first coproduct) and
(i1, . . . , in−k−1) (in the second).

We note for future reference the following useful fact (which we shall not need
here):

1.39. Lemma. Every free simplicial ΠA-algebra V• has a CW basis {V n}
∞
n=0.

Proof. This follows from §1.9(b) by induction on the simplicial dimension n ≥ 0,
since the simplicial identity disi = Id shows that Vn−1 splits off Vn in various
ways, so LnV• does, too, as in (1.38). �
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1.40. Definition. A CW-resolution of a ΠA-algebra Λ ∈ ΠA-Alg is a cofibrant

replacement ε : G•
≃
−→ c(Λ)• (in the model category of simplicial ΠA-algebras

from 1.7), which is also a CW object with CW basis (Gn)
∞
n=0 consisting of free

ΠA-algebras.

1.41. Assumptions. In order to formulate our results most efficiently, in addition to
the assumptions of §1.1 and §1.9 we henceforth also require:

(1) The category C∆
op

of simplicial objects over C has a resolution model category
structure (see [J] and compare [DKS1]) with respect to A.

(2) There is a realization functor ‖−‖ : C∆
op
→ C, equipped with initial augmenta-

tion η : W• → ‖W•‖, such that for any augmented simplicial object ε : W• → Y

over C where the associated augmented simplicial ΠA-algebra ε# : πA
∗ W• → πA

∗ Y

is acyclic (that is, ε# : πA
∗ W• → c(πA

∗ Y)• is a weak equivalence, as in §1.7),
the natural map ‖W•‖ → Y induces an isomorphism in ΠA-Alg.

This would typically be defined as a coend, as for the usual geometric realization
(but see [BJT1, 4.10]).

These assumptions hold in our motivating example of §1.8:

1.42. Example. Let C = Top0 (see §0.9) and A = Sn for some n ≥ 1. In this
case, ‖W•‖ is the geometric realization, and condition (2) follows from the collapse
of the Bousfield-Friedlander spectral sequence under the given hypotheses (see [BF,
Theorem B.5]). However, R-local spaces in Top0 also satisfy these assumptions,
as do differential graded (Lie) algebras over Q (see [Q2]), with ‖ − ‖ a suitable
homotopy colimit – and more generally, for other E2-model categories in the sense
of [BJT1, §4.8].

1.43. Remark. If we set Z−1G• := Λ and ∂
G0

0 := ε, any CW object G• for which

each Gn is a free ΠA-algebra and each attaching map ∂
Gn

0 surjects onto Zn−1G•

(n ≥ 0) is a CW-resolution of Λ. We can then make G• into an augmented
simplicial CW object by setting G−1 := Λ with ε0 : G0 → Λ as the augmentation.

2. Realizing simplicial ΠA-algebra resolutions

The main technical tool needed in this paper is an explicit version, and general-
ization, of [B5, Theorem 3.16], which states that any algebraic resolution V• of a
realizable Π-algebra Λ may be realized by a simplicial space W•. This W• must
be of a particular form, which we now describe. Throughout this section we assume
that A ∈ C is as in §1.41, and ΠA as in §1.A.

Our goal here is to show how to realize a CW (algebraic) resolution V• of a
realizable ΠA-algebra Λ = πA

∗ Y, with CW basis {V n}
∞
n=0, by an augmented

simplicial object W• → Y in C. We would like to mimic the CW construction of
V• by exhibiting W• as a homotopy colimit of a sequence of maps

(2.1) W[0]
•

ι[1]

−→ W[1]
•

ι[2]

−→ W[2]
• → . . . W[n−1]

•

ι[n]

−−→ W[n]
• → . . . ,

where W
[n]
• realizes V• through simplicial dimension n.

In the induction step, we pass from X• = W
[n−1]
• to W

[n]
• by attaching an

object B realizing V n in simplicial dimension n, as for V•. By Lemma 1.36, it
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is enough to find an attaching map f : B⊠Sn−1 → CM
∗ X• in ChC. Unfortunately,

there are obstructions to doing so in general (see [BJT1, BJT3]), hence we must:

(1) replace B⊠ Sn−1 with a (strongly) cofibrant object D∗;
(2) realize the algebraic attaching map f of Lemma 1.36 by a map F : D∗ → CM

∗ (X•)
in ChC; and

(3) modify the result of Lemma 1.36 to obtain a Reedy cofibration X• → X•[F ],
with Reedy fibrant target (see (2.14)), playing the role of ι[n] above.

This section will treat each of these steps separately.

2.A. Strongly cofibrant chain complexes

Recall from §1.18 that weak equivalences in Ch
≤n
C are defined entrywise and

that an n-chain complex D∗ is strongly cofibrant precisely when the structure map
Cof(∂k+1) → Dk−1 (out of “k-chains modulo boundaries”) is a cofibration for each
k. Thus if D∗ ∈ Ch

≤n−1
C is a strongly cofibrant approximation to B ⊠ Sn−1, Dk

must be contractible for k 6= n− 1, since then (B⊠ Sn−1)k = ∗.
As explained in [Hir, §15.2], it is natural to construct D∗ by a descending induction

on 0 ≤ k ≤ n − 1, starting with Dn−1 = B (assumed cofibrant by §1.A). Since
Dn = ∗, also Cof(∂n) = B, therefore by construction Dn−2 must be a cone on B

in the sense of [Q1, I, §2].
We could of course choose Dn−2 to be the standard cone CB of §1.1, but

we will require more general (strongly) cofibrant objects, in order to replace certain
maps by fibrations (see Lemma A.2). Therefore, for each 0 ≤ k ≤ n− 1 we merely
require that there be given a (strict) cofibration sequence in C:

(2.2) ΣkB
� � ιk // CΣkB

qk // // Σk+1B

with CΣkB ≃ ∗ for 0 ≤ k ≤ n − 1 (with the convention that CΣ−1B := B).

Thus ΣkB is indeed a model for the suspension of Σk−1B, and, as a consequence,
the k-th suspension of B, in the sense of [Q1, loc. cit.] (see (2.27) below).

If we let Dk := CΣn−k−2B, the differential ∂Dk : Dk → Dk−1 is defined to be
the composite of

(2.3) CΣn−k−2B
qn−k−2

// // Σn−k−1B
� � ιn−k−1

// CΣn−k−1B ,

even for k = 0. Moreover, Σn−kB = Cof(∂Dk ) (a strict cofiber, since qn−k−2 is
epic), so the cofibration ιn−k shows that D∗ is indeed strongly cofibrant.
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The first three stages of the process are depicted in the following commutative
diagram:

(2.4)

∗� _

∂D
n��

// ∗

∂n��

B

vv♥♥♥
♥♥
♥♥
♥♥
♥♥♥

♥♥
♥♥
♥ � _

ι0= ∂D
n−1��

Id // B

∂n−1

��
∗� _

��

CB
q0

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥

∂D
n−2��

∼ // ∗

∂n−2

��
ΣB

xxqqq
qq
qq
qq
qq
qq
q

� � ι1 // CΣB
q1

vv♥♥♥
♥♥
♥♥♥

♥♥
♥♥♥

♥

∂D
n−3��

∼ // ∗

∂n−3

��
∗ �
� // Σ2B

� � ι2 // CΣ2B
∼ // ∗

The parallelograms on the left are (homotopy) pushouts, and the triangles are used
to define the differentials, with cofibrations and weak equivalences as indicated.

When we use standard cones and suspensions throughout, we obtain the standard

cofibrant replacement for B⊠ Sn−1, which we denote by D
[n]
∗ (B).

2.B. Realizing attaching maps

Assume given a CW resolution V• of Λ = πA
∗ Y in ΠA-Alg

∆op

, with CW
basis {V n}

∞
n=0, and a Reedy fibrant (n− 1)-truncated augmented simplicial object

X• in C, realizing V• through simplicial dimension n − 1, with X−1 = Y.
In addition, assume we have (cofibrant) B realizing V n, and we would like to
construct a map B ⊠ Sn−1 → CM

∗ X• in Ch
≤n−1
C realizing the (algebraic) chain

map f : V n ⊠ Sn−1 → CM
∗ (skn−1 V•), in order to apply Lemma 1.36. As noted

above, we must first replace B ⊠ Sn−1 by a (strongly) cofibrant D∗ to produce
F : D∗ → CM

∗ X•, using the following

2.5. Proposition. Given a CW resolution V•, a Reedy fibrant (n − 1)-truncated
augmented simplicial object X•, an object B ∈ C realizing V n, and a strongly
cofibrant D∗ as above, the algebraic attaching map f : V n ⊠Sn−1 → CM

∗ (skn−1 V•)
can be realized by a chain map F : D∗ → CM

∗ X•.

Proof. We construct Fk by a downward induction on coskeleta (see §1.B), for
−1 ≤ k ≤ n− 1.

To start the induction we must choose Fn−1 : Dn−1 = B → CM
n−1X•. Since

πA
∗ Xk

∼= Vk for all 0 ≤ k ≤ n − 1 by assumption, the algebraic attaching map

∂
Vn

0 : V n → Vn−1 can be thought of as a homotopy class

α ∈ [B, Xn−1] = πA
∗ Xn−1{B} ∼= Vn−1{B}

∼= HomΠA-Alg(π
A
∗ B, Vn−1) ∼= HomΠA-Alg(V n, Vn−1) ,

(2.6)

where the next to last isomorphism follows from Lemma 1.5.

Since by Definition 1.34 ∂
Vn

0 : V n → Vn−1 actually lands in CM
n−1V•, this α is a

Moore chain in π0 mapC(B, X•), so by Lemma 1.31(a), α can be represented by a
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map Fn−1 : B→ CM
n−1X•. By (1.35), ∂

Vn

0 lands in the (n− 1)-Moore cycles, so
by Lemma 1.31(b) the (n−2)-Moore chain an−2 := ∂Cn−1 ◦Fn−1 has a nullhomotopy

Fn−2 : ∂
C
n−1 ◦ Fn−1 ∼ 0, and thus a map Fn−2 : Dn−2 = CB→ CM

n−2X•.

In the k-th stage of the induction, we assume given F : cskk D∗ → cskk CM
∗ X• for

X• and D∗ as above, with 0 ≤ k ≤ n − 2. We shall show that we can always
extend F to the (k − 1)-coskeleta by modifying Fk.

Note that we can decompose ∂Ck as vk−1 ◦ ∂̂
C
k , and already ∂̂Ck ◦ vk = 0. As a

consequence, 0 = ∂̂Ck ◦ ∂
C
k+1 ◦ Fk+1 = ∂̂Ck ◦ Fk ◦ ∂

D
k+1 = ∂̂Ck ◦ Fk ◦ ι

n−k−2 ◦ qn−k−3, and

qn−k−3 is epic, so we see ∂̂Ck ◦Fk ◦ ι
n−k−2 = 0. Thus, the pushout property in (2.4)

implies there is a unique ak−1 : Σn−k−1B→ ZM
k−1X• in

(2.7)

Dk+1 = CΣn−k−3B

∂D

k+1

��

qn−k−3

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

Fk+1 // CM
k+1X•

∂̂C
k+1yyttt

tt
tt
tt
t

∂C
k+1

��

Σn−k−2B

ιn−k−2vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠

ak // ZM
k X•

vk

%%❏❏
❏❏

❏❏
❏❏

❏❏

Dk = CΣn−k−2B

∂D

k

��

qn−k−2

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

Fk // CM
k X•

∂̂C
kyyttt

tt
tt
tt
t

∂C
k

��

Σn−k−1B

ιn−k−1vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠

ak−1 // ZM
k−1X•

vk−1

$$❏❏
❏❏

❏❏
❏❏

❏❏

Dk−1 = CΣn−k−1B
Fk−1 //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ CM

k−1X•

satisfying

(2.8) vk−1 ◦ ak−1 ◦ q
n−k−2 = ∂Ck ◦ Fk .

Note that ak in (2.7) is constructed similarly, satisfying (2.8) for k rather
than k − 1, and that Fk makes the upper square commute precisely when it is a
nullhomotopy for vk ◦ ak, that is

(2.9) vk ◦ ak = Fk ◦ ι
n−k−2 .

Similarly, a := vk−1 ◦ ak−1 is nullhomotopic if and only if Fk−1 extends the
chain map to dimension k − 1. Hence it remains to show that there is a choice of
nullhomotopy Fk such that the induced map a will also be nullhomotopic.

Recall from [Sp1, §2] that choices of (homotopy classes of) nullhomotopies for the

map vk ◦ ak : Σn−k−2B→ CM
k X• are in one-to-one correspondence with homotopy

classes [η] ∈ [ΣΣn−k−2B, CM
k X•], where η acts on Fk by concatenation to yield

Fk ⋆ (η ◦ q
n−k−2) (see §1.2). Furthermore, replacing Fk by F ′

k := Fk ⋆ (η ◦ q
n−k−2)

changes [a] to [a′] := [a] + [∂Ck ◦ η] = [a] + ∂Vk [η].

Since 0 = ∂̂Ck−1 ◦ vk−1 ◦ ak−1, it follows that 0 = [∂Ck−1] ◦ (−[a]) = ∂Vk−1(−[a]) in

πA
∗ C

M
k−2X•{Σn−k−1B} = CM

k−2π
A
∗ X•{Σn−k−1B} = CM

k−2V•{Σ
n−k−1B}
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using Lemma 1.31, so −[a] ∈ ZM
k−1V•{Σ

n−k−1B}. By acyclicity of V•, there is a
class

[η] ∈ CM
k V•{Σ

n−k−1B} = πA
∗ C

M
k X•{Σn−k−1B} = [ΣΣn−k−2B, CM

k X•]

with −[a] = ∂Vk [η]. Therefore, replacing Fk by F ′
k = Fk ⋆ (η ◦ q

n−k−2) yields a
nullhomotopic a′, and thus allows us to extend F to dimension k − 1. �

2.10. Long Toda brackets. Proposition 2.5 suggests the following quick (if some-
what ad hoc) definition of long Toda brackets as the last in a bigraded collection of
obstructions for rectifying certain diagrams:

Assume given an (n+ 1)-homotopy chain complex

(2.11) Yn
dn−→ Yn−1

dn−1
−−−→ Yn−2 → . . . → Y0

d0−→ Y−1

in ho C – so dk−1 ◦ dk ∼ 0 for 1 ≤ k ≤ n. Assume further by induction that
we have rectified the final n-segment and replaced it by a diagram:

(2.12) Cn−1
∂n−1
−−−→ Cn−2 → . . .→ C0

∂0−→ C−1 ,

which is (strongly) fibrant (in the injective model structure on Ch
≤n−1
C ). This means

that each Ck ≃ Yk and ∂k−1 ◦ ∂k = 0 for 1 ≤ k < n, and that we have a map

∂̂ : Yn → Cn−1 such that ∂n−1◦ ∂̂ ∼ 0. This defines a “chain map up to homotopy”
Φ : Yn ⊠ Sn−1 → C∗ between two (n− 1)-truncated (augmented) chain complexes
over C.

Using the standard strongly cofibrant replacement D
[n]
∗ (Yn) for Yn ⊠ Sn−1

(see §2.A), we can try to realize Φ by a strict map of chain complexes F : D∗ →
C∗, constructed by a downward induction on −1 ≤ k ≤ n − 1. The successive
obstructions to doing so are the maps ak : Σn−k−1Yn → ZM

k C∗ of the proof of
Proposition 2.5.

As we saw in that proof, a partial chain map (Fi : Di → Ci)
n
i=k+1 can be

extended to dimension k if and only if vk ◦ ak ∼ 0. Thus we think of the homotopy
classes of vk ◦ ak (k ≥ 0) as the intermediate obstructions to obtaining the value
[v−1 ◦ a−1] ∈ [Σn−1Yn, C−1] of the n-th order Toda bracket 〈d0, . . . , dn〉. (In fact,
v−1 is the identity in this last case.)

See [BBG, BM, BJT2, BJT4, BBS2] for more conceptual alternative definitions of
higher Toda brackets.

2.C. Passage to simplicial objects

Having constructed a realization F : D∗ → CM
∗ X• = CM

∗ UX• (see §1.21) of the
n-th algebraic attaching map for V•, as described in §2.B, we wish to complete the

passage from X• = W
[n−1]
• to a new augmented simplicial object X•[F ] = W

[n]
• as

in (2.1), in such a way that X•[F ] will still be Reedy fibrant and cofibrant, and
the inclusion j : X• →֒ X•[F ] will be a Reedy cofibration (two properties which
will be needed for future applications).

For this purpose, let F̃ : ED∗ → UX• be the adjoint of F (see §1.29), with

ℓ : UX• → Cone(F̃ ) the natural inclusion into the cone (see §1.32). Note that ℓ is
an acyclic cofibration in simplicial dimensions ≤ n− 1, so the same is true of L(ℓ).
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We add on the degeneracies to obtain X̂•[F ], defined to be the following pushout
in the category of augmented simplicial objects (all having the given object Y in
degree −1):

(2.13)

LUX•

L(ℓ)
��

θ // X•

̂
��

LCone(F̃ ) // X̂•[F ]

where θ is the counit of the adjunction (compare (1.37)). Again, ̂ is an acyclic
cofibration in dimensions < n.

Choose a Reedy fibrant replacement p′ : X̂•[F ]
≃
−→ X′

•[F ] by factoring X̂•[F ]→ ∗

as an acyclic cofibration followed by a fibration in the model category C∆
op
+ of §1.28.

Since Y is fibrant in C, we can choose X′
•[F ] to still have Y in degree −1, because

no compatibility is required in that lowest degree.

Finally, factor the composite X•

ĵ
−→ X̂•[F ]

p′

−→ X′
•[F ] as a cofibration followed by

an acyclic fibration to obtain X•

j
−→ X•[F ]

p
։ X′

•[F ], where X•[F ], our candidate

for W
[n]
• in (2.1), is now Reedy fibrant and cofibrant, since X• is Reedy cofibrant

by assumption, and the map ι[n] : W
[n−1]
• →W

[n]
• is the Reedy cofibration j (which

is the identity in degree −1):

(2.14)

W
[n−1]
•

ι[n]

��

X•� _

j

��

̂
// X̂•[F ]� _

∼p′

��   ❆
❆❆

❆❆
❆❆

❆❆

W
[n]
• X•[F ]

∼

p
// // X′

•[F ]
// // ∗

2.15. Lemma. The objects X̂•[F ] and X′
•[F ] constructed as above are Reedy

cofibrant

Proof. By Definition 1.32 we have the following explicit description of Cone(F̃ ):

(2.16) Cone(F̃ )k = Xk ∐ CΣn−k−1B

for 0 ≤ k ≤ n, where the new 0-th face map is d0|CΣn−k−1B
= Fk−1 (landing in

CM
k−1X• ⊆ Xk−1 ⊆ Cone(F̃ )k−1) and the new first face map is d1|CΣn−k−1B

= ∂D∗

k−1 =

ιn−k ◦ qn−k (landing in CΣn−kB ⊆ CM
k−1X• ⊆ Xk−1 ⊆ Cone(F̃ )k−1). All other face

maps dj for j ≥ 2 restrict to 0 on CΣn−k−1B.

If we use (1.38) to define LnG• (where Gk := CΣn−k−1B), we see that X̂•[F ]
may be described explicitly by

X̂•[F ]k = Xk ∐ CΣn−k−1B∐ LkG•

= Xk ∐
∐

0<k≤r

∐

0≤i1<...<ik≤r−1

Gr−k ,
(2.17)

as in the proof of Lemma 1.36. Moreover, LkX̂•[F ] splits naturally as the coproduct

of LkX• and LkG•, and the map σk : LkX̂•[F ]→ X̂•[F ]k of §1.24 is the coproduct
of σk : LkX• → Xk (which is a cofibration in C, since X• is Reedy cofibrant) and
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the inclusion LkG• →֒ LkG• ∐Gk (which is also a cofibration since each Gi, and
thus LkG• and Gk, are cofibrant in C). �

2.18. Lemma. The construction of Z• → Z•[F ] is natural in the sense that whenever
the diagram

(2.19)

D∗
F //

H

��

CM
∗ (Y•)

CM
∗ (h)

��
E∗

G // CM
∗ (Z•)

commutes in ChC, there is an induced commutative diagram

(2.20)

Y•

jF //

h

��

Y•[F ]

��
Z•

jG // Z•[G] .

in C∆
op
+ .

Proof. Take the adjoint of the original square and extend to cones by the naturality
in Definition 1.32 to produce a commutative diagram

(2.21)

E(D∗)

E(H)

��

F̃ // UY•

U(h)

��

ℓY // Cone(F̃ )

��

E(E∗)
G̃ // UZ•

ℓZ // Cone(G̃) .

The right square, together with the naturality square for the unit of adjunction θ,
combine to produce a map of pushouts sitting in a commutative square of simplicial
objects

(2.22)

Y•

h

��

// Ŷ•[F ]

��

Z•
// Ẑ•[G]

in C∆
op
+ . Now recall that by Assumption 1.1 we have functorial factorizations in C,

and thus in C∆
op
+ with respect to the Reedy model category (see the constructions

in [Hir, §15.3]). �

2.D. Sequential realizations of algebraic resolutions

We may now summarize the procedure described above in the following

2.23. Definition. Assume given a CW-resolution V• of a realizable ΠA-algebra
Λ = πA

∗ Y, with CW basis {V n}
∞
n=0. A sequential realization of V• for Y is a

tower

(2.24) W[0]
•

ι[1]

−→ W[1]
•

ι[2]

−→ W[2]
• → . . . W[n−1]

•

ι[n]

−−→ W[n]
• → . . .
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(see (2.15)) of Reedy cofibrations between Reedy fibrant and cofibrant augmented

simplicial objects (in C∆
op
+ ) together with objects Wn realizing the given CW basis

ΠA-algebra V n, such that:

(i) The augmented simplicial object W
[n]
• realizes V• → Λ through simplicial

dimension n – that is, the n-truncation of the augmented simplicial ΠA-algebra

πA
∗ W

[n]
• → πA

∗ Y is isomorphic to the n-truncation of V• → Λ, with W
[n]
−1 = Y

and ι
[n]
−1 = IdY.

(ii) Each W
[n]
• = W

[n−1]
• [F [n]] (as in §2.C) where F [n] : D

[n]
∗ → CM

∗ (W
[n−1]
• )

realizes the attaching map ∂
Vn

0 as in §2.B.

(iii) We have an acyclic cofibration T [n] : D
[n]
∗ (Wn) → D

[n]
∗ of chain complexes

in the projective model category structure, where D
[n]
∗ (Wn) is the standard

strongly cofibrant replacement for Wn ⊠ Sn−1, as in §2.A.

A finite tower as in (2.24) ending at W
[N ]
• will be called an N -stage sequential

realization of V• for Y.

2.25. Lemma. The colimit W• of (2.24) (with W−1 = Y) realizes V• in the
sense that πA

∗ W• → πA
∗ Y is isomorphic to V• → Λ.

Proof. We can deduce from (ii) that Wk is the homotopy colimit (over n ≥ k) of

the objects W
[n]
k , so it realizes Vk. �

2.26. Remark. Condition (iii) of Definition 2.23 implies that for each 0 ≤ k ≤ n− 1
we have a commutative diagram of horizontal cofibration sequences

(2.27)

ΣkWn

≃ σk

��

� � ιk // CΣkWn� _

τk≃

��

qk // // Σk+1Wn� _

σk+1≃

��

ΣkWn
� � ιk // CΣkWn

qk // // Σk+1Wn

in C, in which the vertical maps are all acyclic cofibrations.
By convention, we set Σ−1Wn := ∗ and Σ0Wn = CΣ−1Wn := Wn, with the

identity map as

(2.28) q−1 : CΣ−1Wn
=
−→ Σ0Wn .

We now have the following analogue of [BS, Theorem 2.33]:

2.29. Theorem. For A ∈ C as in §1.41, any CW-resolution V• of a realizable
ΠA-algebra Λ = πA

∗ Y has a sequential realization

W = 〈W[n]
• , ι

[n], D[n]
∗ , F

[n], T [n]〉∞n=0.

Proof. For each n ≥ 0, we choose once and for all a fibrant and cofibrant object
Wn ∈ A realizing V n. We construct a sequential realization W by induction on n.

We begin the induction with W
[−1]
• := c+(Y)• (which is Reedy (co)fibrant in

C∆
op
+ , since Y is (co)fibrant in C – see Remark 1.28).
Note that because V 0 is a free ΠA-algebra, the ΠA-algebra augmentation ε :

V 0 → Λ corresponds to a unique element [ε[0]] ∈ Λ{V 0}, (see (1.6)) for which

we may choose a representative ε
[0]
0 : W0 → Y, by Lemma 1.5. Since D

[0]
∗ :=
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W0 ⊠ S−1 is already strongly cofibrant, such a choice of ε
[0]
0 : W0 → Y defines

F [0] : D
[0]
∗ → CM

∗ W
[−1]
• and thus Ŵ

[−1]

• [F [0]] = c(W0)• (augmented to Y), with

W
[0]
• = W

[−1]
• [F [0]] a fibrant and cofibrant replacement for this, as in §2.C. The

general induction step (for n ≥ 1) is described in §2.A-C. In particular, Proposition

2.5 yields F [n] : D
[n]
∗ (Wn)→ CM

∗ W
[n−1]
• , and thus W

[n]
• = W

[n−1]
• [F [n]]. �

2.30. Example. In the case n = 1 in the proof of Theorem 2.29 (covered in the
general induction step), we choose a map W1 → W0 realizing the first attaching

map ∂
1

0 : V 1 → V0 = V 0, and let CΣ0W1 := CW1 (the usual cone). We then have
a 1-truncated augmented simplicial object depicted by

(2.31)

Ŵ
[1]

1

d00
��

d01
��

= W0

d00=d01=Id

��

∐ W1

d
0
0xxxxqqq

qq
qq
qq
qq
qq
qq

d01=ι
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ ∐ CW1

d00=d01=Id

��

Ŵ
[1]

0

ε
[1]

��

s0

OO

= W0

ε
[0]

��

=

TT

∐ CW1

=

JJ

F−1

ss
Ŵ

[1]

−1 = Y .

To define the augmentation ε
[1] : Ŵ

[1]

0 → Y extending ε
[0], we use the fact

that ε ◦ ∂
0

0 = 0 in ΠA-Alg to deduce that ε
[0] ◦ d

0

0 is nullhomotopic, and any
nullhomotopy F−1 defines ε

[1] on CW1. Now apply the process of §2.C to obtain

W
[1]
• .

3. Comparing sequential realizations

Sequential realizations, and the resulting simplicial resolutions as constructed in
Section 2, play a central role in our theory of higher homotopy operations, but they
depend on many particular choices. We now explain how any two such simplicial
spaces are related by a zigzag of maps of a particularly simple form.

We first note the following general fact about model categories, which allows us to
embed any two weakly equivalent objects as strong deformation retracts of a common
target:

3.1. Lemma ([BS, Lemma 3.1]). If X and Y are two weakly equivalent fibrant and
cofibrant objects in a pointed simplicial model category C, there are maps as in the
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following commuting diagram

(3.2)

Y

IdY

%%

u

≃

++

� � inc // X ∐ Y

φ

��

k⊥u

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅
� y

k′⊥u′

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲ F

��

X

IdX

��

( �
inc

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

k

≃

//

Z ′

p

≃

xxxxqqq
qq
qq
qq
qq
qq

i◦p ≃

��

� s

e

≃

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

Ẑ � s

i

≃
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

r⊤ℓ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

ℓ

≃

��

≃

r

ww

Z
q

≃
xxxxqqq
qq
qq
qq
qq
qq

Gkk

X Z ′′

r′⊤ℓ′ssss❣❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣

Y X × Y

proj

hhhh◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

proj
oooo

with (co)fibrations and weak equivalences as indicated, such that

φ = (IdX ⊥r ◦ u)⊤(ℓ ◦ k⊥ IdY ) = (IdX ⊤ℓ ◦ k)⊥(r ◦ u⊤ IdY ) : X ∐ Y → X × Y

factors as X ∐ Y
F
֌ Z

G
։ X × Y , where F is a cofibration which is an acyclic

cofibration on each summand, and G is a fibration which is an acyclic fibration onto
each factor.

3.3. Definition. Given two CW resolutions ε : V• → Λ and ′ε : ′V• → Λ of
the same ΠA-algebra Λ, with CW bases (V n)

∞
n=0 and ( ′V n)

∞
n=0, respectively, an

algebraic comparison map Ψ : V• →
′V• between them is a system

(3.4) Ψ = 〈ϕ, ρ, (ϕn, ρn)
∞
n=0〉 ,

where ϕ : V• →
′V• is a split monic weak equivalence of simplicial ΠA-algebras with

retraction ρ : ′V• → V• (satisfying ′ε ◦ϕ0 = ε), induced by inclusions of coproduct
summands ϕn : V n →֒

′V n with retractions ρn : ′V n → V n for each n ≥ 0.

In this context we can sharpen Lemma 3.1 as follows:

3.5. Lemma ([BS, Lemma 3.7]). For any two free CW resolutions ε(i) : V
(i)
• → Λ

of the same ΠA-algebra Λ, with CW bases
(
V

(i)

n

)∞

n=0
(i = 0, 1), there is a CW

resolution ε : V• → Λ with CW basis
(
Un ∐ V

(0)

n ∐ V
(1)

n

)∞

n=0
and algebraic

comparison maps Ψ(i) : V
(i)
• → V• for i = 0, 1.

3.6. Definition. Given an algebraic comparison map Ψ = 〈ϕ, ρ, (ϕn, ρn)
∞
n=0〉 be-

tween V• and ′V•, as in §3.3 and sequential realizations W of V• and ′
W of

′V•, a comparison map Φ : W→ ′
W over Ψ is a system

(3.7) Φ = 〈e[n], r[n], ê[n], r̂[n], e[n], r[n] 〉∞n=0

consisting of:

(i) A split augmented simplicial map e[n] : W
[n]
• → ′W

[n]
• with retraction r[n] :

′W
[n]
• →W

[n]
• , realizing ϕ : V• →

′V• and ρ, respectively, through simplicial
dimension n.
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(ii) a split cofibration of chain complexes, ê[n] : D
[n]
∗ → ′D

[n]
∗ with retraction

r̂[n] : ′D
[n]
∗ → D

[n]
∗ .

(iii) a split cofibration e[n] : Wn →
′Wn of objects in C, realizing ϕn with

retraction r[n] : ′Wn →Wn realizing ρn.

Note that e[n] induces a map of chain complexes e
[n]
∗ : D

[n]
∗ (Wn) →

′D
[n]
∗ ( ′Wn)

with retraction r
[n]
∗ : ′D

[n]
∗ ( ′Wn) → D

[n]
∗ (Wn) induced by r[n]. We then require

that the following diagram in chain complexes commute (in each vertical direction):

(3.8)

D
[n]
∗ (Wn)� _

e
[n]
∗��

// T [n]
// D

[n]
∗� _

ê[n]

��

F [n]
// // CM

∗ W
[n−1]
•� _

CM
∗ e[n−1]

��
′D

[n]
∗ ( ′Wn)

r
[n]
∗

DD

//
′T [n]

// ′D
[n]
∗

r̂[n]

CC

′F [n]

// // CM
∗

′W
[n−1]
• .

CM
∗ r[n−1]

DD

If e[n] : W
[n]
• →֒ ′W

[n]
• (hence also r[n] : ′W

[n]
• →֒ W

[n]
• ) is a Reedy weak

equivalence, and in addition each induced map ê
[n]
k : ΣkWn →֒ Σk ′Wn, (hence each

map r̂
[n]
k : Σk ′Wn →֒ ΣkWn) is a weak equivalence in C, we say that Φ is a trivial

comparison map.
If we only have

(3.9) Φ = 〈e[n], r[n], ê[n], r̂[n], e[n], r[n] 〉Nn=0

as above, we say that Φ : W → ′
W is an N-stage comparison map over Ψ. This

completes our Definition.

3.10. Remark. We note for future reference that a comparison map Φ as above yields
maps fitting into commuting diagrams as follows:

(3.11)

ΣkWn� _

e
[n]
k��

� � ιk // CΣkWn� _

Ce
k
n��

qk // // Σk+1Wn� _

e
[n]
k+1��

Σk ′Wn

r
[n]
k

CC

� �
′ιk // CΣk ′Wn

Cr
k
n

CC

′qk // // Σk+1 ′Wn

r
[n]
k+1

CC

for each 0 ≤ k < n, in which both upward and downward squares commute, as well

as satisfying Cr
k

n ◦ Ce
k

n = Id and r
[n]
k ◦ e

[n]
k = Id.

Moreover, for each 0 ≤ k < n, both squares in the following diagram commute:

(3.12)

CΣn−k−1Wn
� � Fk //

_�

Ce
n−k−1
n

��

CM
k−1W

[n−1]
•

_�

CM
k−1e

[n−1]

��

CΣn−k−1Wn
� � Fk // CM

k−1W
[n−1]
•

CΣn−k−1 ′Wn
� �

′Fk // CM
k−1

′W
[n−1]
• CΣn−k−1 ′Wn

Cr
n−k−1
n

OO

� �
′Fk // CM

k−1
′W

[n−1]
•

CM
k−1r

[n−1]

OO

3.13. Remark. Consider the (strict) cofibration sequence:

(3.14) ΣkWn

e
[n]
k−−→ Σk ′Wn

m
[n]
k−−→ ΣkXn

(which defines the right map and space). Because of the splitting r
[n]
k for e

[n]
k ,

mapping (3.14) into Σk ′Wn yields a Puppe exact sequence. Since [Id−e
[n]
k ◦r

[n]
k ] ∈
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[Σk ′Wn, Σk ′Wn] is in Ker((e
[n]
k )#), we obtain a map s

[n]
k : ΣkXn → Σk ′Wn with

s
[n]
k ◦m

[n]
k ∼ Id−e

[n]
k ◦ r

[n]
k . Thus

(3.15) Σk ′Wn ≃

m
[n]
k

+r
[n]
k // ΣkXn ∐ ΣkWn ≃

s
[n]
k

⊥e
[n]
k // Σk ′Wn

are inverse weak equivalences for each 0 ≤ k < n.

3.16. Definition. We say two n-stage sequential realizations W and ′
W for Y ∈ C

are weakly equivalent if there is a finite zigzag of cospans of n-stage comparison maps
connecting ′

W to W, say

(3.17)

W
(1) . . . W

(N−1)

W = W
(0)

Φ̂(1)

99rrrrrrrrrr

W
(2)

Φ̂(2)

cc●●●●●●●●

. . . W
(N) = ′

W

Φ̂(N)

gg◆◆◆◆◆◆◆◆◆◆◆

We say sequential realizations W and ′
W for Y ∈ C are weakly equivalent if each

of their n-stage approximations are such, with respect to a given (possibly infinite)
zigzag which is “locally finite” in the sense that for each n, all but a finite number of
maps in the zigzag are isomorphisms on the n-truncations.

The following result is used below to show that our main constructions are inde-
pendent of choices of sequential realizations; it is dual to [BBS1, Theorem 3.20]. The
proof is in Appendix A.

3.18. Theorem. Given two A-equivalent spaces Y and ′Y with Λ ∼= πA
∗ Y
∼= πA

∗
′Y,

any two sequential realizations W and ′
W of two CW resolutions V• → Λ and

′V• → Λ for Y and ′Y, respectively, are weakly equivalent in the sense of Definition
3.16.

4. Higher homotopy operations

We are now in a position to define our notion of higher homotopy operations based
on sequential realizations. These are simpler than the full simplicial operations stud-
ied in [BM, BJT2, BBS1], though not strictly linear in the sense of [BJT3, §6] (see
also [BJT4, §7]).

Our operations appear as the successive obstructions to augmenting a given sim-
plicial object W•, obtained as the colimit of (2.24) for some sequential realization
W, to a fixed object Z ∈ C: the n-th operation will be the obstruction to extending

an augmentation W
[n]
• → Z to W

[n+1]
• . Thus in this and the following three sec-

tions we will be working with unaugmented (possibly restricted) simplicial objects,
implicitly applying σ∗(−) (see 0.9) throughout.

4.1. Remark. An augmentation from a simplicial object W• to X in C is just a map
W• → c(X)• in C∆

op
. However, since the target is not fibrant as an unaugmented

simplicial object (see Remark 1.28), we choose once and for all a fibrant replacement

c(X)•
≃
−→ U• ։ ∗ in the Reedy model category C∆

op
. We thus can think of a

homotopy augmentation ε : W• → U• as a homotopy meaningful version of an
augmentation (which need not factor through a strict augmentation ε : W• → c(X)•,
in general).
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Recall now that the standard cosimplicial simplicial set ∆• is given by the
standard simplicial maps between the standard simplices (∆k)∞k=0, where ηi :
∆k−1 →֒ ∆k is the inclusion of the i-th facet, and σj : ∆k

։ ∆k−1 is the j-th
collapse map (see [BK, X, 2.2]). Applying the simplicial exponentiation X(−) to
each ∆k (for the fixed fibrant object X) yields a simplicial object U• := X∆

•

in
C∆

op
, which will serve as our canonical fibrant replacement for c(X)•. The Reedy

weak equivalence p∗ : c(X)• → X∆
•

is induced by p : ∆• → ∗.

4.2. Definition. We distinguish two levels of data needed to define our higher oper-
ations: the basic initial data consists of

(⋆) = 〈Y,X, ϑ〉, where Y and X are objects in C and ϑ : πA
∗ Y → πA

∗ X

is a map of ΠA-algebras.

while the specific initial data consists in addition of

(⋆⋆) = 〈W, E[0]〉, with

{
W a sequential realization of a CW-resolution V•

ε
−→ πA

∗ Y,

and E[0] : W
[0]
• → U• realizing ϑ ◦ ε0 : V0 → πA

∗ X.

Further conditions on the map E[0] will depend on the specific contexts we have in
mind in Sections 6 and 7 below.

Given (⋆⋆), our goal is to extend E[0] inductively to n-maps E[n] : W
[n]
• → U•

realizing ϑ◦ε : V• → πA
∗ X through simplicial dimension n. A strand for (⋆⋆) is an

infinite sequence E[∞] = (E[0], E[1], . . . ) of such n-maps satisfying E[n−1] = E[n]◦ι[n]

for each n ≥ 1.

4.3. Remark. We would like to think of

(4.4) ED∗
F̃
−→ UW[n−1]

•

ℓ
−→ Cone(F̃ )

of §2.C as a homotopy cofibration sequence of restricted simplicial objects, with the

homotopy class of E[n−1] ◦ F̃ : ED∗ → UU• – more precisely, of the realization of
corresponding full simplicial objects – as our obstruction to extending the (n− 1)-

map E[n−1] to a map Ẽ : Cone(F̃ [n])→ UU• – and so, by the pushout property

of (2.13), to a map Ê[n] : Ŵ
[n−1]

• [F [n]]→ U•.

4.5. Lemma. If we can extend an (n− 1)-map E[n−1] : W
[n−1]
• → U• for (⋆⋆) to

Ê[n] : Ŵ
[n−1]

• [F [n]]→ U•, then it extends further to an n-map E[n] : W
[n]
• → U•.

Proof. Choosing a lift E ′ in the diagram

(4.6)

Ŵ
[n−1]

• [F [n]]
Ê[n]

//
��

∼p′

��

U•

����
W

[n−1]
•

′

[F [n]] //

E′

77

∗
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(compare (2.14)) defines a map E ′′ := E ′ ◦ p : W
[n−1]
• [F [n]] → U•, fitting into the

following solid diagram:

(4.7)

W
[n−1]
•

̂
//

��

j

��

zz
ι[n]

zztt
tt
tt
tt
tt
t

E[n−1]

$$
Ŵ

[n−1]

• [F [n]]
Ê[n]

//
��

p′ ∼
��

U•

W
[n]
•

E[n]

BB

W
[n−1]
• [F [n]]

p // // W
[n−1]
•

′
[F [n]]

E′

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥

s

{{

where the composite W
[n−1]
• → U• agrees with E[n−1] only up to homotopy.

Since ι[n] is a cofibration, by [BJT1, Corollary 4.20], we can alter E ′′ within its
homotopy class to obtain the required E[n], with E[n−1] = E[n] ◦ ι[n]. �

4.8. Extending n-maps. We need a more concrete identification of the extension

of a given (n − 1)-map E[n−1] : W
[n−1]
• → U• to Ê[n] : Ŵ

[n−1]

• [F [n]] → U• in

order both to exhibit the obstruction to obtaining Ê[n] as the value of a higher
operation, and to verify that it has the necessary properties (in particular, the ability
to compare values for various sequential realizations).

From the proof of Lemma 2.15, we see that in order to construct Ê[n] we need

entries Ê
[n]
k : CΣn−k−1Wn → X∆

k

for 0 ≤ k ≤ n (see (2.7)). In order for this

Ê[n] to be a simplicial map, we must have:

(4.9)





(η0)∗ ◦ Ê
[n]
k = E

[n−1]
k−1 ◦ wk−1 ◦ Fk−1 ,

(η1)∗ ◦ Ê
[n]
k = Ê

[n−1]
k−1 ◦ ∂

D

n−k−1 ,

(ηi)∗ ◦ Ê
[n]
k = 0 for i ≥ 2 ,

where ∂Dj is the differential of D∗, given by (2.3), and ηi : ∆k−1 →∆k is the

i-th coface map of ∆•, given by ∆k−1 ∼= ∂i∆
k →֒ ∆k.

4.10. Folding polytopes. For any K ∈ C, we can iterate the quotient maps

CK ։ ΣK to obtain θn−k−1 : Cn−k−1Wn → Σn−k−1Wn. Precomposing Ê
[n]
k :

CΣn−k−1Wn → X∆
k

with this, together with τn−k−1 of (2.27), yields

Cn−kWn
Cθn−k−1

−−−−−→ CΣn−k−1Wn
τn−k−1

−−−−→ CΣn−k−1Wn

Ê
[n]
k−−→ X∆

k

.

Since ∆i+1 ∼= C∆i for each i, this composite is adjoint to a pointed map Ẽ
[n]
k :

Wn ⊗ ∆n → X. There are n + 1 such maps, corresponding to (co)simplicial
dimensions 0 ≤ k ≤ n.

If we denote the copy of ∆n associated to Ê
[n]
k by ∆n

(k), then the first k + 1
facets ∂0∆

n
(k), . . . , ∂k∆

n
(k) of ∆n

(k) are associated with the corresponding facets of

the ∆k in X∆
k

under the adjunction, the next n−k−1 facets are associated to

the suspension directions of CΣn−k−1Wn (so Ê
[n]
k maps them to the basepoint),

and the n-th (so last) facet corresponds to the cone direction.
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For each n ≥ 1, the n-th folding polytope Pn is then constructed from the
disjoint union of the n + 1 n-simplices ∆n

(0), . . . ,∆
n
(n) by identifying the n-facet

∂n∆
n
(k) of ∆n

(k) with the 1-facet ∂1∆
n
(k+1) of ∆n

(k+1) for each 0 ≤ k < n, in

keeping with the second line of (4.9) (see [BBS1, §4], and compare the cubical version
in [BS, §5]).

The sub-simplicial complex of the boundary ∂Pn consisting of the union of the n
(n− 1)–facets ∂0∆

n
(k) k = 1, 2, . . . , n will be called the edge of Pn, and denoted

by EPn. See Figures 4.11 and 4.12, as well as Figure 4.16 below.

r
1

∆1
(0)

r
0

❨ ✯
identify

r
0

∆1
(1)

t
1

the edge EP1❅❅■

Figure 4.11. The folding polytope P1

r

0
❏

❏
❏

❏
❏

❏
❏

✡
✡
✡
✡
✡
✡
✡

∆2
(0)

r2 r1

❨ ✯

identify
r

0
❏

❏
❏

❏
❏

❏
❏

✡
✡
✡
✡
✡
✡
✡

∆2
(1)

r2 r1

❨ ✯

identify

✙❥

r

0
❏

❏
❏

❏
❏

❏
❏

✡
✡
✡
✡
✡
✡
✡

∆2
(2)

r2 r1

the edge EP2

︷ ︸︸ ︷

Figure 4.12. The folding polytope P2

We readily see by induction:

4.13. Lemma. For each n ≥ 1, the realization of the triple (Pn, ∂Pn, EPn) is
homeomorphic to (Bn, Sn−1, Bn−1

+ ), where Bn−1
+ is the upper hemisphere of Sn−1

in the unit ball Bn.

4.14. Example. We show how to use the folding polytopes in the case n = 3. Given

the solid 2-homotopy for W
[2]
• in the following diagram, we wish to extend it by the

dotted maps to the (given) 3-truncated restricted augmented simplicial space W̃
[3]
• .

For simplicity of notation, we assume here that we have used the standard cofibrant
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replacement D
[3]
∗ (W3).

(4.15)

W3

d0=w2F2

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

d1=∂D
2

��

Ê
[3]
3 // X∆3

(η0)∗ (η1)∗

�� ��
(η2)∗

��
(η3)∗

��

W
[2]
2

E
[2]
2

**

d0 d1
�� ��

d2
��

∐ CΣ0W3
d0=w1F1

xxqqq
qq
qq
qq
qq
q

d1=∂D
1

��

Ê
[3]
2 // X∆

2

(η0)∗ (η1)∗

�� ��
(η2)∗

��

W
[2]
1

E
[2]
1

**

d0
��

d1
��

∐ CΣ1W3
d0=w0F0

xxqqq
qq
qq
qq
qq
q

d1=∂D
0

��

Ê
[3]
1 // X∆

1

(η0)∗

��
(η1)∗

��
W

[2]
0

E
[2]
0

**∐ CΣ2W3
Ê

[3]
0

// X

Using the identifications of §4.10, the putative map Ê
[3]
0 : CΣ2W3 → X would

be given by a map Ẽ
[3]
0 : W3 × ∆3

(0) → X whose restriction to the boundary is
described in adjoint form on the left in Figure 4.16.

∂∆3
(0)

r

2

r3

r
2

r
1

r
2

r0

∗

∗

˜̂
E

[2]
0 ∂D

0

∗

❖

❲

∂∆3
(1)

r

2

r3

r
2

r

1
r

2

r0

∗

˜̂
E

[2]
0 ∂D

0

˜̂
E

[3]
1 ∂D

1
˜

E
[2]
0 w0F0

✠

✒

∂∆3
(2)

r

2

r3

r
2

r
1

r
2

r0

∗

˜̂
E

[3]
2 ∂D

2
˜

E
[2]
1 w1F1

˜̂
E

[3]
1 ∂D

1

❖

❲

∂∆3
(3)

r

2

r0

r
2

r

1
r

2

r3

∗

∗

˜̂
E

[3]
2 ∂D

2

˜
E

[2]
2 w2F2

Figure 4.16. Maps from 3-simplices corresponding to (4.15)

In ∂∆3
(0), facet 3 corresponds to the cone base Σ2W3, facets 1 and 2 correspond to

the two suspension directions (and thus map to ∗ inX). In general, facets 2, . . . , n−1
of ∂∆n

(k) all map to ∗ as in (4.9), while the n-th facet, corresponding to the cone
base, agrees with the 1-facet ∂1∆

n
(k+1) of ∆n

(k+1) if k < n.

The remaining maps Ẽ
[3]
1 and Ẽ

[3]
2 can be read off Figure 4.16, where only the

boundaries of the four tetrahedra are shown. The edge EP3 consists of the three
2-simplices outlined in bold. The full explanation of how each facet of every ∆n

(k)
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maps to XW3 is given in [BS, §5], where each n-simplex is thought of as a quotient
of an n-cube.

4.17. Proposition. Given an (n − 1)-map E[n−1] for data (⋆⋆) = 〈W, E[0]〉 as

in §4.2, any choice of maps Ê
[n]
k : CΣn−k−1Wn → X∆k

(0 ≤ k ≤ n) satisfying

(4.9) determines a unique map Ẽ[n] : Wn ⊗ P
n → X with the restriction Ẽ

[n]
k

to Wn ⊗∆n
(k) adjoint as in §4.8 to Ê

[n]
k ◦ τ

n−k−1 : CΣn−k−1Wn → X∆k

for each
1 ≤ k ≤ n, and conversely.

Proof. Given maps Ê
[n]
k : CΣn−k−1Wn → X∆k

(0 ≤ k ≤ n), we obtain maps

Ẽ
[n]
k : Wn ⊗ ∆n → X as in §4.10. The first condition in (4.9) says that the

restriction of Ê
[n]
k to ∂0∆

k equals E
[n−1]
k−1 ◦ wk−1 ◦ Fk−1. The second condition

says that its restriction to ∂1∆
k equals Ê

[n−1]
k−1 ◦ ∂

D

n−k−1 = Ê
[n−1]
k−1 ◦ ι

k ◦ qk−1,
corresponding to the restriction to the base of the cone and thus to the restriction of

Ẽ
[n]
k to ∂n∆

n, by the convention of §4.10. Since the face maps di on CΣn−k−1Wn

vanish for i ≥ 2, and Ê
[n]
k−1 also vanishes at the other end of the cone direction

and at both ends of the suspension directions, we obtain a map Ẽ[n] : Wn⊗P
n → X

as required.

Conversely, given such a map Ẽ[n], its restrictions to the n-simplices ∆n
(0), . . . ,∆

n
(n)

define the maps Ẽ
[n]
k , and thus maps ′Ê

[n]
k : CΣn−k−1Wn → X∆k

. We now show by

induction on k ≥ 0 that these extend to maps Ê
[n]
k : CΣn−k−1Wn → X∆k

with

(4.18) ′Ê
[n]
k = Ê

[n]
k ◦ τ

n−k−1

satisfying

(4.19)





(η0)∗ ◦ ′Ê
[n]
k = E

[n−1]
k−1 ◦ wk−1 ◦ Fk−1 ,

(η1)∗ ◦ ′Ê
[n]
k = ′Ê

[n−1]
k−1 ◦ ∂

D

n−k−1 ,

(ηi)∗ ◦ ′Ê
[n]
k = 0 for i ≥ 2 .

To start the induction for k = 0, where (4.19) is vacuous, use the fact that τn−1

is an acyclic cofibration and X∆0
= X is fibrant to extend ′Ê

[n]
0 to Ê

[n]
0 .
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In the induction step, the given map Ê
[n]
k−1 induces a map L : CΣn−k−1Wn →

X∂∆k

fitting into the following solid commutative diagram:

(4.20)

CΣn−k−1Wn� _

≃τn−k−1

��

′Ê
[n]
k // X∆

k

inc∗
����

CΣn−k−1Wn

Ê
[n]
k

22

Fk−1

�� ∂D

n−k−2 ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

0

++❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱ L

// X∂∆k

(η0)∗

����

(η1)∗

����☞☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

(ηi)∗

||||②②
②②
②②
②②
②②
②

CM
k−1W

[n−1]
•

wk−1

��

CΣn−kWn

Ê
[n]
k−1 ##❍

❍❍
❍❍

❍❍
❍❍

❍❍
X

∆
k−1
(i)

W
[n−1]
k−1

E
[n−1]
k−1

33X
∆

k−1
(1) X

∆
k−1
(0)

where the bottom portion of the diagram fits together to define L by (4.19), and
the whole diagram commutes by (4.9) and (4.18).

Since the cofibration inc : ∂∆k →֒ ∆k induces a fibration inc∗ by [Q1, II, §2,

SM7], and τn−k−1 of (2.27) is an acyclic cofibration, we have the lifting Ê
[n]
k by

the left lifting property. The fact that (4.20) commutes implies that (4.19) and
(4.18) hold for k as well, completing the induction step. �

4.21. Assumption. Assume now that the pointed simplicial model category C has

an underlying unpointed simplicial model category Ĉ (see [Ho, §1.1.8]). This is the
case when C = S∗ or Top∗, for example. Note that the two simplicial tensorings

are different: thus in Ĉ = Top we have the product A × K for A ∈ Ĉ and
K ∈ S as the simplicial tensor A ⊗ K, while for C = Top∗ we must set
A⊗K = A×K/(∗×K), where ∗ is the given basepoint in A (because A⊗K ∈ C
must itself be pointed, while A×K has no chosen basepoint, since K is in S, not
S∗). See [Hir, §9.1.14].

However, when K has a basepoint k, we write A ∧ K for A ⊗ K/(A ⊗ {k}).
We also write K × L for the product in S.

In this case we have an explicit description of the following classical fact (see [BJ]):

4.22. Lemma. If A is cofibrant in C as in §4.21, and B ∈ S∗ = Set∆
op

∗ is connected,
with basepoint b, there is a canonical weak equivalence

(4.23) ϕ : ΣA⊗ B
≃
−→ ΣA/(ΣA⊗ {b})⊗B ∐ ΣA ⊗ {b} ≃ (ΣA ∧ B) ∨ ΣA

where ϕ onto the first summand is the natural projection, and the reverse weak
equivalence on the second summand is induced by {b} →֒ B.
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Proof. We have the following diagram of pushout squares with vertical cofibrations:

(4.24)

A⊗ (B × {0, 1})
� _

inc1

��

� � inc2 // A⊗ (B × I2)� _

��

proj∗ // A⊗ I2� _

��

≃ // A⊗ ∗� _

��
A⊗ (B × I1)

� � // A⊗ (B × S1) // A⊗ (B̃ ⋉ S1)
≃ // A⊗ (B ⋉ S1)

where I1 and I2 are two 1-simplices and inci (i = 1, 2) are the inclusions
of the two endpoints {0, 1} into each, so that the resulting pushout is a two-cell
model of the circle S1, and proj : B × I1 → I1 is the projection. Note that
A⊗ (B × S1) = (A⊗ B)⊗ S1.

Here B̃ ⋉ S1 (the case where A = ∗) is a model of the half-smash in S consisting
of the unreduced suspension SB with an arc connecting the two suspension points.
Under the quotient map SB → ΣB to the reduced suspension (which is a weak
equivalence, by [G]) this becomes a wedge ΣB ∨ S1.

Note that A ⊗ (B ⋉ S1) ∼= (A ∧ S1) ⊗ B. Thus A ⊗ (B̃ ⋉ S1) is a model for
ΣA⊗ B, which is weakly equivalent to ΣA ∧ B ∨ ΣA. �

4.25. Definition. We associate to any (n − 1)-map E[n−1] as in §4.2 a map

en−1 : Wn⊗ ∂P
n → X which sends Wn⊗ ∂1∆

n
(k) to X by E

[n−1]
k−1 ◦Fk−1 for each

1 ≤ k ≤ n, and all other (n− 1)-simplices of ∂Pn to the basepoint. Here we use
the convention of the beginning of the proof of Proposition 2.5, so Fn−1 = dn0 .

Since at most two additional (n− 1)-facets of ∆n
(k) are identified with (n− 1)-

facets of ∆n
(k±1), we may think of CΣn−kWn as a quotient of Wn ⊗∆n

(k), so the

map induced by E
[n]
k−1 ◦ Fk−1 is well-defined. Moreover, these maps are compatible

for adjacent values of k (see Figure 4.16 and (4.15)).
Assuming C satisfies the assumptions of §4.21, by Lemma 4.13 we can think of en−1

as a map Wn ⊗ Sn−1 → X, and because C is pointed, the source is a half-smash
Wn ⋉ Sn−1 := (Wn × Sn−1)/(∗ × Sn−1) in the corresponding unpointed simplicial
model category.

We see from the previous description that if v0 is the 0-vertex of ∆n
(0), then

E[n−1] maps Wn ⊗ {v0} to ∗. Therefore, if we choose v0 as the basepoint of
Sn−1 ∼= ∂Pn, we see that hn−1 is trivial when restricted to the second summand
in (4.23), and is thus uniquely determined up to homotopy by the induced map
gn−1 : Σn−1Wn → X. We define the value of the (n − 1)-map E[n−1] to be the
class

(4.26) Val(E[n−1]) := [gn−1] ∈ [Σn−1Wn, X] ∼= Λ{Σn−1Wn} .

for Λ := πA
∗ X.

4.27. Proposition. Given data (⋆⋆) = 〈W, E[0]〉 as in §4.2, the value for a corre-

sponding (n − 1)-map E[n−1] : W
[n−1]
• → X∆

•

is zero if and only if it extends to
an n-map.

Proof. Evidently, gn−1 is nullhomotopic if and only if the original map en−1 extends
to Wn ⊗P

n.
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If E[n−1] extends to an n-map E[n] : W
[n]
• → X∆•

, as in the proof of

Lemma 4.5, the acyclic fibration p : W
[n]
• → W

[n−1]
•

′
[F [n]] in (4.7) has a sec-

tion s : W
[n−1]
•

′
[F [n]] → W

[n]
• , and precomposition with the acyclic cofibration

p′ : Ŵ
[n−1]

• [F [n]] →֒ W
[n−1]
•

′

[F [n]] yields the restriction Ê[n] := E[n] ◦ s ◦ p′ :

Ŵ
[n−1]

• [F [n]]→ X∆
•

(an n-map).

Since s and p′ are weak equivalences, W
[n−1]
• is Reedy cofibrant, and X∆

•

is

Reedy fibrant, Ê[n]◦ ̂ : W
[n−1]
• → X∆•

is homotopic to E[n−1] = E[n] ◦ ιn−1. By the
description in Definition 4.25, we see that the map en−1 : Wn ×Sn−1 → X induced
by E[n−1] is thus homotopic to the corresponding map ên−1 : Wn × Sn−1 → X

induced by Ê[n] ◦ ̂. The same is therefore true for the restrictions of the induced

maps, gn−1 ∼ g̃n−1 : Σ
n−1Wn → X. Since g̃n−1 is nullhomotopic (because Ê[n] ◦ ̂

extends to Ê[n]), so is gn−1, and thus Val(E[n−1]) = 0.

Conversely, if gn−1 is nullhomotopic, then en−1 extends to Ẽ[n] : Wn×P
n → X,

and we let Ẽ
[n]
k denote the restriction of Ẽ[n] to ∆n

(k) for each 0 ≤ k ≤ n.

By Definition 4.25 for hn−1 we see that the maps Ẽ
[n]
k satisfy (4.9), so together

with the original (n − 1)-map E[n−1] they define a map of n-truncated restricted

simplicial spaces Ẽ : Cone(F̃ [n]) → X∆•

, and thus Ê[n] : Ŵ
[n−1]

• [F [n]] → U• (see
§4.3). Lemma 4.5 then yields the required extension. �

5. Comparing obstructions

The value we have assigned to an (n−1)-map serves as the obstruction to extending
it to an n-map, but only with respect to a fixed sequential realization W. We now
wish to investigate to what extent the vanishing or otherwise depends on this choice
of W. For this purpose we require the following

5.1. Definition. Let (⋆) = 〈Y,X, ϑ〉 be basic initial data as in §4.2, with c(X)•
≃
→

U• a fibrant replacement in C∆
op
. Assume given in addition (W, E[0]) and

(′W, ′E[0]) as two choices of specific initial data (⋆⋆), equipped with extensions to
(n− 1)-maps E[n−1] and ′E[n−1], respectively.

If Φ : W → ′
W is an n-stage comparison map, as in (3.9), write ′E[n−1] =

r#(E
[n−1]) if ′E[n−1] = E[n−1] ◦ r[n−1] and E[n−1] = e#(

′E[n−1]) if E[n−1] =
′E[n−1] ◦ e[n−1].
By (3.11), (3.12), and (4.15), we see that

(5.2) Val(r#(E
[n])) = (r

[n]
n−1)

∗(Val(E[n])) and Val(e#(
′E[n])) = (e

[n]
n−1)

∗(Val( ′E[n])) ,

in the notation of (3.11).

As a result we have:

5.3. Lemma. Assume given an n-stage comparison map Φ : W→ ′
W, an (n− 1)-

map E[n−1] for (W,X, ϑ), and an (n− 1)-map ′E[n−1] for (′W,X, ϑ). Then:

(a) Val(E[n−1]) = 0 if and only if Val(r#(E
[n−1])) = 0.

(b) If Val( ′E[n−1]) = 0 then Val(e#(
′E[n−1])) = 0, but not necessarily conversely.

This explains the need for the following:
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5.4. Definition. Assume given basic data (⋆) = 〈Y,X, ϑ〉, with two choices of
specific data (⋆⋆) of the form 〈W, E[0]〉 and 〈′W, ′E[0]〉. If E[n] and ′E[n] are
n-maps associated respectively to these choices, we write ′E[n] ∼ E[n] if there is an
n-stage comparison map Φ : W→ ′

W such that e#(
′E[n]) = E[n]. The equivalence

relation generated by “ ∼ ” is called the weak equivalence relation on n-maps, and
equivalence classes are denoted by [E[n]].

5.5. The universal homotopy operations. Given basic data (⋆) = 〈Y,X, ϑ〉
as above, we think of each sequential realization W for Y as a template for an infinite

sequence 〈〈⋆〉〉 = (〈〈⋆〉〉n)
∞
n=1 of higher homotopy operations, with Cone(F̃ [n]) of

its (n − 1)-st stage W
[n−1]
• serving as the template for the universal n-th order

homotopy operation 〈〈⋆〉〉n, for each n ≥ 2, as in (4.4).
Formally, 〈〈⋆〉〉n is the function which assigns to any choice of specific data

(⋆⋆) = (W, E[0]) and (n − 1)-map E[n−1] for (⋆⋆) the value Val(E[n−1]) in
Λ{Σn−1V n}, as in (4.26). We write Vals[E[n−1]] for the set of all values at all
such (n− 1)-maps ′E[n−1] ∈ [E[n−1]].

We say that 〈〈⋆〉〉 vanishes coherently for (⋆⋆) = (W, E[0]) if for each n ≥ 2,
we are given an (n − 1)-map E[n−1] for (⋆⋆) such that Val(E[n−1]) = 0 (and
thus 0 ∈ Vals[E[n−1]]), so that E[n−1] extends by Proposition 4.27 to an n-map
E[n]. Taken together, we thus obtain a strand E[∞] for (⋆⋆).

Finally, we say that 〈〈⋆〉〉n vanishes for X if there is some (⋆⋆) = (W, E[0]) with
an (n− 1)-map E[n−1] such that Val(E[n−1]) = 0: that is, if 0 ∈ Vals[E[n−1]].

The following consequence of Theorem 3.18 shows that we can in fact disregard
the notion of Vals[−] defined for equivalence classes of (n− 1)-maps [E[n−1]], and
concentrate instead on any one sequential realization W of Y to determine vanishing
of 〈〈⋆〉〉n:

5.6. Key Lemma. Given (⋆) = 〈Y,X, ϑ〉 as in §4.2, 〈〈⋆〉〉n vanishes for X if and
only if for every (⋆⋆) = (W, E[0]) (in fact, for any n-stage sequential realization W

for Y), there is an (n− 1)-map E[n−1] with Val(E[n−1]) = 0.

Proof. By definition, 〈〈ϑ〉〉n vanishes for X if there is some n-stage sequential
realization ′

W of Y and an (n − 1)-map ′E[n−1] for (⋆⋆) = ( ′W, ′E[0]) such
that Val( ′E[n−1]) = 0. By Theorem 3.18 (with Y = ′Y) we know that there is a
finite zigzag of cospans of comparison maps connecting ′

W to W, say

Φ̂(1) : W(0) = ′
W→W

(1), Φ̂(2) : W(2) →W
(1), Φ̂(3) : W(2) →W

(3) ,

and so on until Φ̂(N) : W(N−1) → W
(N) = W. If Φ̂(1) = 〈e[k], r[k], . . . 〉nk=0 as

in (3.9), we set E
[n−1]
1 := r#(

′E[n−1]) (an (n − 1)-map for W
(1)), and see

from (5.2) that Val(E
[n−1]
1 ) = 0. Similarly, if Φ̂(2) = 〈ê[k], r̂[k], . . . 〉nk=0 we

set E
[n−1]
2 := ê#(E

[n−1]
1 ) (an (n − 1)-map for W

(2)), and again see from (5.2)

that Val(E
[n−1]
2 ) = 0. Continuing in this way we finally obtain an (n − 1)-map

E[n−1] = E
[n−1]
N for W

(N) = W with Val(E[n−1]) = 0, as required. �

6. Higher homotopy invariants for objects

In this section we assume given a free simplicial ΠA-algebra resolution V• of a
realizable ΠA-algebra Λ = πA

∗ Y, for some A ∈ C as in §1.A and any Y ∈ C.
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Because each Vn is a free ΠA-algebra, V• → Λ can be realized by an augmented
simplicial object W • → Y in the homotopy category ho C, unique up to weak
equivalence. Theorem 2.29 showed that this can always be rectified to W• → Y in
C through a sequential realization W of V•.

The main question we address in this section is the following: if we are given some
other (cofibrant) realization Z of Λ – or equivalently, an isomorphism ϑ : Λ→ πA

∗ Z

– can we similarly rectify W • → Z? More precisely, can we augment the given
rectification W• of W • to Z instead, at least up to homotopy?

6.1. The 0-augmentation. From the proof of Theorem 2.29 we expect a 0-augmen-
tation, the analog of a 0-map in this context, to be completely determined by a choice
of a realization e0 : W0 → Z of ϑ◦ε : V0 → πA

∗ Z. Indeed, such a map always exists,
is unique up to homotopy, and defines a map ε0 : c(W0)• → c(Z)•. Composing it
with p∗ : c(Z)• → Z∆•

= U• (see §4.1) yields ε̂
[0] : c(W0)• → U•.

As in (4.6) we obtain ε
′[0] : W

[−1]
•

′

[F [0]]→ U•, and the composite

W[0]
• = W[−1]

• [F [0]]
p
−→ W[−1]

•

′
[F [0]]

ε
′[0]

−−→ U•

defines the 0-augmentation ε
[0] : W

[0]
• → U•. Thus, even though ε

[0] is formally
part of the specific initial data (⋆⋆), we shall omit mention of it henceforth.

6.2. Definition. In this version of §4.2, the basic initial data consists of (⋆) =
(Y,Z, ϑ), with Z cofibrant and ϑ : Λ → πA

∗ Z an isomorphism of ΠA-algebras
while the specific initial data (⋆⋆) consists of a sequential realization W of a CW-
resolution ε : V• → Λ := πA

∗ Y for Y. As before, we let U• = Z∆•

be our Reedy
fibrant replacement for c(Z)•.

The corresponding n-maps will then be called n-augmentations – that is, maps

ε
[n] : W

[n]
• → U• realizing ϑ◦ε : V• → πA

∗ Z
∼= πA

∗ ‖U•‖ though simplicial dimension
n.

6.3. Definition. As in §4.25, given an (n − 1)-augmentation ε
[n−1] : W

[n−1]
• → U•

for (⋆⋆), we define its value Val(ε[n−1]) in Λ{Σn−1Wn} using (4.26), and
deduce from Proposition 4.27 that this is zero if and only if ε

[n−1] extends to an

n-augmentation ε
[n] : W

[n]
• → U•.

We denote by 〈〈Y〉〉 = (〈〈Y〉〉n)
∞
n=1 the universal homotopy operation 〈〈⋆〉〉 =

(〈〈⋆〉〉n)
∞
n=1 as in §5.5 associated to (⋆) := (Y,Z, ϑ : πA

∗ Y
∼=
−→ πA

∗ Z).

6.4. Example. For (⋆) = (Y,Z, ϑ) with ϑ = f# induced by an A-equivalence
f : Y → Z, we see that 〈〈Y〉〉 vanishes coherently for Z at any sequential
realization (⋆⋆) = 〈W〉 of Y, since by assumption we have an actual augmentation
ε : W• → c(Y)•, inducing a homotopy augmentation p∗ ◦ c(f)• ◦ ε : W• → U• (in

the notation of §4.1). Restricting this to each W
[n]
• yields ε

[n]. This shows that
Val(ε[n]) = 0 for each n ≥ 1, by Proposition 4.27.

We may then formulate our next main result as follows:

6.5. Theorem. For A ∈ C as in §1.41, let ϑ : πA
∗ Y → πA

∗ Z be an isomorphism
of ΠA-algebras. Then the following are equivalent:

(i) The system of higher homotopy operations 〈〈Y〉〉 vanishes coherently for some
sequential realization W for Y;



HIGHER HOMOTOPY INVARIANTS FOR SPACES AND MAPS 35

(ii) The system 〈〈Y〉〉 vanishes coherently for every sequential realization for Y;
(iii) ϑ is realizable by a zigzag of A-equivalences between Y and Z (that is, Y and Z

are A-equivalent).

Proof. The equivalence of the first two conditions follows from Key Lemma 5.6 and
Proposition 4.27. As noted in §4.1, the equivalence of the first and third conditions
then reduces to the existence of suitable homotopy augmentations:

If the system of higher operations vanishes coherently for some sequential real-
ization W of Y, there is a strand ε

[∞] for (W,Z, ϑ), and thus augmentations

ε
[n] : W

[n]
• → U• for all n ≥ 0. These fit together to define a homotopy aug-

mentation ε : W• → U• for W• := hocolimW
[n]
• , which induces an isomorphism

π0π
A
∗ W• → πA

∗ ‖U•‖. By assumption §1.41(2), Y is A-equivalent to the realization
‖W•‖, and thus the map ε∗ : ‖W•‖ → ‖U•‖ ≃ Z induced by the augmentation ε

realizes ϑ, so Y and Z are related by a cospan of A-equivalences.
Conversely, if Y and Z are A-equivalent, they are related by a span (or cospan) of

A-equivalences, so it suffices to consider the following two cases:

(a) Given an A-equivalence f : Y → Z and a sequential realization W for Y, we

may assume f lifts to a map f̂ : T•
≃
−→ U• between the fibrant replacements for

c(Y)• and c(Z)•, respectively (using the functorial factorizations in C, and thus

in C∆
op
, assumed in §1.1). Postcomposing the n-augmentations ε

[n] : W
[n]
• → T•

with f̂ , we obtain n-augmentations f̂ ◦ε[n] : W
[n]
• → U• still realizing V• → Λ,

since f# : Λ→ πA
∗ Z is an isomorphism. Thus, 〈〈Y〉〉 vanishes coherently for

(W,Z, ϑ) by Proposition 4.27.
(b) On the other hand, given an A-equivalence g : Z → Y and a sequential

realization ′
W for Z, by postcomposing the n-augmentations ε

[n] : W
[n]
• → U•

with ĝ : U•
≃
−→ T• as in (a), we obtain n-augmentations ĝ ◦ ε[n] : W

[n]
• → T•

realizing V• → Λ, and thus making ′
W itself, with the corresponding actual

augmentations αY ◦ ĝ ◦ ε
[n], into a sequential realization ′′

W for Y. By
§6.4 we thus have a strand ′

ε
[∞] for ( ′′W,Y, IdΛ), and of course the actual

augmentations αZ ◦ ε
[n] : W

[n]
• → Z themselves form a corresponding strand

ε
[∞] for ′′

W, showing that the system of higher operations vanishes coherently
for ( ′′W,Z, ϑ).

This completes the proof. �

6.6. Corollary. If Y and Y′ are weakly equivalent A-cellular spaces, any sequential
realization W for Y is also a sequential realization for Y′. In particular, W• has
an augmentation to its realization ‖W•‖ inducing an A-equivalence.

Proof. Since Y and Y′ are fibrant and cofibrant in the A-model category structure
of §1.15, there is a homotopy equivalence h : Y → Y′ which we may compose with
the augmentation W• → Y to obtain a strict augmentation to Y′. �

6.7. The moduli space of weak homotopy types. Theorem 6.5 provides a more
geometric approach to the “moduli space” MA of all A-homotopy types in the
model category C, described in [BDG] for A = S1 in C = Top∗ (see also [P]):

The primary decomposition of MA is, of course, into connected components
corresponding to non-isomorphic realizable ΠA-algebras Λ. For a given Λ, we first
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choose some Y with πA
∗ Y
∼= Λ as our base point, with a sequential simplicial

realization W for Y.
We then filter the other realizations Z of Λ (not weakly equivalent to Y) by the

greatest n for which some n-augmentation ε
[n]
(W,Y,IdΛ)

exists for Z. Up to a shift in

indexing, this corresponds to the cohomological filtration of the component of Y in
MA given in [BDG] (see also [BJT1]).

6.8. An example in rational homotopy theory. As noted in §1.42, we may
apply our theory to Quillen’s model dgL of reduced differential graded Lie algebras
over Q (DGLs) for the homotopy theory of simply-connected rational spaces (see [Q2,
§1]), with A the standard model for S2

Q, as in the following example:
Let A∗ := L〈a, b, c, x, y, z, w, e〉 denote the free DGL with generators in degrees

|a| = |b| = |c| = m (for m even), |x| = |y| = |z| = 2m + 1, |e| = 3m + 1, and
|w| = 3m+ 2, and with differentials d(x) = [b, c], d(y) = [c, a], d(z) = [a, b], and
d(w) = f for the Lie-Massey product f := [a, x] + [b, y] + [c, z] of degree 3m+ 1.
All other differentials are zero.

Similarly, let B∗ := L〈a, b, c, x, y, z〉 with |a| = |b| = |c| = m, |x| = |y| = |z| =
2m+1, and non-zero differentials d(x) = [b, c], d(y) = [c, a], and d(z) = [a, b]. We
truncate A∗ and B∗ in degree 4m, so all Lie brackets vanish in H∗A∗

∼= H∗B∗.
Using the obvious free simplicial ΠA-algebra resolution (as graded Lie algebras), we

obtain the following augmented simplicial DGL W• → A∗ in simplicial dimensions
≤ 2 (with degrees indicated by subscripts):

(a) In dimension 0 we have W0 = W0 ∐ CW1 ∐ CΣW2, where
(i) W0 = L〈a

¯m
, b
¯m
, c
¯m
, e
¯3m+1〉 with simplicial augmentation ε : W0 → A∗

given by a
¯m
7→ a, b

¯m
7→ b, c

¯m
7→ c, and e

¯3m+1 7→ e.

(ii) CW1 = L〈x́2m, ý2m, ź2m, x̋2m+1, y̋2m+1, z̋2m+1〉 with differential d(x̋2m+1) =
x́2m, d(y̋2m+1) = ý2m, and d(z̋2m+1) = ź2m.
The simplicial augmentation is given by x́2m 7→ [b, c], ý2m 7→ [c, a], and
ź2m 7→ [a, b], while x̋2m+1 7→ x, y̋2m+1 7→ y, and z̋2m+1 7→ z.

(iii) CΣW2 = L〈ŵ3m+1, w̆3m+2〉 with differential d(w̆3m+2) = ŵ3m+1 and
augmentation ŵ3m+1 7→ f , and w̆3m+2 7→ −w (the sign is the usual one
for the suspension in chain complexes).

(b) In dimension 1 we have W1 = W1∐CW2∐ s0W0, where s0W0, as a coproduct
summand, is the image of W0 under the simplicial degeneracy s0 : W0 →W1.
We have:
(i) W1 = L〈x

¯2m
, y
¯2m

, z
¯2m
〉 with simplicial face maps d0(x

¯2m
) = [b

¯m
, c
¯m

],

d0(y
¯2m

) = [c
¯m
, a
¯m

], and d0(z
¯2m

) = [a
¯m
, b
¯m

], while d1(x
¯2m

) = x́2m,

d1(y
¯2m

) = ý2m, and d1(z
¯2m

) = ź2m.

(ii) CW2 = L〈ẃ3m, w̋3m+1〉 with differential d(w̋3m+1) = ẃ3m and simplicial
face maps d0(ẃ3m) = −[a

¯m
, x́2m]− [b

¯m
, ý2m]− [c

¯m
, ź2m], and d0(w̋3m+1) =

−[a
¯m
, x̋2m+1]−[b

¯m
, y̋2m+1]−[c¯m

, z̋2m+1], d1(w̋3m+1) = ŵ3m+1, while d1(ẃ3m) =
d1(d(w̋3m+1)) = d(d1(w̋3m+1)) = d(ŵ3m+1) = dd(w̆3m+2) = 0 (see above).

(c) Finally, in dimension 2 W2 = L〈w
¯ 3m〉, with simplicial face maps

d0(w
¯ 3m) = [s0a

¯m
, x
¯2m

]+[s0b
¯m
, y
¯2m

]+[s0c
¯m
, z
¯2m

]−s0[a
¯m
, x
¯2m

]−s0[b
¯m
, y
¯2m

]−s0[c
¯m
, z
¯2m

]

and d1(w
¯ 3m) = ẃ3m.
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If we try to augment this simplicial DGL to B∗, rather than A∗, we see that
necessarily ŵ3m+1 7→ f , but then we have nowhere to map w̆3m+2, precisely because
the Massey product f := [a, x] + [b, y] + [c, z] survives in B∗.

This shows us that A∗ and B∗ are not homotopy equivalent, as expected.

7. Higher homotopy invariants for maps

The systems of higher homotopy operations described in Section 6 for a ΠA-algebra
Λ = πA

∗ Y may be thought of as obstructions to realizing an algebraic isomorphism
ϑ : Λ ∼= πA

∗ Z by a map f : Y → Z (necessarily an A-equivalence) – as well as
constituting a complete set of higher invariants for the A-homotopy type of objects in
C realizing the given Λ. In this section we address the analogous problem for arbitrary
morphisms of ΠA-algebras.

7.1. A-invisible maps. We begin with the simple but important case of a map
f : Y → Z which is “A-invisible” – that is, induces the zero map 0 = f# : πA

∗ Y →
πA
∗ Z. We can think of the associated higher invariants as obstructions to f being

nullhomotopic. (Note that we do not have an analogous situation for objects Y ∈ C:
if πA

∗ Y = 0, the map Y → ∗ is an A-equivalence, so Y is A-weakly contractible.)
Consider a sequential realization W for Y, with (actual) augmentations ε

[n] :

W
[n]
• → Y (n ≥ 0), starting with ε

[0]
0 : W0 → Y. Since we assumed f# = 0,

the composite f ′ := f ◦ ε
[0]
0 : W0 → Z is nullhomotopic, and we may choose a

nullhomotopy H0 : f ′ ∼ 0. On the other hand, we have a nullhomotopy F0 :

CW1 → Y for ε
[0]
0 ◦ d

1

0 (as in the second step in the proof of Proposition 2.5).
Thus we have the (ordinary) Toda bracket

〈f, ε
[0]
0 , d

1

0〉 ⊆ [ΣW1,Z] ,

associated to the diagram

(7.2) W1

d
1
0 //

∗

""
W

[0]
0

ε
[0]
0 //

F0

KS

∗

>>Y
f //

H0

��

Z

(compare (0.3)). This serves as the first obstruction to extending H0 to compatible

nullhomotopies of the augmentations f ◦ ε[n] : W
[n]
• → Z, which would induce a

nullhomotopy of the map ‖f ◦ ε‖ : ‖W•‖ ≃ Y → Z (homotopic to the original f).
This is a special case of a more general setup:

7.3. n-homotopies. For our new version of §4.2, the basic initial data (⋆) consists
of two maps f (0), f (1) : Y → Z in C which induce the same homomorphism of ΠA-
algebras ψ : πA

∗ Y → πA
∗ Z. The specific initial data (⋆⋆) consists of a sequential

realization W of a CW-resolution ε : V• → Λ := πA
∗ Y for Y (induced by the

augmentation ε : W• → Y) together with a homotopy H
[0]
0 : W0 → Path(Z)



38 D. BLANC, M.W. JOHNSON, AND J.M. TURNER

between f (0) ◦ ε0 and f (1) ◦ ε0 making the following diagram commute:

(7.4)

W
[0]
0 = W0

H
[0]
0 //

ε
[0]
0

��

Path(Z)

e=ev0 ⊤ ev1
��

Y
f(0)⊤f(1)

// Z× Z .

Here factoring the diagonal ∆ : Z→ Z×Z as an acyclic cofibration Z →֒ Path(Z)
followed by a fibration e : Path(Z) ։ Z× Z makes Path(Z) a path object for Z
in the sense of [Hir, §7.3.1]. In general, evj : Path(Z)→ Z (j = 0, 1) are given by
the structure maps for the product; if C = Top, we may choose Path(Z) := Z[0,1],
with the obvious evaluation maps evj induced by the inclusions ij : {j} →֒ [0, 1]
(j = 0, 1).

Since Z is fibrant, the projections projj : Z×Z→ Z are fibrations, and thus the
composite projj ◦e : Path(Z) ։ Z is a trivial fibration. Since Z is also cofibrant,
this map has a splitting σj : Z → Path(Z) (j = 0, 1). When C = Top and
Path(Z) := Z[0,1], we may let σ0 = σ1, sending z ∈ Z to the constant path at z.

As in §6.1, the map H
[0]
0 in (7.4) defines a 0-map H [0] := H ′[0] ◦ p : W

[0]
• →

Path(Z)∆
•

, which we call a 0-homotopy for 〈W, f (0), f (1)〉.
For any n ≥ 1, we then have a corresponding notion of an n-map as in §4.2,

with X := Path(Z), called an n-homotopy for 〈W, f (0), f (1)〉: namely, a map

H [n] : W
[n]
• → Path(Z)∆

•

extending the given 0-homotopy H [0]. More generally we
say H [n] extends an (n−1)-homotopy H [n−1] if H [n] ◦ ι[n] = H [n−1] (see (2.24)).
A difference strand is a sequence H[∞] := (H [n])∞n=0 such that H [n] extends H [n−1]

for each n ≥ 1.

7.5. Extending n-homotopies. by Proposition 4.17, given an (n− 1)-homotopy

H [n−1] : W
[n−1]
• → Path(Z)∆

•

any choice of maps Ĥ
[n]
k : CΣn−k−1Wn → Path(Z)∆

k

(0 ≤ k ≤ n) satisfying (4.19) determines a unique extension to H̃ [n] : Wn⊗P
n →

Path(Z). We associate to this data a map hn−1 : Wn ⊗ ∂P
n → Path(Z) as in

§4.25, and (if C satisfies the assumptions of §4.21), this map is uniquely determined
up to homotopy by the induced map gn−1 : Σ

n−1Wn → Path(Z). The value of the
(n− 1)-homotopy H [n−1] is then the class Val(H [n−1]) := [gn−1] in Λ{Σn−1Wn},
for Λ := πA

∗ Z.
Moreover, by Proposition 4.27 the value for H [n−1] is zero if and only if the (n−1)-

homotopy extends to an n-homotopy. However, unlike the values Val(ε[n]) of §6.3,
this depends also on our initial choice of a 0-homotopy H [0] for 〈W, f (0), f (1)〉, (see
§7.3). Thus the specific initial data (⋆⋆) consists here of 〈W, H [0]〉.

7.6. Definition. Given (⋆) = (f (0), f (1) : Y → Z) as in §7.3, an n-stage comparison
map Φ : W→ ′

W between two sequential realizations for Y as in (3.9), and two
n-homotopies H [n] and ′H [n] for W and ′

W, respectively, as in §5.1 we write
′H [n] = r#(H

[n]) if ′H
[m]
k = r

[m]
k ◦H

[m]
k : ′W

[m]
k → Path(Z)∆

k

and H [n] = e#(
′H [n])

if H
[m]
k = e

[m]
k ◦

′H
[m]
k : W

[m]
k → Path(Z)∆

k

for each 0 ≤ k ≤ m ≤ n.
By (5.2) we have

(7.7) Val(r#(H
[n])) = (r n)∗(Val(H

[n])) and Val(e#(
′H [n])) = (en)∗(Val(

′H [n])) ,
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so by Lemma 5.3:

(7.8)
(a) Val(H [n]) = 0 if and only if Val(r#(H

[n])) = 0
(b) If Val( ′H [n]) = 0 then Val(e#(

′H [n])) = 0 .

7.9.Definition. Given (⋆) = (f (0), f (1) : Y → Z) as in §7.3, the universal homotopy
operation 〈〈⋆〉〉 of §5.5 will be denoted by 〈〈f (0,1)〉〉 = (〈〈f (0,1)〉〉n)

∞
n=2.

We then have the following analogue of Theorem 6.5:

7.10. Theorem. Let f (0), f (1) : Y → Z be maps between fibrant and cofibrant
objects in C, inducing the same map of ΠA-algebras ψ : πA

∗ Y → πA
∗ Z. Then f (0)

and f (1) are A-equivalent (see §1.15) if and only if the associated system of higher
operations 〈〈f (0,1)〉〉 vanishes for some (and thus for any) sequential realization W

of Y.

Proof. If f (0) and f (1) are A-equivalent, then by Remark 1.15 CWAf
(0) and

CWAf
(1) are homotopic. By post-composing the augmentation of a sequential re-

alization W of CWAY with the A-equivalence CWAY → Y, we may think
of W as a sequential realization of Y (see Corollary 6.6). Similarly, we have a
natural levelwise A-equivalence h : Path(CWAZ) → Path(Z). Therefore, given
G : CWAY → Path(CWAZ) providing a homotopy CWAf

(0) ∼ CWAf
(1) in C ([Hir,

§7.3.1]), the map h ◦ G : CWAY → Path(Z), composed with each augmentation

ε
[n] : W

[n]
• → CWAY, defines a map G

[n]
: W

[n]
• → Path(Z), which lifts by the

splitting p∗ : Path(Z) →֒ Path(Z)∆
•

(see §4.1) to G[n] : W
[n]
• → Path(Z)∆

•

. This
defines compatible n-homotopies (see §7.3) for all n ≥ 1, showing that 〈〈f (0,1)〉〉n
vanishes by Proposition 4.27.

Conversely, compatible n-homotopies for n ≥ 1 define a map H : W• →
Path(Z)∆

•

fitting into a commutative diagram of simplicial objects:

(7.11)

W•
H //

ε

��

Path(Z)∆
•

ev∆
•

0

yysss
ss
ss
ss
s

ev∆
•

1

%%▲▲
▲▲

▲▲
▲▲

▲▲

c(Y)•

ϕ(1)

55
ϕ(0)

// Z∆•
σ∆

•

0

EE

Z∆•

,σ∆
•

1

ZZ

where ϕ(j) := p∗ ◦ c(f (j))•, and the maps ε, evj , and σj (j = 0, 1) are
induced by the corresponding maps of §7.3, and p∗ : c(Z)• → Z∆

•

is the Reedy
weak equivalence of §4.1 (this time for Z).

Applying geometric realization to (7.11) yields a path object

ev′0, ev
′
1 : ‖Path(Z)

∆•

‖ → ‖Z∆•

‖ ≃ Z

(see [Q1, I, §1]), and thus ‖H‖ : ‖W•‖ → ‖Path(Z)
∆•

‖ is a homotopy between
‖p∗‖ ◦ f (0) ◦ ‖ε‖ and ‖p∗‖ ◦ f (1) ◦ ‖ε‖. Since ‖p∗‖ : Z → ‖Z∆•

‖ is a weak
equivalence and ‖ε‖ : ‖W•‖ → Y is an A-equivalence, this implies that f (0) and
f (1) are A-equivalent. �

From Theorem 7.10 and Proposition 4.27 we deduce:
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7.12. Corollary. If f (0), f (1) : Y → Z have f
(0)
# = f

(1)
# : πA

∗ Y → πA
∗ Z, the system

of higher operations 〈〈f (0,1)〉〉 is a complete set of invariants for distinguishing
between the A-equivalence classes [f (0)] and [f (1)] in [Y,Z]A (see §1.15).

7.13. An example of an A-invisible map. Consider the pinch map ∇ :
Σn−1RP 2 = Sn ∪2 en+1 → Sn+1, which collapses Sn to a point. If we apply
the (n + 1)-Postnikov section functor P n+1 to it, we obtain a map f : Y → Z =
K(Z, n+ 1) which represents βZ(ιn), where βZ : Hn(Y;Z/2) → Hn+1(Y;Z) is
the Bockstein and 0 6= ιn ∈ H

n(Y;Z/2) = Z/2 (see [MT, Ch. 3]). In particular, f
is trivial in π∗. Thus we can use the simplified approach of §7.1:

The cofibration sequence

(7.14)
Sn 2 // Sn i //

∗

&&
Σn−1RP 2 ∇ // Sn+1

is also a fibration sequence in the stable range, so for n ≥ 3 we have a free chain
complex resolution of (n+ 1)-truncated Π-algebras:

(7.15) V 3 = π∗S
n+1 2 // V 2 = π∗S

n+1 ηn // V 1 = π∗S
n 2 // V 0 = π∗S

n // Λ = π∗Y.

Thus the simplicial resolution W1
→
→W0

ε
−→ Y in dimensions ≤ 1, together with the

map f : Y → Z, is given by

Sn
∂0=2 //� t

d1 &&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ Sn � � inc // Sn ∪2 e
n+1 ∇ // Sn+1

∨

CSn

H

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

where H is a nullhomotopy for 2 · inc. Since ∇ ◦ inc is zero, diagram (7.2)
simplifies to the solid portion of

(7.16)

CSn
IdCSn // CSn

0

--❬❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬

Sn 2 //
� _
ι��

?�
ι
OO

Sn � � inc //
?�
ι
OO

Sn ∪2 e
n+1

∇

// Sn+1 ,

CSn
g

11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

Here g, the structure map for the pushout defining Sn ∪2 e
n+1, is the identity on

the interior of CSn = en+1. Since the left copy of Sn maps by 0 to Sn+1, the

associated Toda bracket is simply the map ΣSn ∼= CSn/Sn
∼=
−→ Sn+1, which has

degree 1.
Since the indeterminacy is 2 · [ΣSn, Sn+1] = 2Z inside πn+1S

n+1 = Z, the Toda
bracket does not vanish, which shows (as expected) that f is non-trivial, despite
inducing the zero map in π∗ in the relevant range.
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8. A filtration index invariant

As an application of our methods, we show how our constructions can be used to
describe explicitly a certain filtration index invariant for mod p cohomology classes,

dual to the Adams filtration for elements in π∗Ỹp.

8.A. A reverse Adams spectral sequence

In order to define our index, we now set up an ad hoc cohomological reverse Adams
spectral sequence (see [B2]), which is not particularly well behaved or accessible to
computation, but suffices to show that our index is indeed homotopy invariant.

From now on, let C = Top∗, A = S1, and κ = ω, as in §1.8, and let Y ∈ Top∗
be simply connected, with the Π-algebra Λ := π∗Y of finite type (i.e., a finitely
generated abelian group in each degree). We choose some CW-resolution V• of Λ,
with CW basis {V n}

∞
n=0, and a sequential realization W.

Next, fix a prime p and let K be a strict topological Abelian group model of
K(Fp, N), for some N >> 0 to be determined later. Applying the functor
map∗(−,K) dimensionwise to each simplicial space in (2.24) yields

(8.1) . . . → X•
[n+1]

(ι[n+1])∗

−−−−−→ X•
[n]

(ι[n])∗

−−−→ X•
[n−1] → . . . → X•

[1]

(ι[1])∗

−−−→ X•
[0] ,

with X•
[n] := map∗(W

[n]
• , K). Since Mn map∗(W•,K) = map∗(Ln+1W•,K) for

any simplicial space W• (see [GJ, VII, §1,4]), we see that each X•
[n] is Reedy

fibrant (since W
[n]
• is Reedy cofibrant), and the maps in (8.1) are Reedy fibrations.

Thus the (homotopy) limit of this tower is X• := map∗(W•, K).
Moreover, applying Tot := mapcS(∆

•,−) to (8.1) also yields a tower of fibrations

(8.2) . . . → TotX•
[n+1]

(ι[n+1])∗

−−−−−→ TotX•
[n] → . . . → TotX•

[1]

(ι[1])∗

−−−→ TotX•
[0] ,

by [Q1, II, §2, SM7], with TotX•
[n]
∼= map∗(‖W

[n]
• ‖, K). By [BK, XII, 4.3], its

(homotopy) limit is thus:

(8.3) TotX• ∼= map∗(‖W•‖, K) ≃ map∗(Y,K)

8.4. Identifying the fibers. Let ΣD
[n]
∗ denote the chain complex in Top∗ with

CΣnWn−k−1 in dimension k (see §2), and ΣD
[n]
• := LEΣD

[n]
∗ the corresponding

simplicial space (see §1.24-1.29).

By §2.23(ii), W
[n−1]
• →֒ Ŵ

[n]

• → ΣD
[n]
• is a (homotopy) cofibration sequence in

Top∆
op

∗ , so if we set ΣE•
[n] := map∗(ΣD

[n]
• ,K) and X̂•

[n] := map∗(Ŵ
[n]

• ,K), we

have a (homotopy) fibration sequence

(8.5) ΣE•
[n] →֒ X̂•

[n] ։ X•
[n−1]

of cosimplicial spaces. Applying Tot to (8.5) yields another fibration sequence.

Since W
[n]
• and Ŵ

[n]

• are weakly equivalent Reedy cofibrant simplicial spaces, by
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(2.14) (where Ŵ
[n]

• is denoted by X̂•[F ]), X̂•
[n] and X•

[n] are weakly equivalent

Reedy fibrant objects in S
∆
∗ , so we have a homotopy fibration sequence

(8.6) TotΣE•
[n] → TotX•

[n] → TotX•
[n−1]

by [BK, XI, 4.3].

Since the restricted simplicial space EΣD
[n]
∗ is contractible in all simplicial di-

mensions but n, and ΣE•
[n] is a strict cosimplicial simplicial Abelian group, the

homotopy spectral sequence for ΣE•
[n] (see [BK, X, 6]) collapses at the E2-term,

and thus we have a weak equivalence of Fp-GEMs:

(8.7) TotΣE•
[n] ≃ Ωn map∗(Wn, K) .

8.8. Identifying the E2-terms. Now consider the homotopy spectral sequence of
the tower of fibrations (8.2), with

En,i
1 := πi TotΣE

•
[n] ⇒ πi TotX

• .

From (8.7), (8.3), and the fact that K = K(Fp, N) we see that this is:

(8.9) En,i
1 = HN−i−n(Wn;Fp) =⇒ HN−i(Y;Fp) .

In fact, from the description in §2.B we see that the n-th normalized cochain
object NnX• of the cosimplicial space X• ≃ map∗(W•,K) is weakly equivalent
to map∗(Wn,K), so in fact from the E1-term on our spectral sequence is naturally
isomorphic to the homotopy spectral sequence for X• (see [BK, X, 6]).

Note that Wn is, up to homotopy, a wedge of spheres realizing the free Π-algebra
V n, the n-th CW basis of the given free simplicial resolution V• → Λ := π∗Y.
Moreover, since Hk(Wn;Fp) ∼= Hom(HkWn, Fp) and we have a natural identification
of H∗Wn with QV n, where Q : ΠA-Alg → grAbgp is the indecomposables
functor of [B1, §2.2.1], we can write En,i

1
∼= TN−i−nV n, where the graded functor

T : ΠA-Alg
op → grVectFp

is defined for any Π-algebra V by T (V ) = Hom(QV,Fp).
Moreover, since TV• is a cosimplicial graded Fp-vector space, we can calculate

the cohomotopy groups πnTV• using the Moore cochain complex C∗TV• (see
§1.21 and compare [BS, 1.8]), and as in [BJT3, §2] we have a natural isomorphism
CnTV• ∼= TV n. Therefore, as in [B1, §3], we can identify the E2-term of our spectral
sequence as

(8.10) En,i
2
∼= [LnT

N−i−n](Λ) ,

the n-th derived functor of T (in degree N − i − n), applied to the Π-algebra
Λ := π∗Y.

8.11. Remark. Since any two sequential resolutions are connected by zigzags of com-
parison maps (as we saw in Section 3), and these induce weak equivalences of simpli-
cial resolutions (in the sense of Proposition 1.7), we see that the associated spectral
sequences are all isomorphic from the E2-term on.

Moreover, since we assume that Λ := π∗Y is of finite type, we can choose a CW
resolution V• → Λ with each V n (and thus each Vn) of finite type – so each
En,i

1 , and thus each En,i
2 , will actually be a finite dimensional Fp-vector space, and
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thus a finite set. This guarantees that the spectral sequence converges strongly for
any choice of sequential realization W (see [BK, IX, 3]).

Finally, although the E1-term for this spectral sequence as defined vanishes unless
0 ≤ i ≤ N − n, it is clear from the construction that replacing K = K(Fp, N) by
K(Fp, N − 1) has the effect of applying loops to every space in the tower (8.1),
and thus in the tower (8.2), too – which results in simply re-indexing the spectral
sequence by one in the i-grading. Thus in order to calculate a differential on a
particular element α in En,i

r , we may simply choose N large enough so both the
source and target are defined, and disregard the dependence of our construction on
N .

We may summarize our results so far in the following:

8.12. Proposition. For each sequential realization of a simply-connected finite type

Y ∈ Top∗, W = 〈W
[n]
• , ι[n],D

[n]
∗ , F [n], T [n]〉∞n=0 and N ≥ 1, there is a strongly

convergent spectral sequence with

En,i
1 = HN−i−n(Wn;Fp) =⇒ HN−i(Y;Fp) .

The E2-term is independent of the choice of W, and if we replace N by N ′ = N +1,
then En,i

2 for the new spectral sequence is isomorphic to En−1,i
2 for the old whenever

the latter is non-zero.

8.B. The filtration index

The E1-exact couple for our spectral sequence has the form:

(8.13)

πN−k+1TotX
•
[n]

(ι[n])∗

��

∂n // Hk−n−1Wn+1
jn−1

// πN−k TotX
•
[n+1]

(ι[n+1])∗

��

∂n+1// Hk−n−1Wn+2

πN−k+1TotX
•
[n−1]

∂n−1 // Hk−nWn

jn−1

// πN−k TotX
•
[n]

∂n // Hk−nWn+1.

8.14. Definition. Consider an element γ ∈ Hk(Y;Fp) ∼= πN−k map∗(Y,K) ∼=
πN−k TotX

•. Its filtration index I(γ) is the least n ≥ 0 such that the im-
age of γ in πN−k TotX

•
[n] (under the iterated fibrations (ι[n])∗ in (8.2)) is

non-zero. Convergence of the spectral sequence implies that I(γ) =∞ if and only
if γ = 0.

From (8.13) we see that this image lifts (though not uniquely) to πN−k TotΣE
•
[n]
∼=

Hk−n(Wn;Fp). This means that γ is represented by an element in En,N−k
∞ , and thus

in En,N−k
2 , which is independent of W.

8.15. Lifting nullhomotopies. We can represent γ ∈ Hk(Y;Fp) by a map

g : Y → K := K(Fp, k). Precomposing with the augmentations ε
[n] : W

[n]
0 → Y

yields a particularly simple map Γ[n] : ‖W
[n]
• ‖ → K, which we can think of as a

0-simplex in TotX•
[n] = map∗(‖W

[n]
• ‖, K).

Noting that ‖W
[0]
• ‖ ≃ W0, we see that Γ[0] is not nullhomotopic – that is,

I(γ) = 0 – if and only if g is “visible to homotopy” – that is, g# : π∗Y → π∗K
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is non-trivial. Otherwise we can choose a nullhomotopy G[0] for Γ[0], and try
to extend it inductively to a nullhomotopy G[n] for Γ[n], for the largest possible
n ≥ 0.

We therefore assume that we have a nullhomotopy G[n−1] for Γ[n−1]. To extend

it, it is more convenient to work with the explicit description of Ŵ
[n]

• in §2.B – in
fact, in view of the coproduct decomposition of (2.17), it suffices to extend G[n−1]

to W̃
[n]
• . By Remark 8.11 (and Section 3) we can use any sequential realization we

like, so we may assume for simplicity that we use the standard sequential realization
with CΣjWn = CΣjWn. for all −1 ≤ j < n

From the usual description of ‖W
[n]
• ‖ in [GJ, VII, 3] (or of TotX•

[n] in [BK,

X, 3.2]), we think of Γ[n−1] as a map of simplicial spaces W
[n−1]
• → K∆ (which

happens to factor through the constant simplicial space c(Y)•). However, G[n−1] :

W
[n−1]
• → KC∆ (viewed as a reduced path space) does not have this simple form

(unless g itself is nullhomotopic). An extension to W̃
[n]
• thus consists of a sequence

of maps Hj = H
[n]
j : CΣn−j−1Wn → KC∆j

fitting into a commutative diagram:

(8.16)

KC∆
j

p
vv♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥

(Cη0)∗ (Cη1)∗

��

...

��

(Cηj )∗

��

W
[n−1]
j

G
[n]
j

--

d0 d1
��

...

��
dj
��

∐ CΣn−j−1Wn

H
[n]
j

22

wjFj

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

∂D
j

��

Γ̂
[n]
j

// K∆j

(η0)∗ (η1)∗

��
...

��
(ηj )∗

��

W
[n−1]
j−1

G
[n]
j−1 11

∐ CΣn−jWn

Γ̂
[n]
j−1 //

H
[n]
j−1 ,,

K∆
j−1

KC∆
j−1

p

hhPPPPPPPPPPPPPP

for each 1 ≤ j ≤ n, where the path fibration p : KC∆
j

→ K∆
j

is induced by the
inclusion of the cone base ∆j →֒ C∆j.

Note that the maps Γ̃
[n]
j : W̃

[j]
n = W

[j]
n ∐ CΣn−j−1Wn → K∆j

have the form

Γ
[n−1]
j ⊥hj , where hj : CΣ

n−j−1Wn → K∆
j

factors through the iterated face map

Dj : CΣn−j−1Wn → Y, and thus through dj, which vanishes for j ≥ 2 by the
description in the proof of Lemma 2.15.

Identifying C∆j with ∆j+1, as in §4.10 the adjoint of each H
[n]
j defines a

pointed map H̃
[n]
j : Wn ⊗∆n+1 → K. If we denote the copy of ∆n+1 associated

to H̃
[n]
j by ∆n+1

(j) , then the 0-th facet of ∆n+1
(j) corresponds to the cone direction

of C∆j in the adjunction to KC∆j

, facets 1, . . . , j + 1 correspond to facets
0, . . . , j of ∆j the next n− j − 1 facets correspond to the suspension directions
of CΣn−j−1Wn, and the (n + 1)-st facet corresponds to the cone direction of
CΣn−j−1Wn.
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Commutativity of (8.16) translates into the requirement that

(8.17) H̃
[n]
j ◦ η

i =





h̃j if i = 0

˜
G

[n]
j−1wjFj if i = 1

˜
H

[n]
j−1∂

D
j if i = 2 and j ≥ 1

˜
H

[n]
j ∂Dj+1 if i = n+ 1 and j < n

0 otherwise .

for each 0 ≤ i ≤ j ≤ n.

8.18.Definition. For each n ≥ 1, the n-thmodified folding polytope P̂n is obtained
from the disjoint union of n n-simplices ∆n

(0), . . . ,∆
n
(n−1) by identifying ∂n∆

n
(j−1)

with ∂2∆
n
(j) for each 1 ≤ j ≤ n (see [BBS1, §4.11]). Its boundary ∂P̂n is the

image of all facets of the n-simplices ∆n
(j) (1 ≤ j ≤ n) not identified as above.

Note that a nullhomotopy G[n−1] : W
[n−1]
• → KC∆ for Γ[n−1] determines a

pointed map Ψ′
(F,G) : Wn ⊗ ∂P̂n+1 → K with Ψ′

(F,G)|∂1∆n+1
(k)

=
˜

G
[n]
j−1wjFj , and

Ψ′
(F,G) = ∗ on all other (non-identified) facets of ∆n+1

(k) . As in §4.25, Ψ′
(F,G)

induces a unique map Ψ = Ψ(F,G) : Wn ∧ ∂P̂
n+1 → K.

We now have the following analog of Lemma 4.13:

8.19. Lemma. For each n ≥ 1, the pair (P̂n, ∂P̂n) is homeomorphic to (Dn, Sn−1).

Choosing f = ∗ in Propositions 4.17 and 4.27, we have:

8.20. Proposition. Given a sequential realization W for Y as above, a map g :

Y → K = K(Fp, k) extending by iterated face maps to Γ[m] : ‖W
[m]
• ‖ → K∆ for

each m ≥ 0, and a nullhomotopy G[n−1] : W
[n−1]
• → KC∆ for Γ[n−1], the map

Ψ(F,G) : Wn ∧ ∂P̂
n+1 → K of §8.18 is null-homotopic if and only if G[n−1] extends

to a nullhomotopy G[n] : W
[n]
• → KC∆ for Γ[n].

8.21. Higher homotopy operations and the filtration index. Although the
maps Ψ(F,G) were formally defined only for standard sequential realizations (with

CΣjWn = CΣjWn for all j and n), one can show (as in the proof of Proposition
4.17) that Proposition 8.20 in fact holds for any sequential realization W.

This allows us to think of the cohomology class [Ψ̃(F,G)] ∈ H
k−n(Wn;Fp) as the

value of a system of higher homotopy operations 〈〈γ〉〉 = (〈〈γ〉〉n)
∞
n=1 associated to

the class γ ∈ Hk(Y;Fp). This value is determined by the choice of a nullhomotopy

G[n−1] in TotX•
[n] = map∗(‖W

[n]
• ‖, K), and serves as the obstruction to lifting it

to G[n].
Moreover, one can use Theorem 3.18 to show, as in the proof of Lemma 5.6, that

if for some sequential realization W, Γ[n] : ‖W
[n]
• ‖ → K∆ has a nullhomotopy G[n],

then this holds for every sequential realization.
We may thus summarize the situation in the following
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8.22. Proposition. The filtration index I(γ) of a cohomology class γ ∈ Hk(Y;Fp)
is the largest n for which 〈〈γ〉〉n does not vanish. In particular, the system 〈〈γ〉〉
vanishes coherently if and only if γ = 0.

8.23.Example. Let Y = P n+1(Sn∪2e
n+1) (the (n+1)-Postnikov section of a Moore

space), with f : Y → Z = K(Z, n+ 1) induced by the pinch map, as in §7.13, and let
g : Y → K(F2, n+ 1) be the composite ρ◦f , with ρ : K(Z, n + 1)→ K(F2, n+ 1)
the reduction mod 2 map. Thus γ := [g] = Sq1 ◦p, with p : Y → K(F2, n) the
Postnikov fibration.

As in (7.15), g# : π∗Y → π∗K(F2, n+ 1) is trivial, and since the Toda bracket
〈∇, inc, 2〉 of (7.16) is nontrivial, the same is true for 〈g, inc, 2〉 (see [T, I]). Thus
〈〈γ〉〉1 6= 0, so γ has filtration index 1.

Appendix A. Comparison Maps

In this appendix we state and prove two facts about the comparison maps of Section
3 needed in the paper; we deferred the proofs until now because they are somewhat
technical.

A.1. Definition. A sequential realization W will be called fibrational if for each

n ≥ 1, the chain map F [n] : D
[n]
∗ ։ CM

∗ W
[n−1]
• is a (levelwise) fibration in the

(projective) model category of chain complexes Ch≤n−1
C of §1.18.

We now have a mild extension of Theorem 2.29.

A.2. Lemma. For A ∈ C as in §1.41, any CW-resolution V• of a realizable
ΠA-algebra Λ = πA

∗ Y has a fibrational sequential realization

W = 〈W[n]
• , ι

[n],D[n]
∗ , F

[n], T [n]〉∞n=0.

Proof. To make the sequential realization W of Theorem 2.29 fibrational, we factor

F as an acyclic cofibration T [n] : D
[n]
∗ (Wn) → D

[n]
∗ followed by a fibration F [n] :

D
[n]
∗ ։ CM

∗ W
[n−1]
• in the model category Ch≤n−1

C .
�

Note that the vertical acyclic cofibrations of (2.27) are obtained from the map
T [n].

A.3. Proposition. For any algebraic comparison map Ψ : V• →
′V• for Y and

sequential realization W of V•, there is a fibrational sequential realization ′
W of

′V• with a comparison map Φ : W→ ′
W over Ψ.

Proof. We construct ′
W, with the cofibrations e[n] : W

[n]
• →֒ ′W

[n]
• and retractions

r[n] : ′W
[n]
• →W

[n]
• by induction on n ≥ 0:

Since V n is a coproduct summand in ′V n = Un∐ V n, say, if we realize V n by

Wn and Un by Xn then ′V n is realized by ′Ŵn := Xn∐Wn. By Definition 2.23,
the n-th stage of W is determined by the choice of strongly cofibrant replacement D∗

of Wn ⊠ Sn−1, equipped with a levelwise fibration F : D∗ → CM
∗ W

[n−1]
• realizing

the given attaching map ∂
n

0 : V n → Cn−1V•. If G∗ is similarly a strongly cofibrant

replacement for Xn ⊠ Sn−1, note that the attaching map ′∂
n

0 : ′V n → Cn−1
′V• has

the form ∂
n

0⊥τ , and we may realize τ : Un → Cn−1
′V• by T : G∗ → CM

∗
′W

[n−1]
• ,
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with ′r n : Xn →Wn inducing R : G∗ → D∗. We then realize ρn : ′V → V n by
′r n⊥ Id

Wn
: Xn ∐Wn →Wn.

Following §2.A-B, we now consider the following diagram in the projective model
category of n-truncated chain complexes over C, in which P∗ is the pullback of the
lower right square.

(A.4)

G∗
S

//

R

''

T ++

P∗
PB

p
//

q ����

D∗

F����

e

tt

CM
∗

′W
[n−1]
•

CM
∗ r[n−1]

// CM
∗ W

[n−1]
•

CM
∗ e[n−1]

kk

and the section e for p is induced by the section CM
∗ e

[n−1] for CM
∗ r

[n−1].

Since by Definition 3.3 Cn−1ρ ◦
′∂

n

0 = ∂
n

0 ◦ ρn, also Cn−1ρ ◦ τ = ∂
n

0 ◦ ρn|Un
, so the

outer square in (A.4) commutes up to homotopy. Since F is a fibration, we may
change R up to homotopy to make it commute on the nose by [BJT1, Lemma 5.11].
The maps R and T then induce S as indicated. This allows us to extend (A.4) to
the solid commuting diagram

(A.5)

G∗ ∐ D∗
S⊥e

//
� _

j ≃

��

P∗ p
//

q ����

D∗

F����

e

tt

inc

vv

E∗

Q

55 55

CM
∗

′W
[n−1]
•

CM
∗ r[n−1]

// CM
∗ W

[n−1]
•

CM
∗ e[n−1]

kk

with G∗ ∐D∗ strongly cofibrant.
If we now factor S⊥e as an acyclic cofibration j : G∗ ∐ D∗ →֒ E∗ followed

by a fibration Q : E∗ ։ P∗ and set G : E∗ → CM
∗

′W
[n−1]
• equal to q ◦ Q,

e : D∗ → E∗ equal to j ◦ inc, and r : E∗ → D∗ equal to p ◦Q, we see that E∗

is strongly cofibrant (since j is a cofibration), F is a levelwise fibration, and they fit
into a diagram

(A.6)

E∗
r //

G����

D∗

F����

e

ww

CM
∗

′W
[n−1]
•

CM
∗ r[n−1]

// CM
∗ W

[n−1]
•

CM
∗ e[n−1]

kk

in which the squares commute in both horizontal directions, and r ◦ e = Id.
By Lemma 2.18 and the fact that the map induced by the identity clearly is another

identity, we obtain an n-stage comparison map Φ : W → ′
W extending the given

(n− 1)-stage comparison map. �
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We now prove Theorem 3.18, which we re-state as follows:

A.7. Theorem. Any two sequential realizations W
(0) and W

(1) of two CW reso-

lutions V
(0)
• and V

(1)
• , for two A-equivalent spaces Y(0) and Y(1), respectively,

are weakly equivalent under a (locally finite) zigzag of comparison maps, in the sense
of Definition 3.16.

Proof. Assume W
(0) and W

(1) are associated respectively to the two CW-

resolutions V
(0)
• and V

(1)
• of the ΠA-algebra Λ = πA

∗ Y
(0) ∼= πA

∗ Y
(1), with

CW bases (V
(i)

n )n∈N for i = 0, 1.
By Lemma 3.5, there is a third CW resolution ′ε : ′V• → Λ, with CW basis

( ′V n)n∈N, equipped with algebraic comparison maps Ψ(i) : V
(i)
• → ′V• (i = 0, 1).

By Proposition A.3, there are then two fibrational sequential realizations ′
W

(i) of
′V• → Λ, for i = 0, 1, each equipped with a comparison map Φ(i) : W(i) → ′

W
(i)

over Ψ(i). Thus we are reduced to dealing with the case where the two fibrational
sequential realizations W

(0) and W
(1) (i.e., the ′

W
(i) just constructed) are of

the same CW resolution V• → Λ (i.e., the above ′V•), with CW basis (V n)n∈N.
We construct a zigzag of comparison maps between them, by induction on n ≥ 0
(where the case n = 0 is trivial):

We assume by induction the existence of a cospan of (n−1)-stage trivial comparison

maps Φ̂(i) : W(i) → W (i = 0, 1) over IdV•
. By Definition 2.23, the n-th stage

for W
(i) is determined by the choice of strongly cofibrant replacements D

(i)
∗ of

Wn ⊠ Sn−1 (where Wn is some realization of the n-th algebraic CW basis object

V n), together with levelwise fibrations F (i) : D
(i)
∗ ։ CM

∗ W
[n−1](i)
• (i = 0, 1)

realizing the given attaching map ∂
n

0 : V n → Cn−1V•.
Again following §2.A-B, we consider the following diagram in the projective model

category of n-truncated chain complexes over C, in which P
(i)
∗ is the pullback of

the lower square

(A.8)

′E
(i)
∗

S(i) ≃����

P
(i)
∗

PB p(i)

≃ //

q(i) ����

D
(i)
∗

F (i)
����

e(i)
ww 1 Q

ξ(i)qq

CM
∗ W

[n−1]
•

CM
∗ r

[n−1]
(i)

≃
// CM

∗ W
[n−1](i)
• ,

CM
∗ e

[n−1]
(i)

jj

The section e(i) for p(i) is induced by the section CM
∗ e

[n−1]
(i) for CM

∗ r
[n−1]
(i) . We then

factor e(i) as a cofibration ξ(i) followed by the acyclic fibration S(i) : ′E
(i)
∗ ։ P

(i)
∗

(so ′E
(i)
∗ is a cofibrant replacement for P

(i)
∗ ).
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Applying Lemma 2.18 to the following diagram:

(A.9)

′E
(i)
∗

p(i)◦S(i)

≃ //

q(i)◦s(i)=G(i)
����

D
(i)
∗

F (i)
����

ξ(i)

vv

CM
∗ W

[n−1]
•

CM
∗ r

[n−1]
(i)

≃
// CM

∗ W
[n−1](i)
• ,

CM
∗ e

[n−1]
(i)

ii

we obtain n-stage trivial comparison maps Φ(i) : W(i) → ′
W

(i) (i = 0, 1) extending
the given ones to W.

Note, however, that G(0) and G(1) are weakly equivalent fibrant and cofibrant

objects in the slice category Ch≤n
C /CM

∗ W
[n−1]
• , with its standard model category

structure (see [Hir, Theorem 7.6.5(a)]). We can therefore apply Lemma 3.1 to obtain
an intermediate object G in the slice category fitting into the following diagram:

(A.10)

′E
(0)
∗

� �

f(0)

≃ //

G(0) (( ((PP
PPP

PPP
PPP

PP
E∗

s(1)

''

G����

s(0)

ww
′E

(1)
∗

? _

f(1)

≃oo

G(1)vvvv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥

CM
∗ W

[n−1]
•

in which all four triangles commute, and s(i) ◦ f (i) = Id (i = 0, 1).
Applying Lemma 2.18 yields a new n-stage sequential realization ′

W (corre-

sponding to G : E∗ ։ CM
∗ W

[n−1]
• ), with two new n-stage trivial comparison maps

′Φ(i) : ′
W

(i) → ′
W (i = 0, 1).

The two composites:

(A.11) W
(0) Φ(0)

// ′W(0)
′Φ(0)

// ′W ′W
(1)

′Φ(1)
oo W

(1)Φ(1)
oo

then yield the required cospan of n-stage comparison maps. �
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