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HIGHER HOMOTOPY INVARIANTS FOR SPACES AND MAPS
DAVID BLANC, MARK W. JOHNSON, AND JAMES M. TURNER

ABSTRACT. For a pointed topological space X, we use an inductive construction of
a simplicial resolution of X by wedges of spheres to construct a “higher homotopy
structure” for X (in terms of chain complexes of spaces). This structure is then
used to define a collection of higher homotopy invariants which suffice to recover X
up to weak equivalence. It can also be used to distinguish between different maps
f:X =Y which induce the same morphism f, : 7. X — m,Y.

INTRODUCTION

We describe two sequences of higher order operations constituting complete invari-
ants for the homotopy type of a topological space or map, respectively.

Higher homotopy and cohomology operations, such as Massey products and Toda
brackets, are among the earliest known examples of homotopy invariants which are
not primary. They have played an important computational role in algebraic topology
(see, e.g., [Al [T]). However, no truly satisfactory theory of general higher homotopy
operations has been proposed so far, despite several attempts (see, e.g., [Spl} [Sp2]).
Here we follow the point of view taken in [BM) [BJT2], where more precise definitions
are given.

0.1. Higher homotopy operations. A higher homotopy operation is an obstruc-
tion to rectifying a homotopy commutative diagram X : [' — hoC in some pointed
model category C, where I' is a finite directed category with a weakly initial object v;
and weakly final object v;. When the longest composable sequence in I' has length
n+ 1, we have an n-th order operation, with a value in [X"'X(v;), X(vs)]. The
obstructions are constructed by induction on initial (or terminal) subdiagrams I of I'
of increasing length: if the k-th order obstruction vanishes, we choose a rectification
for the appropriate subdiagram, which allows us to define the (k + 1)-st order ob-
struction. The various choices made along the way contribute to the indeterminacy
of the operation: we say that a (k+ 1)-st order operation vanishes if the obstruction
does so for some such choice. See [BM] and [BJTZ2, §3] for more details.

In general there is more than one way to define obstructions for a given rectification
problem. The point of view espoused here is that any two constructions of higher
order operations which yield the same answer at each stage are considered to be
equivalent.

In this paper we consider higher homotopy operations in the narrower sense, where
C is some model for Top,, and all spaces X(v) (except perhaps X(vs)) are
wedges of spheres. The values of such an operation thus indeed lie in 7. X(vy), and
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in fact the whole diagram X can be described as a collection of elements in 7, X(vy),
which vanish under the action of certain primary homotopy operations, together with
a system of (higher) relations among such primary operations.

0.2. Linear higher homotopy operations. We shall not need any more of
the general theory, but we briefly sketch the linear case, also known as a long Toda
bracket (see §2.101 below). This is not quite the version we need here, but is simpler
to describe, and best conveys the basic ideas we use.

Start with a “chain complex in hoC ” — that is, a finite sequence of maps
(0.3) X, & X0y =X D X,

in a pointed simplicial model category C with Oy 100, ~ 0 for every n >k > 1.
Rectifying this homotopy-commutative diagram means replacing each space and map
oM X — X1 by a weakly equivalent 'Oy : X, — X1, with ‘O, 0'0p now
actually zero.

In line with the general approach of §0.11 we use a double induction to try to
rectify (L3)): in the outer (ascending) induction on n > 2, we use the vanishing
of the (n — 1)-st order Toda bracket to rectify (L3 through dimension n. In the
inner (descending) induction on 1 < k < n, we calculate the next Toda bracket,
corresponding to the final segment of length &k + 1.

The simplest case is n = 2, where there is no obstruction (and thus no descending

induction): by changing 0; : X; — X, into a fibration 8%1) ; Xgl) — Xél) = X,
a standard model category argument shows that we can then choose 851) : Xgl) =
Xy — X((]l) so that 8?) o 851) =0 (see Lemma 5.11]).

In the n-th stage of the outer induction, we assume not only that we have rectified
([@3) through dimension n—1, but also that we have made it into a fibrant (n—1)-
truncated chain complex XY e (in the injective model category structure).
This means that if we write Z,X{"" := Ker(d,), and use the rectification to factor
X through dimension n —1 as

8n_1 an—?

(0.4) /\ /\

n—1) On- n—1) ¥n—2-,(n—1) On—2 n—1) Pn—3 - (n—1)9n—3 n—1
Xi_l) - n72X£ )(—>X( 2) - n73X£ )(_)Xi_g)_»xg )7

n—

then we require each é\k to be a fibration, so that

O

(0.5) ZX0 e xmeD) Zp XY

is a (strict) fibration sequence (1 <k < n).

Now we choose a nullhomotopy F, : d,.10 0, ~ 0; if we could lift it to a
nullhomotopy ﬁn : 5n_1 00, ~ 0, we would be done (by the case n =2). However,
in any case we see that é\n_z o F,, is a self nullhomotopy 0= 5n_2 00,100, ~0,
so it induces a map a,_; : SX5 Y — X"V, This is in fact a value of the ordinary
Toda bracket (0,2, On_1, On). If a,_; is nullhomotopic, we choose a nullhomotopy
F, 1 :a,1~0, and again see that 5n_3 oF,_1 is a self nullhomotopy so it induces
amap an_o : 22XU"Y = X"V which is a value of the tertiary Toda bracket
(On—3,0pn—2,0n-1,0p). If a,_1 is not nullhomotopic for any choice of F,, we
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cannot proceed any further, and must backtrack to choose a different rectification of
a shorter final segment of (0.3)).

As long as the intermediate Toda brackets vanish, we can proceed, until we end up
with the last obstruction, which is the (n — 1)-st order Toda bracket

(06) <817 s 7an—27 an—la 87L> g [ZN—ngl—l)’ Xénil)] .

A more precise description of the process is given in §2.10] below.

In this paper we elaborate on the idea, first enunciated in [B4] (see also [BJT3]),
that there is a complete set of invariants for weak homotopy types of spaces consisting
of higher homotopy operations. The main improvements on previous results are:

(a) Using higher order operations which are linear — in the sense of requiring a
single choice in each simplicial dimension — rather than the more complicated
simplicial operations of [B4, BJT3];

(b) Making precise the relation between the vanishing of the (n — 1)-st order
operations and our ability to define the n-th order operation.

(c) Explaining how the higher operations based on different algebraic resolutions
are related.

(d) Constructing a similar set of invariants for maps.

0.7. Main results. We can now describe the most significant results of this paper.

For simplicity we state them here for our main motivating example — the usual

homotopy groups m,Y of a pointed connected topological space, with their II-

algebra structure coming from the action of the primary homotopy operations on

them — although in fact we prove them in a more general model category setting.
We start with two technical facts which play a central role in the proofs:

Theorem A. Any resolution V,  of the Il-algebra w,Y  can be realized by an
augmented simplicial space Wy, — Y, with each W, a wedge of spheres, obtained

as the limit of a sequence of n-truncated approximations (VV[.n}>neN.

See Theorem [2.29] below.

We call the system of successive approximations W = (VV[.n}>neN a sequential

realization of V, for Y (see §2.23). We then prove:

Theorem B. Any two sequential realizations W and "W of two CW resolutions V,
and Vo  for the same space Y are connected by a zigzag of split weak equivalences.

See Theorem B.18 below.

This allows us to compare the system of higher operations ((Y)) associated to
different sequential realizations for Y, and then show that we can use any one such
W to determine their vanishing;:

Theorem C. Given an abstract isomorphism of 1l-algebras ¥ : .Y — w2, the
associated system of higher homotopy operations vanishes coherently for some sequen-
tial realization W for Y if and only if it does so for every sequential realization if and
only if Y and Z are weakly equivalent.

See Theorem below.
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By extending the ideas sketched above, one can use any sequential realization for
Y to define a system of higher homotopy operations associated to any two maps
fO f1 Y —+ Z which induce the same map in ,, and show:

Theorem D. IfY and Z are CW complezes, the system of higher operations asso-
ciated to O, fM .Y — Z as above vanishes if and only if f© and fY  are
homotopic.

See Theorem below.

To illustrate our methods, in Section 8 we define a filtration index invariant for
mod p cohomology classes, dual to the Adams filtration on homotopy groups, and
show how it may be interpreted in terms of certain higher homotopy operations using
a reverse Adams spectral sequence.

0.8. Main techniques. As explained above, the “deconstruction” of a space Y (or
map) into its constituent higher order structure is carried out inductively, using a
sequence of (finite) approximations to a simplicial resolution of Y.

However, simplicial techniques tend to be rather complicated, and the main tech-
nical tool we shall be using is a sort of “Dold-Kan correspondence for spaces”, which
allows us to do the heavy work in the inductive step using chain complexes of spaces
(see Section [IlB below). As one might expect, the passage from simplicial objects
to chain complexes is straightforward, using Moore chains (see §L.21]). The reverse
direction is functorial, and thus can be thought of as a formal black box (in which we
lose the ability to describe the resulting simplicial object explicitly).

Nevertheless, the first step in the reverse passage, in which we simply replace a
chain complex by the corresponding restricted simplicial object (with higher faces
zero and no degeneracies, and thus no change in the individual spaces) is completely
explicit, and contains precisely the information needed to fully describe our higher
homotopy operations.

0.9. Notation. Let A denote the category of non-empty finite ordered sets and order-
preserving maps (see [Mal §2]), and A, the subcategory with the same objects, with
only monic maps. Similarly, A, denotes the category of all finite ordered sets (and
order-preserving maps), and A, the corresponding subcategory of monic maps.
A simplicial object G, in a category C is a functor A% — C, a restricted simplicial

object is a functor A% — C, while an augmented simplicial object is a functor
— C.

A% — C, and a restricted augmented simplicial object is a functor ALY ,
We write G, for the value of G, at [n] = (0 <1 < ... <mn). Thereis a
natural embedding c¢(—), : C — C2", with ¢(A4), the constant simplicial object
and similarly ¢, (A)s for the constant augmented simplicial object. The inclusion
of categories ¢ : A — A, induces a functor o*(—) : CcAY oA forgetting the
augmentation.

The category of compactly generated Hausdorff spaces (see [Ste] and [Hir, §7.10.1]),
called simply topological spaces, will be denoted by Top, that of pointed topological
spaces by Top,, and that of pointed connected topological spaces by Top,.

The category of simplicial sets will be denoted by 8 = Set®”, that of pointed
simplicial sets by 8, = Setfop, and that of simplicial groups by G = Gp~” (see

[GJ, T, §3]).
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Formaps f: A— X, g:B— X, and h: A—Y in any (co)complete category
C, we denote by flg: A B — X and fTh: A — X xY, respectively, the
induced maps from the coproduct and into the product, and by incy : A — AIl B
the inclusion.

0.10. Caveat. The general results (though not the examples nor the application in
Section ) are for the most part Eckmann-Hilton dual to those of [BS] and [BBSI].
Nevertheless, we feel that they deserve a separate treatment, since

(a) this duality is not formal, and the differences need to be spelled out carefully;

(b) a great deal of work is needed to translate these results to the dual setting, even
where the approach is the same; and

(c) the invariants here apply to arbitrary weak homotopy types of (connected) spaces,
rather than just to R-types of R-good spaces for R =TF, or Q. Therefore, they
can potentially be extended to topologically enriched categories.

0.11. Acknowledgements. We wish to thank the referee for his or her detailed
and pertinent comments. The first author was supported in part by Israel Science
Foundation Grant No. 770/16 and the third author by National Science Foundation
grant DMS-1207746.

1. BACKGROUND

We first set up the framework in which our theory works, and recall some basic
facts and constructions about simplicial objects and algebraic theories.

1.1. Assumption. Throughout this paper we work in a cellular pointed simplicial
model category C (see [Hir, §9.1, 11.1, & 12.1.1]) with functorial factorizations (see
[Hol §1.1.1]), and assume all objects in C are fibrant (so C is right proper, by [Hitl,
13.1.3]). The main examples we have in mind are C = Top, or G (see 11, §3]
and [Hirl §11.1.9, 13.1.11]), but in §6.8 below we also consider the category dgfl of
differential graded Lie algebras over Q.

In such a category C we define the standard cone CX and suspension ¥XX of
a (cofibrant) object X by the pushouts of * < X < X ® Al and * + X — CX,
respectively, with ¢ : CX — XX the induced map.

1.2. Definition. Given (cofibrant) X and Y in such a model category C, and maps
G:CX —-Y and ~v: XX — Y, note that the cofibration sequence X —
X ® Al - CX induces a coaction ¢ : CX — CXV IX (see I, 3.5ff.]). The
concatenation G (yoq): CX — Y is then defined to be (GLy)o.

dLA. IT4-algebras

Let A = XA’ be a fixed cofibrant suspension (and thus a homotopy cogroup
object) in a pointed model category C as in §I.11 Denote by A the full sub-category of
hoC generated by A under suspensions and arbitrary coproducts (so all objects in
A may be assumed cofibrant in C), and by II4 the full sub-category of A consisting
of all coproducts of cardinality < , for a given limit cardinal £ (needed in order to
guarantee that II4 is small, so the functor categories from it are well-behaved).
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1.3. Definition. A II4-algebra is a product-preserving functor A : I} — Set,
(where the products in II%}  are the coproducts of C), and the category of such is
denoted by II4-Alg. We write A{B} for the value of A at B € II4. There is
a forgetful functor AZ:{\ : I 4-Alg — grSet, to the category of non-negatively graded
pointed sets, with U(A)y, := A{ZF¥A}. A free Il 4-algebra is one in the image of the
left adjoint of Z;{\, denoted by F : grSet, — [14-Alg.

For each Y € C we have a realizable 11 4-algebra 7Y, defined by setting
(mAY){B} :=[B,Y] foreach B €1Il4. Wesaythatamap f:X —Y inCisan
A-equivalence if the induced map fy : 7*X — 7AY  is an isomorphism in 1 4-Alg
— or equivalently, if fx : map.(A,X) — map,(A,Y) is a weak equivalence of
pointed simplicial sets.

In particular, any II 4-algebra of the form 7B for B € ObjII4 C ObjC is
free, as is any coproduct of such. However, we make the additional assumption that
for any B=][,.; XA €A and k>0, we have a natural isomorphism

(1.4) [YFA, Ble = colimp/[ZFA, B¢,

where the colimit is taken over all sub-coproducts B’ = [],.;, ¥ A with I' C T
of cardinality < £ (so that B’ € II4). This implies that 7B = [],_, TS A,
(as a coproduct in I 4-Alg), so mAB is free for all B € A (see §L8 below for a
specific example).

We can use the fact that a II4-algebra A preserves products in A°?  to define
A{B} for any B € A. The Yoneda Lemma then implies:

1.5. Lemma. If A is any Il 4-algebra and B € A, there is a natural isomorphism
Homyy ,_a1,(7'B, A) = A{B}.

This suggests the notation
(16) A{V} = HOH’IHA_A[Q(‘/, A)

for any Il 4-algebras A and V with V' free.
Moreover, we have:

1.7. Proposition (see [BP, §6]). For A as above, the category TI4-Alg™"  of
simplicial Il 4-algebras has a model category structure, in which the weak equivalences
and fibrations are those of the underlying graded simplicial sets.

1.8. Example. When C = Top,, A =S!, and k= w, we see that II4 is the full
sub-simplicial category of Top, whose objects are finite wedges of spheres. In this
case a Il 4-algebra is just a Il-algebra, in the sense of [Sto, §4], with 7Y = 7,QY
(equipped with an action of the primary homotopy operations on it), and an A-
equivalence is just a weak equivalence of (base point components of) topological
spaces, in the usual sense. In this case our assumption ([L4) holds by compactness
of 8" and S™x[0,1] forall n>1.

We could also let A =S" for some n > 1, or use localized spheres A = S% in
the category C of R-local pointed spaces, for R a subring of QQ, or algebraic models
thereof (such as differential graded Lie algebras, in the rational case — see §6.8
below). In the latter two cases we refer to either (equivalent) notion of a II 4-algebra
as a llg-algebra.
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1.9. Assumptions. We shall henceforth assume that, in addition to (L4), the
category Il4-Alg (associated to the given A in C as in §L.1]) satisfies the following
requirements:

(a) By definition, any free II4-algebra A = F(X,) is (non-canonically) isomorphic
to a coproduct A = [, A,, where A, is isomorphic to F(X,) for
X, € grSet, concentrated in degree n. We assume that L, := A, {X"A}
is a free R-module for some principal ideal domain R, or possibly a free group
when n =0, and choices of generators for L, are in bijection with choices of
generators for A,,.

(b) If j: A" A is a map of free Il 4-algebras which has a retraction r: A — A/,
then A splits (non-canonically) as a coproduct A’ITA” with A” also free.

(¢) For any U and V in A, the inclusions iy : U —UIIV and iy : VULV
and their retractions py : ULV -+ U and py : UODIV — V induce a natural
decomposition of groups

(1.10) [A,UILIV] = [A, U] x [A, V] x Ca(U,V)

for any A’:=3¥"A (n >0), with the cross-term Ca/(U, V) (the kernel of
(pv)#T(pv)4) represented by maps f: A’ — ULV with pypof =x=pyof.

We now show:

1.11. Lemma. If R C Q and W = \/Z]\L1 St for m > 2, any basis B =
{K1,...,kn} for m, W= @f\il R s a generating set for the free llz-algebra m,W.

Proof. We first show that if R CQ and W= \/f\il S% for m > 2, then any basis
B={r,...,in} for T, W= @Y R isa generating set for the free Ilz-algebra
7T W:

Let €& = {A1,...,An} Dbe the basis for 7, W corresponding to the standard
generators for m,W (associated to the given coproduct decomposition of W), and
M € SLy(Z) the change of basis matrix with respect to B. The corresponding map
oM W — W induces an automorphism of H,(W;R), so it is a self-homotopy
equivalence by the R-local Hurewicz and Whitehead Theorems (cf. [HMR] 11, 1.2]),
with homotopy inverse ¢ : W — W, with oM ()\;) =#r; for 1<i<N.

By Hilton’s Theorem (see or [Whl, XI, Theorem 6.7]), for any ¢ > n and
a € mW, we may write = ¢M(a) uniquely in the form

(1.12) B = > nfwlM, ... AN
l

where wy(A1,...,Ay) s some k,-fold iterated Whitehead product in a chosen
Hall basis in the free Whitehead-Lie algebra on elements of £, and 7, € ﬂtSI;{("fl)H.

Therefore,

(1.13) a = gpi”(ﬁ) = anwg(/il,...,mv)

so B generates mw, W.

Conversely, the result of applying any primary operation ¢ to the set B can be
written in the form (LI3), so B := ¥ (a) has the form ([IZ) with respect to
&, and this vanishes if and only ¢ was trivial. Thus B generates w,.W freely. O
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1.14. Proposition. The assumptions of {1.9 hold for the motivating ezample of A =
Sm (n>1) in C = Top,, with R =7, as well for A = S% an R-local
sphere in C = Topg  (the R-local model category of pointed spaces), where R is any
sub-ring of Q.

Proof. The statement of §L.9(@) follows from Lemma [[L.TT] (with the non-finitely gen-
erated case following from (L4)), which follows in turn from the compactness of S™
and S" x [0, 1]).

If j: AN — A isamap of free [I-algebras with a retraction r: A — A’, we may
prove §LI([D) by induction on the degree: by our convention we use the loop space
grading, so the fundamental group is in degree 0 and thus Ay (the sub-II-algebra
generated by all elements in A{S'}) is just a free group, as is Aj. One can show
that if we set Aj := Ker(ro : Ag — A{), which is also a free group (and thus a free
II-algebra), then Ay = A II Af.

If we assume by induction that

n—1 n—1 n—1
Aow = [T M = JTA T AL
k=0 k=0 k=0

we have a map of free Il-algebras jo : A/, — A,  with retraction r : A, — A/,
inducing a split inclusion of free R-modules L! — L,, and thus a decomposition
L,=L &L Since RisaPID, L" isalso a free R-module. This allows us to
complete a basis for L/ to one for L,, yielding a corresponding decomposition of
free Il-algebras A, =2 A/ II A? by Lemma [LT1]

Finally, §T.9(@) holds for any suspension A = XA’ in Top,, by the Hilton-Milnor
Theorem (see [Mi]). Note that it also holds for any small A in a stable model category

(see [Hol §7.2]), since all cross-terms then vanish. O

1.15. Remark. In fact, the A-equivalences as defined in §I.3] are the weak equiva-
lences in the right Bousfield localization of C with respect to A (see [Hix, §5.1]). In
particular, the natural map CW,Y — Y is an A-equivalence, where the cellu-
larization CW,Y  serves as a functorial cofibrant replacement for Y (see [DF] §2
A)).

Two maps f,g: X — Y in C are A-equivalent if and only if they are related by
a zigzag of A-equivalences. In particular, if all objects in C are fibrant (which will
be the case in the examples of interest to us), this implies that the induced maps

j/’\,/g\ : CW4X — CW4Y  are homotopic. We write [X,Y]|a for the set of A-
equivalence classes of maps (i.e., the set of maps in the homotopy category hoC for
this model structure).

In the motivating example, where C = Top, (see §0.9) and A =S', if X and Y
are CW-complexes we see that A-equivalences are actually homotopy equivalences,

and two maps f,g: X — Y are A-equivalent if and only if they are homotopic, so
X, Y]a =[X,Y].
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[I.B. Chain complexes

For C any pointed category, an augmented chain complex in C is a diagram A, of
the form

(1.16) A p P g, A A

with 0,00,.1 =0 forall n>0. We denote the category of such chain complexes
by Che, that of n-truncated chain complexes by Chg", and that of bounded-below
chain complexes with A4; = % for —1 < i <n by Ch3", with the obvious
truncation functors sk, : Che — ChZ™  (the usual skeleton, or restriction) and

csk™ : Che — Chz™.

1.17. Definition. For any object G in a pointed category C, let G X S™ be the
chain complex in Che having G in dimension n (and * elsewhere). Similarly, G Xe"
has G in dimensions n and n — 1, with the identity between them as boundary (and
* elsewhere). We write ¢, : G X S" 1< GXe" for the inclusion.

1.18. Model categories of chain complexes. When C is a pointed model category
as in §L.11 we will consider projective model category structures on Che and Ch§",
in which the weak equivalences and fibrations are both defined levelwise, so all objects
will be fibrant. For Chg", the cofibrant objects are the strongly cofibrant n-chain
complexes A,, where for each k& <n the natural map Cok(0xy1) — Ax_1 is a
cofibration (with A, :=*). See [Hirl §11.6].

There is a dual injective model category structure on Che and Chg", in which
the weak equivalences and cofibrations are defined levelwise, and the fibrant objects

are described in (0.3]).

1.19. Attaching cells to chain complexes. The usual way to construct a chain
complex A, in Che is by means of attaching maps 0 : A, X S" ! — sk, 1 A, in
Chgn_l. The next skeleton sk, A, is then the pushout

A, XS
(1.20) l

_ l
A sk, A, |

Skn—l A*

(see §LI7), with 0 in degree n —1 equal to 0, : A, — A,_1.

When C is a model category, in order to make this process homotopy meaningful
we generally use a (strongly) cofibrant replacement of the source A, X S™! of the
attaching map 0.

[I.C. Augmented simplicial objects

We now collect some standard facts and constructions related to augmented sim-
plicial objects in a category C:
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1.21. Definition. In a pointed and complete category C, the n-th Moore chains object
of a restricted augmented simplicial object G, € C2v+ s defined to be:

(1.22) cMG, == N, Ker{d;: G, = G,_1},
that is, the limit of the diagram

dy
T
(1.23) G, : Gr
\_/

dn

*

with differential
oM .= d0|C,1}’[G.: CyG. — CTI;/[—lG. .

The n-th Moore cycles object is ZMG, := Ker(0M) (the analogous limit including
dp). Write w, : CMG, < G,,_; and v, : ZMG, — CMG, for the inclusions.

We use the same notation for unrestricted or unaugmented G,, although the
reader should note that for non-trivial augmented G,, Zév[(G.) differs from

Z(I)\/[(O-*(Go)) = GO-

1.24. Definition. For a (possibly (n — 1)-truncated) simplicial object G, € C~™
in a cocomplete category C, the n-th latching object for G, is the colimit
(1.25) L,Gs = colim Gy,

6°P:[k]— n]
where 6 ranges over the surjective maps [n] — [k] in A (for k£ <n). There is a
natural map o, : L,Gs — G, induced by the indexing maps 6 of the colimit for any
n-truncated simplicial object, and any iterated degeneracy map s; =60, : G — G,
factors as

(1.26) s; = oy oincy

where incy : Gy — L,G, is the structure map for the copy of G indexed by 6.

Note that the inclusion A, < A induces a forgetful functor U : C>™ — CA?‘ES,
and its left adjoint £ : C® — CA"  is given by (L£G,), = G, 11 L,G,, with
degeneracies given by (L26) and face maps coming from the simplicial identities. It
follows that any augmentation of G, also serves as an augmentation of LG, and
vice versa, so this remains an adjunction for the augmented categories.

Dually, the n-th matching object for G, € C2” is defined to be
(1.27) M,Gy = lim Gy,

¢°P:[n]—[K]

where ¢ ranges over the injective maps [k] — [n] in A. As above, there is a
natural map ¢, : G, =& M,G, induced by the structure maps of the limit for any
n-truncated restricted simplicial object, and every (iterated) face map factors through
it (see [BK| X,§4.5]).

For an augmented G, € C2%, matching objects are defined similarly, but now
MyGe = G_1, and M G, is the pullback of Gy — G_; < G, rather than a
product.

1.28. Remark. When C is a model category, we shall use the Reedy model structure
of [Hix, §15.3], which differs from the projective structure, on C%, CA%, CcAY
and C%+. Note that the constant augmented object ¢, (A), for a fibrant object
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A e C isReedy fibrant in C*Y  but ¢(A), is not Reedy fibrant in C2™  (see
§4.1] below).

1.29. Comparing chain complexes and simplicial objects. If C is a pointed
category, the Moore chain functor CM : CArst — Che just described has a left
adjoint (and right inverse) & : Che — C%es+  with (EA,), = A,, d? =9, and
d? =0 for 7> 1. This also holds for Chg" if we truncate C2re+. Moreover:

1.30. Lemma. For C = Top, or G = Gp™”, the functor CM : C%e+ — Che
preserves fibrancy and weak equivalences among fibrant objects with respect to the
Reedy model structure of {T.28 in C™+ and the injective model structure of {I18
on Che.

Proof. See [DKS2, Proposition 5.7] and [Stol Lemma 2.7]. O
We recall the following augmented dual of [BKl, X, Proposition 6.3(ii)]:

1.31. Lemma. Let X, E_CA(jrp be a Reedy fibrant augmented simplicial object over

a model category C, and B a cofibrant homotopy cogroup object in C. Then for any

Moore chain € CM[B,X,] for the augmented simplicial group [B,X,]:

(a) B can be realized by a map b :_E — CMX,.

(b) If g is a Moore cycle, in ZMIB, X,], we can choose a nullhomotopy for OMob,
H:CB — CM X,.

Proof. Since X, is Reedy fibrant (see [Hir, Ch. 15]), the augmented simplicial space

U, = map,(B,X,) € 8 s Reedy fibrant, so by [Sto, Lemma 2.7], for every j > 0

the inclusion ¢ : C}YIU. — U,, induces an isomorphism ¢, : WjC,ll/[U. — Crll/[ij..

Since CM s a limit, CMU, = map,(B,CMX,). Since B is a homotopy cogroup

object, myU, is still a group, so the above holds for 7 =0 too.

Note that in both the augmented and non-augmented case C)'U, = Uy, so the
result also holds in dimensions n = 0, —1. O

By analogy with the mapping cone for chain complexes (see [Wel §1.5]) we have
the following notion, which will play a key technical role in what follows:

1.32. Definition. For any map f: Ay — B, in C®e+ we define the restricted
augmented simplicial object C, = Cone(f) by setting C, := B, Il A, ; (where
A,Q = *), with
o Jmes, oL fi) ifi=0
i dPr 11 di ifi>1,
in the notation of §0.9, and a natural inclusion of restricted augmented simplicial

objects ¢ : By < Cone(f) which is the identity in degree —1.
For the required face identity, we may verify that

(do 0 dj)|a,_y = (d§" )| a,_,0di"" = faz 0 di" =di"1" 0 fuoy = (djy 0 do)|a,_,
for all 0 < j, while

(diodj)la,, = di?odiy = di"y* o dft = (oo dila,,

forall 1<i<j.
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1.33. Example. Suppose that A, is concentrated in one dimension, for example,
Ay =E(G,® S and B, is (n— 1)-truncated. Then in dimensions k < n,
the inclusion ¢, is an isomorphism, By = B II % (since C is pointed), with
the face maps defined through these isomorphisms. In dimension k = n, we have
Cone(f), =+ G, 2 G, with dy= f,_; and all higher face maps zero.

1.34. Definition. An unaugmented simplicial object G, € C*” over a pointed
category C is called a CW object it it is equipped with a C'W basis (Gp), inC
such that G, = G, I L,G,, and di|g =0 for 1 <i <n. By the simplicial

identities the restriction of the 0-th face map d0|5n: G, — G,—1 factors as the
composite

=Gn
Wn—1

(1.35) [ERy e S W\ e A e B

(in the notation of §L.21] with v, ;o EOGn = (0M)|g,), and we call EOGn the n-th
attaching map for G,.

The following observation essentially follows from Example [.33] and the construc-
tion of L.

1.36. Lemma. Any CW object G over C with CW basis (G,)%, can be con-
structed inductively as follows, starting with skoGe := c(Gg)e (see §0.9): given
the (n — 1)-truncated simplicial object sk,_1 Gs, the attaching map EOGn .G, —
ZM (sk,_1G,) s equivalent to a chain map f: G, XSt — CM(sk,_1 G,) (see
§1.17) and so to an adjoint restricted simplicial map f: E(G, RS — Usk,_ G,
(see d1.29); we define sk, Go to be the pushout in n-truncated simplicial objects

LUsk, | Gy —" sk, 1 Gy

(1.37) ul l

£ Cone(f) skn Gl

where ¥ : LU — Id  is the counit for the adjunction of {1.24, and ¢ is as in §1.32
(see (L20)).

This yields an explicit description of G, = G, I L,,G,, since by induction we see
that the n-th latching object of G, 1is given by:

(1.38) LG, = ][] 1T Gy,

0<k<n—1 0<iy<...<ip_p_1<n—1

where the iterated degeneracy map s;, .. 8i,Si,, Testricted to the basis G,

—k—1"
is the inclusion into the copy of G} indexed by k (in the first coproduct) and
(41, +,in—k—1) (in the second).

We note for future reference the following useful fact (which we shall not need

here):
1.39. Lemma. Every free simplicial Il 4-algebra Vo  has a CW basis {V,}>2,.

Proof. This follows from §LIO([R) by induction on the simplicial dimension n > 0,
since the simplicial identity d;s; = Id shows that V,,_; splits off V,, in various
ways, so L,V, does, too, as in ([[3])). d
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1.40. Definition. A CW-resolution of a Il4-algebra A € Il4-Alg 1is a cofibrant
replacement ¢ : Gy — ¢(A), (in the model category of simplicial II 4-algebras
from [L7), which is also a CW object with CW basis (G,)22, consisting of free
[T 4-algebras.

1.41. Assumptions. In order to formulate our results most efficiently, in addition to
the assumptions of L. and §L.9 we henceforth also require:

(1) The category C2”  of simplicial objects over C has a resolution model category
structure (see [J] and compare [DKST]) with respect to A.

(2) There is a realization functor || —| : CA™ — C, equipped with initial augmenta-
tion 1 : W, — ||W,]|, such that for any augmented simplicial object ¢ : W, =Y
over C where the associated augmented simplicial IT g-algebra ey : 7AW, — 7Y
is acyclic (that is, ey : 7AW, — ¢(mY), is a weak equivalence, as in §L.7),
the natural map ||[W,|| =Y induces an isomorphism in II4-Alg.

This would typically be defined as a coend, as for the usual geometric realization

(but see 4.10]).
These assumptions hold in our motivating example of §L.8

1.42. Example. Let C = Top, (see §0.9) and A =S" for some n > 1. In this
case, ||[W,|| 1is the geometric realization, and condition (2]) follows from the collapse
of the Bousfield-Friedlander spectral sequence under the given hypotheses (see [BE]
Theorem B.5]). However, R-local spaces in Top, also satisfy these assumptions,
as do differential graded (Lie) algebras over Q (see [Q2]), with || —| a suitable
homotopy colimit — and more generally, for other E2-model categories in the sense

of [BJTT], §4.8].

1.43. Remark. If weset Z_;G¢ := A and EOGO :=¢, any CW object G, for which

each G, is a free II4-algebra and each attaching map EOGn surjects onto 7, 1G,
(n > 0) is a CW-resolution of A. We can then make G, into an augmented
simplicial CW object by setting G_; := A with &y : Gy — A as the augmentation.

2. REALIZING SIMPLICIAL Il 4-ALGEBRA RESOLUTIONS

The main technical tool needed in this paper is an explicit version, and general-
ization, of [BB, Theorem 3.16], which states that any algebraic resolution V, of a
realizable II-algebra A may be realized by a simplicial space W,. This W, must
be of a particular form, which we now describe. Throughout this section we assume
that A €C isasin L4 and II4 asin §IlA.

Our goal here is to show how to realize a CW (algebraic) resolution V, of a
realizable II4-algebra A = 7Y, with CW basis {V,}>,, by an augmented
simplicial object W, — Y in C. We would like to mimic the CW construction of
Ve by exhibiting W, as a homotopy colimit of a sequence of maps

1 2] L
(2.1) wo w2 oW owie D Wi

where VV{."} realizes V, through simplicial dimension n.
In the induction step, we pass from X, = W to W by attaching an

object B realizing V, in simplicial dimension n, as for V,. By Lemma [[L36 it
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is enough to find an attaching map f:BXS* ! — CMX, in Che. Unfortunately,
there are obstructions to doing so in general (see [BJTI, BJT3]), hence we must:

(1) replace BX S"~1  with a (strongly) cofibrant object D,;

(2) realize the algebraic attaching map f of Lemma[[ 36 by a map F : D, — CM(X,)
in Che; and

(3) modify the result of Lemma to obtain a Reedy cofibration X, — X,[F],
with Reedy fibrant target (see (ZI4)), playing the role of /[ above.

This section will treat each of these steps separately.

2L A. Strongly cofibrant chain complexes

Recall from §I.18 that weak equivalences in Chg" are defined entrywise and
that an n-chain complex D, is strongly cofibrant precisely when the structure map
Cof(Ok+1) = Dg_1  (out of “k-chains modulo boundaries”) is a cofibration for each
k. Thus if D, € Chgn_1 is a strongly cofibrant approximation to B X S"~! D,
must be contractible for k # n — 1, since then (B X S"1), = x.

As explained in [Hirl §15.2], it is natural to construct D, by a descending induction
on 0 <k<n-—1, starting with D,_; = B (assumed cofibrant by §IlA). Since
D, =%, also Cof(0,) = B, therefore by construction D,,_, must be a cone on B
in the sense of [Q1], T, §2].

We could of course choose D,,_5 to be the standard cone CB  of L1 but
we will require more general (strongly) cofibrant objects, in order to replace certain
maps by fibrations (see Lemma[A.2)). Therefore, for each 0 <k <n—1 we merely
require that there be given a (strict) cofibration sequence in C:

(22) B . 0UB - T1B

with CY*B ~ % for 0 < k <n—1 (with the convention that CY-!B := B).
Thus YFB is indeed a _model for the suspension of Yk=1B, and, as a consequence,
the k-th suspension of B, in the sense of loc. cit.] (see (Z21) below).

If we let Dy, := CXn*-2B, the differential 9P : Dy — Dj_; is defined to be
the composite of

n—k—2 — n—k—1

(2.3) Oyn—k—2pg 9 Yn—k—1R ¢ - Cyn—k-1B

even for k = 0. Moreover, Y *B = Cof(9P) (a strict cofiber, since g" %2 is
epic), so the cofibration "% shows that D, is indeed strongly cofibrant.



HIGHER HOMOTOPY INVARIANTS FOR SPACES AND MAPS 15

The first three stages of the process are depicted in the following commutative
diagram:

oD On

E Id E
/ 8,]?_1 On—1

(2.4) * CB = *
[ @ v, B

) s (L) 5) : S x
/ 7 -~ o

The parallelograms on the left are (homotopy) pushouts, and the triangles are used
to define the differentials, with cofibrations and weak equivalences as indicated.
When we use standard cones and suspensions throughout, we obtain the standard

cofibrant replacement for B X S™~!, which we denote by DI"(B).

2.B. Realizing attaching maps

Assume given a CW resolution V, of A = 7Y in II4-Alg™”, with CW
basis {V,}2,, and a Reedy fibrant (n — 1)-truncated augmented simplicial object
X, in C, realizing V, through simplicial dimension n — 1, with X_; =Y.
In addition, assume we have (cofibrant) B realizing V,, and we would like to
construct a map B XS — CMX, in Ch3""' realizing the (algebraic) chain
map f : V, X S" ! — CM(sk,_; V), in order to apply Lemma As noted
above, we must first replace BX S"~! by a (strongly) cofibrant D, to produce
F:D, — C’}kVIX., using the following

2.5. Proposition. Given a CW resolution Vi, a Reedy fibrant (n — 1)-truncated

augmented simplicial object X,, an object B € C realizing V., and a strongly
cofibrant D,  as above, the algebraic attaching map f:V,XS" 1 — CM(sk,_, V)
can be realized by a chain map F : D, — C’i\/IX..

Proof. We construct Fj, by a downward induction on coskeleta (see §1.B), for
—1<k<n-1. -

To start the induction we must choose F, ; : D, ; = B — CM X,. Since
72X, =2V, forall 0<k<mn-—1 by assumption, the algebraic attaching map
5(‘)/" :V,— V,_1 can be thought of as a homotopy class
o € [E, Xn—l] = Wan_l{E} = Vn—l{E}

= HomHA_Alg(ﬂfE, Vio1) = Homp a1g(Vin, Vi)
where the next to last isomorphism follows from Lemma [[.5

Since by Definition [[.34] 5(‘)/" : V= Vi1 actually lands in CM,V,, this a is a
Moore chain in 7y map.(B, X,), so by Lemma [3I(a), o can be represented by a

(2.6)
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map F, ;:B— CM X, By (L33), 5‘/" lands in the (n — 1)-Moore cycles, so
by Lemma [L3T(b) the (n—2)-Moore chain a,_o := ¢ ;0 F,_; has a nullhomotopy
Fo 9:0% 0F, 1 ~0, and thus amap F, 5:D, »=CB — CM,X

n

In the k-th stage of the induction, we assume given F : csk* D, — csk® CMX, for
X, and D, asabove, with 0 <k <n —2. We shall show that we can always

extend F' to the (k — 1)-coskeleta by modifying Fy.

Note that we can decompose 8,? as Vp_1 0 8k , and already 3\0 oV, = O As a
consequence, 0 = 5,? 005, 0F = 8 o Flodf, = 8 ofyor"” 2 og" 3 and
7" "3 s epic, so we see 5,? o [, 01" %2 =0. Thus, the pushout property in (Z4)

implies there is a unique a;z_;: X"+ 1B — ZM X, in

Frt1

Dy = C¥+3B G X

\\\\\:Lj;j\ ////////
O

P yn— Yn—k—2B ’B LI 2?““)( o

/ Vi
Zn—k—Q

b OMX,

S]]
3‘
£
%
§>\\\
Q

op STB ML M X, "
Vk—1
n—k—1
D1 =CErF1B-—————— Pt __ _____ - OM X,
satisfying
(28) Vi—1 0 Qg—1 © anik72 = a]? o Fk .

Note that a; in (Z7) is constructed similarly, satisfying (28) for k rather
than k£ — 1, and that Fj, makes the upper square commute precisely when it is a
nullhomotopy for v, o ay, that is

(2.9) vpoay = For" k2.

Similarly, a := vi_1 o ai_1; is nullhomotopic if and only if Fj,_; extends the
chain map to dimension k£ — 1. Hence it remains to show that there is a choice of
nullhomotopy Fj such that the induced map a will also be nullhomotopic.

Recall from §2] that choices of (homotopy classes of) nullhomotopies for the
map vy, 0 ay : 2" 2B — CMX, are in one-to-one correspondence with homotopy
classes [n] € [XXnk—2B, CMX,], where n acts on F}, by concatenation to yield
F.x(noq"*72) (see §L2). Furthermore, replacing Fj, by F| := Fyx(nogq" *?)
changes [a] to [d]:=[a] + [0 on] = [a] + Y [n].

Since 0= 5,?71 ovp_10ay 1, it follows that 0= [0S |]o (—[a]) = Y ;(—]a]) in

rAOM X S k-1B} = CM X {2n—+1B} = CM,V,{E—+-1B}



HIGHER HOMOTOPY INVARIANTS FOR SPACES AND MAPS 17

using Lemma [[L31] so —[a] € ZM ,V,{E"k-1B}. By acyclicity of V,, there is a
class

[n] € CMV {Er—F-1B} = 7ACMX, {En—+-1B} = [L¥»—F—2B, CMX,]

with —[a] = 8Y[n]. Therefore, replacing F, by F, = Fy*x(noq**2) yields a

nullhomotopic a’, and thus allows us to extend F' to dimension k& — 1. O

2.10. Long Toda brackets. Proposition suggests the following quick (if some-
what ad hoc) definition of long Toda brackets as the last in a bigraded collection of
obstructions for rectifying certain diagrams:

Assume given an (n + 1)-homotopy chain complex

(2.11) Y, ™ Y L Y., o oY S v,
in hoC — so dj_j0dp~0 for 1 <k <n. Assume further by induction that
we have rectified the final n-segment and replaced it by a diagram:

(212) C,—1 an—_1> Cho2 —...— CO 8—0> C_, ,

which is (strongly) fibrant (in the injective model structure on Ch3"~"). This means

that each Cp ~ Yy and Op_100; =0 for 1<k <n, and that we have a map
0:Y, — C,_1 suchthat 0, ; 09 ~ 0. This defines a “chain map up to homotopy”
¢:Y,XS" ! — C, between two (n — 1)-truncated (augmented) chain complexes
over C.

Using the standard strongly cofibrant replacement p (Y, for Y,XS"!
(see §20A), we can try to realize ® by a strict map of chain complexes F : D, —
C,, constructed by a downward induction on —1 < k& < n — 1. The successive
obstructions to doing so are the maps a; : X" *71Y, — ZMC, of the proof of
Proposition

As we saw in that proof, a partial chain map (F; : D; — C;)i,,, can be
extended to dimension k if and only if v o ap ~ 0. Thus we think of the homotopy
classes of vy oar (k> 0) asthe intermediate obstructions to obtaining the value
[v_10a_4] € [2"'Y,, C_1] of the n-th order Toda bracket (dy,...,d,). (In fact,
v_y1 is the identity in this last case.)

See BM, BJT2, for more conceptual alternative definitions of
higher Toda brackets.

[2.C. Passage to simplicial objects

Having constructed a realization F : D, — CMX, = CMUX, (see §L2T) of the
n-th algebraic attaching map for V,, as described in §21B, we wish to complete the
passage from X, = WU t0 anew augmented simplicial object X, [F] = W as
in (1), in such a way that X [F] will still be Reedy fibrant and cofibrant, and
the inclusion j : X, < X [F] will be a Reedy cofibration (two properties which
will be needed for future applications).

For this purpose, let F : €D, — UX. be the adjoint of F' (see §L29)), with
0 :UX, — Cone(F) the natural inclusion into the cone (see §L.32). Note that ¢ is
an acyclic cofibration in simplicial dimensions < n — 1, so the same is true of L(¢).
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We add on the degeneracies to obtain X. [F], defined to be the following pushout
in the category of augmented simplicial objects (all having the given object Y in
degree —1):

ux, —4 - x,
(2.13) ﬁ(@l li

L Cone(F) —= X,[F]

where 6 is the counit of the adjunction (compare ([37)). Again, J is an acyclic
cofibration in dimensions < n. R R

Choose a Reedy fibrant replacement p' : X [F] = X,[F] by factoring X [F] — *
as an acyclic cofibration followed by a fibration in the model category C2% of §I.28
Since Y is fibrant in C, we can choose X[,[F| to still have Y in degree —1, because
no compatibility is required in that lowest degree.

Finally, factor the composite X, 2 X, [F] LR X.[F] as a cofibration followed by
an acyclic fibration to obtain X, 2 XL [F] 5 X.[F], where X,[F], our candidate
for Wi in @), is now Reedy fibrant and cofibrant, since X, is Reedy cofibrant
by assumption, and the map " : W 5 W s the Reedy cofibration j (which
is the identity in degree —1):

Wi —— X, J X [F]
(2.14) Llnll j[ % [~\
W — X,[F] — = X[[F] — +

A~

2.15. Lemma. The objects X [F| and X,[F] constructed as above are Reedy
cofibrant

Proof. By Definition we have the following explicit description of Cone(ﬁ):

(2.16) Cone(F), = Xl CYr—+1B
for 0 <k <n, where the new 0-th face map is do|s5mizig= Fr-1 (landing in
CM X, CXp g C Cone(ﬁ)k,l) and the new first face map is d,|s5=g= 8,?;*1 =
" Fog* (landing in OYX"*B C CM X, C Xj_; C Cone(F);_1). All other face
maps d; for j >2 restrict to 0 on CXn—+-1B. R

If we use (L38) to define L,G. (where Gy := CX"*-1B), we see that X [F]
may be described explicitly by

XJF]; = X, IO+ 1BII LG,

(2.17) =X, I ] ||

0<k<r 0<ii<..<ip<r-—1

as in the proof of Lemma [[.36. Moreover, Lk)A(.[F | splits naturally as the coproduct
of LyX, and L;G,, and the map oy : Ly X [F| = X [F]; of §L241is the coproduct
of oy : LpXe — Xy (which is a cofibration in C, since X, is Reedy cofibrant) and
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the inclusion LkG’._‘—> LG 11 G, (which is also a cofibration since each G;, and
thus LG, and Gy, are cofibrant in C). O

2.18. Lemma. The construction of Ze — Z¢|[F| is natural in the sense that whenever
the diagram

D, -~ cM(y,)
(2.19) Hl l()i“(h)
E, 5> CM(Z,)
commutes in Che, there is an induced commutative diagram
Y. 2o YL [F]
(2.20) h
Z. -5~ 7.[G] .
in CAY.

Proof. Take the adjoint of the original square and extend to cones by the naturality
in Definition [.32 to produce a commutative diagram

F by ~

E(D,) uy., Cone(F)
(2.21) s<H>l Lmh) l
E(EY) G UZ, ZZ Cone(G) .

The right square, together with the naturality square for the unit of adjunction 0,
combine to produce a map of pushouts sitting in a commutative square of simplicial
objects

Y. Y.[F]
(2.22) ht l
Z

—

. —ZJ[G]

in C*%. Now recall that by Assumption [LT] we have functorial factorizations in C,
and thus in C2Y  with respect to the Reedy model category (see the constructions

in [Hiz, §15.3]). O

2.D. Sequential realizations of algebraic resolutions

We may now summarize the procedure described above in the following

2.23. Definition. Assume given a CWe-resolution V, of a realizable Il 4-algebra
A = 7Y, with CW basis {V,}2%,. A sequential realization of V, for Y is a
tower

L1 2] -~ Il
(2.24) wo w2 w2 w2 Wil
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(see (2.15)) of Reedy cofibrations between Reedy fibrant and cofibrant augmented
simplicial objects (in CA(jrp) together with objects W,, realizing the given CW basis

[T 4-algebra V,, such that:

(i) The augmented simplicial object Wi realizes V, — A through simplicial
dimension n — that is, the n-truncation of the augmented simplicial II 4-algebra
7T;4VV{."} — mAY is isomorphic to the n-truncation of V, — A, with VV{ﬂ =Y
and L[f]l = Idy.

(ii) Each W = VV{."_”[F[”]] (as in §2C) where FIM . D" C'i\/[(“in_u)
realizes the attaching map 52;” as in §2/B.

(iii) We have an acyclic cofibration T : DI"(W,) — DI of chain complexes
in the projective model category structure, where p (W,) is the standard
strongly cofibrant replacement for W, X S"~! as in §2A.

A finite tower as in ([2.24]) ending at WM will be called an N -stage sequential
realization of Vo forY.

2.25. Lemma. The colimit W, of @R24) (with W_y =Y ) realizes V, in the
sense that 7T;4W. — W*AY is isomorphic to Vo — A.

Proof. We can deduce from (@) that W, is the homotopy colimit (over n > k) of
the objects VVL"], so it realizes V. O
2.26. Remark. Condition ({l) of Definition 223 implies that for each 0 <k <mn—1

we have a commutative diagram of horizontal cofibration sequences

SRW, L 0N, L SR,

(2.27) ~lak Nka ~£Uk+1

k

SEW, T CYFW, T SEFTW,
in C, in which the vertical maps are all acyclic cofibrations. o
By convention, we set X71W, := x and X'W, = CX~-'W, := W,,, with the
identity map as
(2.28) g OXIW, = YW, .
We now have the following analogue of [BS| Theorem 2.33]:

2.29. Theorem. For A € C as in {I.]1, any CW-resolution V., of a realizable
I 4-algebra A = 7Y  has a sequential realization

W = (Wil I Dl iy

Proof. For each n > 0, we choose once and for all a fibrant and cofibrant object
W, € A realizing V,. We construct a sequential realization W by induction on n.
We begin the induction with Wi " := ¢, (Y), (which is Reedy (co)fibrant in
CAY, since Y is (co)fibrant in C — see Remark [L28)).
Note that because V, is a free II4-algebra, the Il 4-algebra augmentation ¢ :
Vo — A corresponds to a unique element [g] € A{V}, (see (LG)) for which

we may choose a representative ego} W, = Y, by Lemma Since DY .=
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W, X S~! s already strongly cofibrant, such a choice of 8[00} : Wy, = Y defines

FO . DY 5 MWL and thus VVI [FI0] = ¢(W;)s (augmented to Y), with
W = VV{ [FI0]]  a fibrant and cofibrant replacement for this, as in §2.C. The
general induction step (for n > 1) is described in §21A-C. In particular, Proposition

P8 yields FI: DIY(W,) — MW and thus Wi = Wi [FD), 0
2.30. Example. In the case n =1 in the proof of Theorem (covered in the

general induction step), we choose a map W; — W, realizing the first attaching

map 53 V1= Vo=V, and let OXOW, := CW, (the usual cone). We then have
a l-truncated augmented simplicial object depicted by

W, . .
d0 [ so & J0—g0—1q )
0< ) | o ( ’)% N
—1] |
va | WO )
6[1] )

W _ g«

il CW,

1
To deﬁne the augmentation el! VVH — Y extending €%, we use the fact

that co 80 =0 in II4-Alg to deduge that el o 38 is nullhomotopic, and any
nullhomotopy F_; defines e on CW,;. Now apply the process of §2.C to obtain
1]

3. COMPARING SEQUENTIAL REALIZATIONS

Sequential realizations, and the resulting simplicial resolutions as constructed in
Section 2] play a central role in our theory of higher homotopy operations, but they
depend on many particular choices. We now explain how any two such simplicial
spaces are related by a zigzag of maps of a particularly simple form.

We first note the following general fact about model categories, which allows us to
embed any two weakly equivalent objects as strong deformation retracts of a common
target:

3.1. Lemma ([BS| Lemma 3.1]). If X and Y are two weakly equivalent fibrant and
cofibrant objects in a pointed simplicial model category C, there are maps as in the
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following commuting diagram

yA . X1y

F
‘K
~ ¢ klu
(3.2) ? / Z\Z:’p ~ Z
: /
l

with (co)fibrations and weak equivalences as indicated, such that

¢p=(Idx Lrou)T(loklldy)=(Idx Tlok)L(rouTIdy): XIIY - X XY

factors as X I1Y — Z — X xY, where F is a cofibration which is an acyclic
cofibration on each summand, and G is a fibration which is an acyclic fibration onto
each factor.

3.3. Definition. Given two CW resolutions ¢ : Vo — A _and ‘e Vg = A of
the same Il 4-algebra A, with CW bases (V,)32, and ('V,)>,, respectively, an

n=0"
algebraic comparison map V¥ :V, — 'V, between them is a system

(34) v o= <§07 P (@n? ﬁn)zo=0> )

where ¢ : V, — 'V, isa split monic weak equivalence of simplicial II 4-algebras with
retraction p: Ve — V, (satisfying ‘0%, =€), induced by inclusions of coproduct

summands @, : V,, < 'V, with retractions p, : 'V, =V, for each n > 0.
In this context we can sharpen Lemma [3.1] as follows:

3.5. Lemma ([BS, Lemma 3.7]). For any two free CW resolutions % : v 5 A
of the same Il g-algebra A, with CW bases (Vﬁ?) (i =0,1), thereis a CW
n=0

[e.9]

resolution ¢ : Vo — A with CW basis (UnHVS)) HV,S”) and algebraic

n=0

comparison maps W 7ARNE Vo for i=0,1.

3.6. Definition. Given an algebraic comparison map ¥ = (o, p, (%, 7,,)o2,) be-

tween V, and 'V,, asin §3.3] and sequential realizations W of V, and W of

Vo, a comparison map P : W — "W  over ¥ is a system

(3.7) & = (o i ginl gl gl e

consisting of:

(i) A split augmented simplicial map el : W W with retraction [ :

W — WY realizing @ Vi, — 'V, and p, respectively, through simplicial
dimension n.
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(ii) a split cofibration of chain complexes, & : D" — DI with retraction
7l .l _, pli
(iii) a split cofibration e : W, — "W, of objects in C, realizing %, with
retraction 7 : 'W,, — W, realizing p,,.
Note that €™ induces a map of chain complexes & : DI"(W,) — D" ('W,)
with retraction 7 : DI ("W,) — DI"/(W,) induced by 7. We then require
that the following diagram in chain complexes commute (in each vertical direction):

DLn} (Wn) Tlnl DLH} Flnl CMW[.nfﬂ
(3.8) FLn] ( l;LR] 7ln] ( [@[n] CMypln—1] ( £C}}’Ie[n1]
/D[n}(r\_N ) g M rVV[n—l}
* n /T[n] * /F[n] * ° :

If el . Wi < Wi (hence also M WEY < W) is a Reedy weak

equivalence, and in addition each induced map 'ei"] : YFW,, — YW, (hence each

map ?Ln} : YW, — YFW,,) is a weak equivalence in C, we say that ® is a trivial

comparison map.
If we only have

<39) ¢ = <€[n]7 T[nh ’e\[n]’ ?{n], é[nh T[n]>N

n=0

as above, we say that ® : W — "W is an N-stage comparison map over W. This
completes our Definition.

3.10. Remark. We note for future reference that a comparison map ® as above yields
maps fitting into commuting diagrams as follows:

kanc—zk> CYFW, SRTW,

(.11 o [ ot [ . [
LA ASAYS) y 1o AN A 3 == L. 13

q
for each 0 < k < n, in which both upward and downward squares commute, as well

as satisfying @Z o @fb —Id and TLn] o ELn] —1d.
Moreover, for each 0 < k < n, both squares in the following diagram commute:

Oy, < oM Wi Oy, 1k oM Wil
(3.12) 10 c,?l_le[n”l ot B
CEn R, ks oM gl Con W, e o g

3.13. Remark. Consider the (strict) cofibration sequence:

[n] ==l
k

(3.14) SRW, Sy YR, T TRX,

which defines the right map and space). Because of the splitting 7 for &
( g p P plitting 7, b

mapping (BI4) into XF'W, yields a Puppe exact sequence. Since [Id —EL"}OFL"]] €
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YE'W,,, YW, ] isin Ker glnh# , we obtain a map s kX, — YW, with
k k
EL"] o mL"] ~ Id —EL"] o FL"}. Thus

i) ]

(3.15) YEW, R L YEX, TISFW,, R

~

[n] | 5ln]

— = YW,

are inverse weak equivalences for each 0 < k < n.

3.16. Definition. We say two n-stage sequential realizations W and ‘W for Y € C
are weakly equivalent if there is a finite zigzag of cospans of n-stage comparison maps
connecting ‘W to W, say

w . W=
(3.17) NG T~
W =wo we . W) =W

We say sequential realizations W and W for Y € C are weakly equivalent if each
of their n-stage approximations are such, with respect to a given (possibly infinite)
zigzag which is “locally finite” in the sense that for each n, all but a finite number of
maps in the zigzag are isomorphisms on the n-truncations.

The following result is used below to show that our main constructions are inde-
pendent of choices of sequential realizations; it is dual to [BBS1, Theorem 3.20]. The
proof is in Appendix [Al

3.18. Theorem. Given two A-equivalent spaces Y and 'Y with A= 7Y = 7Y,
any two sequential realizations W and "W  of two CW resolutions Vo — A and
Vo —= N forY and 'Y, respectively, are weakly equivalent in the sense of Definition

[Z.14.

4. HIGHER HOMOTOPY OPERATIONS

We are now in a position to define our notion of higher homotopy operations based
on sequential realizations. These are simpler than the full simplicial operations stud-
ied in [BM] BJT2, BBS1], though not strictly linear in the sense of [BJT3 §6] (see
also [BJT4, §7]).

Our operations appear as the successive obstructions to augmenting a given sim-
plicial object W,, obtained as the colimit of ([2.24]) for some sequential realization
W, to a fixed object Z € C: the n-th operation will be the obstruction to extending
an augmentation W 5 Z to Wi Thus in this and the following three sec-
tions we will be working with unaugmented (possibly restricted) simplicial objects,
implicitly applying o*(—) (see[.9) throughout.

4.1. Remark. An augmentation from a simplicial object W, to X in C is just a map
W, — ¢(X), in C2”. However, since the target is not fibrant as an unaugmented
simplicial object (see Remark [[.28]), we choose once and for all a fibrant replacement
¢(X)e = U, — * in the Reedy model category C2”. We thus can think of a
homotopy augmentation € : W, — U, as a homotopy meaningful version of an
augmentation (which need not factor through a strict augmentation ¢ : W, — ¢(X).,
in general).
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Recall now that the standard cosimplicial simplicial set A® is given by the
standard simplicial maps between the standard simplices (A*)%°,  where 7' :
AF1 < AF s the inclusion of the i-th facet, and o7 : A¥ — AF! s the j-th
collapse map (see [BK|, X, 2.2]). Applying the simplicial exponentiation X  to
each AF (for the fixed fibrant object X) yields a simplicial object U, := XA" in
CA” which will serve as our canonical fibrant replacement for ¢(X),. The Reedy
weak equivalence p*:c(X), — XA isinduced by p: A® — x.

4.2. Definition. We distinguish two levels of data needed to define our higher oper-
ations: the basic initial data consists of

(%) = (Y, X, ), where Y and X are objects in C and o : 'Y — 74X

is a map of II 4-algebras.

while the specific initial data consists in addition of

W a sequential realization of a CW-resolution V, = 7Y,

*) = (W, B with
(%) = ( s Wi {and Bl . MO] — U, realizing Jogqy: Vy — mAX.

[0]

Further conditions on the map E" will depend on the specific contexts we have in

mind in Sections [0 and [7 below.

Given (x), our goal is to extend E inductively to n-maps EM : Wi — U,
realizing Yoe : V, — 7AX through simplicial dimension n. A strand for (xx) is an
infinite sequence El*l = (B0 Bl ) of such n-maps satisfying E"~1 = gl o,
for each n > 1.

4.3. Remark. We would like to think of
(4.4) ED. & uwir1 L Cone(F)

of §1C as a homotopy cofibration sequence of restricted simplicial objects, with the
homotopy class of E*~Yo F: D, - UU, — more precisely, of the realization of
corresponding full simplicial objects — as our obstruction to extending the (n —1)-

map EMU toamap E: Cone(ﬁ["}) —UU, - and so, by the pushout property
of @IF), to amap EM : /VV[,"_” [FI] — U,.

45. Lemma. If we can extend an (n—1)-map EP-U: WU 5 U,  for () to
~ —~In—1
B VV[. ][F["}] — U, then it extends further to an n-map EM : Wi — U,.

Proof. Choosing a lift E’ in the diagram

/‘i][n_l} [F[n}] Eln] U.

(4.6) ol BT J
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(compare (2ZI4)) defines a map E” := FE' op: wi [FI"] — U,, fitting into the
following solid diagram:

where the composite wel U, agrees with EM Y only up to homotopy.
Since (" is a cofibration, by [BJTT, Corollary 4.20], we can alter E” within its
homotopy class to obtain the required E[, with Elr~1 = Bl o ", U

4.8. Extending n-maps. We need a more concrete identification of the extension
- -1 . Wwir! ol . W i -

of a given (n—1)-map E" Y : W, " —- U, to EM:W, [F"] - U, in

order both to exhibit the obstruction to obtaining FE™ as the value of a higher

operation, and to verify that it has the necessary properties (in particular, the ability
to compare values for various sequential realizations).

From the proof of Lemma 215 we see that in order to construct EM we need
entries B : CZ AW, — X2 for 0 <k <n (see (7). In order for this
E[M  to be a simplicial map, we must have:

(n°)* o E;En] = E;E’Z” owg-10F1,
(4.9) 'y o By = B TodR,
(n')* o E,[Cn] = 0 fori>2,

where 6;) is the differential of D,, given by ([Z3), and n': AF1 — A% s the
i-th coface map of A®, given by AF !~ 9,AF — AF,

4.10. Folding polytopes. For any K € C, we can iterate the quotient maps
CK — YK to obtain ¢ %1 . Cr*1W, — ¥ *"!W,. Precomposing EIE"] :
Cxr—k=TW, — XA with this, together with 77 %1 of (Z27), yields

Cri, SO pnekeiyy, DT Gy, D xAt
Since At = CA? for each 4, this composite is adjoint to a pointed map E,Ln] :
W, ® A" — X. There are n + 1 such maps, corresponding to (co)simplicial
dimensions 0 < k <n.
If we denote the copy of A™ associated to EIE"] by A?k), then the first £+ 1
facets GOA&), e ,8kA?k) of A?k) are associated with the corresponding facets of

the A* in XA° under the adjunction, the next n—k—1 facets are associated to

the suspension directions of CY""*~'W, (so E\,[C"] maps them to the basepoint),
and the n-th (so last) facet corresponds to the cone direction.
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For each n > 1, the n-th folding polytope P™ is then constructed from the
disjoint union of the n+1 n-simplices Af,..., Al by identifying the n-facet
anA?k) of A?k) with the 1-facet 81A?k+1) of A?kﬂ) foreach 0 <k <n, in
keeping with the second line of (£9) (see [BBSI, §4], and compare the cubical version
in [BS) §5]).

The sub-simplicial complex of the boundary OP"™ consisting of the union of the n
(n — 1)—facets 80A?k) k=1,2,...,n will be called the edge of P™, and denoted

by EP™. See Figures [A11] and 12| as well as Figure below.

0 0 1
IR o ¢ \
identify the edge Epl

Al

1
(0) Ay

FIGURE 4.11. The folding polytope P!

the edge EP?

identify

2 2
A(1) A

FIGURE 4.12. The folding polytope P2

We readily see by induction:

4.13. Lemma. For each n > 1, the realization of the triple (P™,OP™, EP") s
homeomorphic to (B™, S"1, Bfl), where B’}r’l is the upper hemisphere of S™1
in the unit ball B".

4.14. Example. We show how to use the folding polytopes in the case n = 3. Given
the solid 2-homotopy for W2 in the following diagram, we wish to extend it by the

dotted maps to the (given) 3-truncated restricted augmented simplicial space Wi,
For simplicity of notation, we assume here that we have used the standard cofibrant
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replacement D!’ (W3).

Wy o o . XA?
dy d1:8? Eg] ( 0)*l( 1)*\Ll( 2):{/( 3)*
n n n n
R -~
2 d0=w1F1 d1=3P EEQ]
(4.15) doldll ly @) || | o2y
Wi cow Ll
g e e -
lll 7 weop B H
do | ds //—\MO) (o)
w2 /HCEzW?’ s =X
0

Using the identifications of §4.10, the putative map Eé?’] : CY2W; — X would
be given by a map E([]g} : Ws x A‘E’O) — X whose restriction to the boundary is
described in adjoint form on the left in Figure 416

3 3
ZANS ZANS

3
AT,

FIGURE 4.16. Maps from 3-simplices corresponding to (£I5])

In GA?O), facet 3 corresponds to the cone base ¥2Wj, facets 1 and 2 correspond to
the two suspension directions (and thus map to * in X). In general, facets 2,...,n—1
of 8A?k) all map to * as in (£9), while the n-th facet, corresponding to the cone

base, agrees with the 1-facet 81A?k+1) of Al if k<n.
[3]

The remaining maps El and EE’} can be read off Figure .16, where only the
boundaries of the four tetrahedra are shown. The edge EP?3 consists of the three
2-simplices outlined in bold. The full explanation of how each facet of every A?k)
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maps to XW  is given in [BS] §5], where each n-simplex is thought of as a quotient
of an n-cube.

4.17. Proposition. Given an (n —1)-map E"" U for data (»x) = (W, E%) as
in §4.3, any choice of maps E\,Ln} : Con—k-TW, — XA (0 <k <n) satisfying
(@9) determines a unique map EM W, @ P* — X with the restriction E,[gn}
to W, ® A", adjoint as in §{.8 to E\,L"] o k-l OxnIW, — XA for each

(k)
1 <k <n, and conversely.

Proof. Given maps E\Ln} . OTn—k—1W, — XA (0 < k < n), we obtain maps
E,L"] ' W, ® A" — X as in €100 The first condition in (X)) says that the
restriction of E,[gn} to OpA*  equals E,[;:u owyp_1 © F._1. The second condition
says that its restriction to 9 A% equals E' Moo, | = E"Y ok o gt Tl
corresponding to the restriction to the base of the cone and thus to the restriction of
E,[gn} to 9,A", by the convention of §L10. Since the face maps d; on CY"F-1W,
vanish for ¢ > 2, and E,[:ﬂl also vanishes at the other end of the cone direction
and at both ends of the suspension directions, we obtain a map EM W, @ P" - X
as required.

Conversely, given such a map E 7] its restrictions to the n-simplices A?O), ey A?n)
define the maps E,L"], and thus maps ’E\,[C"] : O F-1W, — XA* We now show by
induction on k£ > 0 that these extend to maps E\Ln} : CTr—h—1TW, — XA"  with

(4.18) /E][gn} —_ E}En] o pn—k—1
satisfying
0\* /E‘[n} _ E[n—l] r
(n")" o 'E}, k—1 O Wg—10L'k-1,
(4.19) () o By = EPNodR,
(n')* o 'E;Ln] = 0Ofori>2.

To start the induction for k=0, where ([I9) is vacuous, use the fact that 77!
is an acyclic cofibration and XA” = X is fibrant to extend ’E([]"} to E([]"}.
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In the induction step, the given map E;Bi]l induces a map L : CXnF1W, —
X?2%  fitting into the following solid commutative diagram:

/ El[cn]

Cx W, xa
S F W, . X0A*

- \0 (n*)

(4.20) =2 k—1
oM Wi CTtW, X% /ey

Wi —1
wis)! XA xAh
By

where the bottom portion of the diagram fits together to define L by (I9), and
the whole diagram commutes by (£9) and (ZIS).

Since the cofibration inc : 0AF < A* induces a fibration inc* by [QI], 11, §2,
SM7], and 7" %=1 of ([ZZI) is an acyclic cofibration, we have the lifting E\,[C"] by
the left lifting property. The fact that (£20) commutes implies that (£I9) and
(AI8) hold for k as well, completing the induction step. O

4.21. Assumption. Assume now that the pointed simplicial model category C has
an underlying unpointed simplicial model category C (see [Hol §1.1.8]). This is the
case when C =38, or Top,, for example. Note that the two simplicial tensorings
are different: thus in C = Top we have the product A x K for A € C and
K € § as the simplicial tensor A ® K, while for C = Top, we must set
A®K=AXK/(xx K), where x is the given basepoint in A (because A® K € C
must itself be pointed, while A x K has no chosen basepoint, since K is in 8, not

8,). See [Hir, §9.1.14].
However, when K has a basepoint k, we write A A K for A® K/(A ® {k}).
We also write K x L for the product in 8.

In this case we have an explicit description of the following classical fact (see [BJ]):

4.22. Lemma. If A is cofibrant in C as in §f.21, and B € 8, = Set®” s connected,
with basepoint b, there is a canonical weak equivalence

(423) ¢:XA®B = TA/(SA{)®B I TA®{h} ~ (CAAB)VIA

where ¢ onto the first summand is the natural projection, and the reverse weak
equivalence on the second summand is induced by {b} — B.
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Proof. We have the following diagram of pushout squares with vertical cofibrations:

inco proj, ~

A®(Bx{0,1})—=A® (B xI) A®I A ®

w2 [ [ [ |

AR(BxL)—=A®(BxS)—A®(BxS)—A®(BxS

where [; and I, are two l-simplices and inc; (i = 1,2) are the inclusions
of the two endpoints {0,1} into each, so that the resulting pushout is a two-cell
model of the circle S', and proj : B x I; — I, is the projection. Note that
A®(BxS")=(A®B)® S

—_——

Here B x S' (the case where A = %) is a model of the half-smash in 8 consisting
of the unreduced suspension SB with an arc connecting the two suspension points.
Under the quotient map SB — YB to the reduced suspension (which is a weak
equivalence, by [G]) this becomes a wedge BV S*.

Note that A ® (B x S') =2 (AASY)® B. Thus A® (B x S!) is a model for
YA ® B, which is weakly equivalent to YA A BV XA. U

4.25. Definition. We associate to any (n — 1)-map EM U as in §2 a map
en_1: W, @ 0P" — X which sends W, ® 81A’(1k) to X by E,[f:ll} o Fj,_; for each
1 <k <mn, and all other (n — 1)-simplices of OP"™ to the basepoint. Here we use
the convention of the beginning of the proof of Proposition 2.5 so F,_1 = dj.

Since at most two additional (n —1)-facets of Af, are identified with (n — 1)

facets of A?kﬂ)v we may think of CX"*W, as a quotient of W, ® A?k), so the

map induced by E,[:ﬂl o Fy_1 is well-defined. Moreover, these maps are compatible
for adjacent values of k (see Figure and (£.I3])).

Assuming C satisfies the assumptions of §8.211 by Lemma [£.13 we can think of e,,_;
as a map W, ® S"! — X, and because C is pointed, the source is a half-smash
W, x S"71:= (W, x 8" 1)/(* x S*7!) in the corresponding unpointed simplicial
model category.

We see from the previous description that if vy is the 0-vertex of A?O), then

E=1 maps W, ® {vg} to x. Therefore, if we choose v, as the basepoint of
St >~ 9P", we see that h,_; is trivial when restricted to the second summand
in (£23), and is thus uniquely determined up to homotopy by the induced map
Gn1 : 2" "W, — X. We define the value of the (n — 1)-map E1  to be the
class

(4.26) Val(E-1 = [g,4] € [E"'W,, X] = A{Z"'W,}.
for A :=mX.

4.27. Proposition. Given data (xx) = (W, E%  as in §{.3, the value for a corre-
sponding (n —1)-map E-1 . Wi S XA s zero if and only if it extends to
an n-map.

Proof. Evidently, g, isnullhomotopic if and only if the original map e, 1 extends
to W, ® P".
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If Bl extends to an n-map FEM W XA*  as in the proof of
Lemma B3, the acyclic fibration p : Wi — VV[."*HI[F "] in @7) has a sec-
tion s : VV{."*H/[F ["]] — VV{."], and precomposition with the acyclic cofibration
o w ! [FIM] — Mn_lll[F[”]] yields the restriction EM := EFM o sop -

/VVI:L_” [FlP] — XA*  (an n-map).

Since s and p’ are weak equivalences, Wil s Reedy cofibrant, and XA° s
Reedy fibrant, EMo7: WY — XA* is homotopic to EM~Y = ElMlo7n=1. By the
description in Definition .25, we see that the map e,_; : W,, x S*! — X induced
by E~1 s thus homotopic to the corresponding map €,_1 : W, x 8" ! — X
induced by EM o). The same is therefore true for the restrictions of the induced
maps, Gn-1~ gn_1: %" "W, — X. Since ¢,_; is nullhomotopic (because Eln] o7
extends to EM), sois g1, and thus Val(E"~1) = 0.

Conversely, if ¢,_1 is nullhomotopic, then e, ; extends to EM . W, xP" = X,

and we let E,L"] denote the restriction of EM  to A?k) for each 0 < k£ < n.

By Definition .25 for h,_; we see that the maps EIE"] satisfy (49), so together
with the original (n — 1)-map E[™!  they define a map of n-truncated restricted
~ ~ . ~ —=[n—1
simplicial spaces E : Cone(FI") — XA% and thus EI" : VVI. ][F["}] — U, (see
§4.3). Lemma then yields the required extension. O

5. COMPARING OBSTRUCTIONS

The value we have assigned to an (n—1)-map serves as the obstruction to extending
it to an m-map, but only with respect to a fixed sequential realization W. We now
wish to investigate to what extent the vanishing or otherwise depends on this choice
of W. For this purpose we require the following

5.1. Definition. Let (x) = (Y, X,?9) be basic initial data as in §£2 with ¢(X), =
U, a fibrant replacement in C*”. Assume given in addition (W, E) and
('W,’E®)) " as two choices of specific initial data (x*), equipped with extensions to
(n — 1)-maps E"1 and ‘Bl respectively.

If ®:W — W is an n-stage comparison map, as in (E3), write 'El~1 =
re(EPU) if /Bl = piello pnmlland Bl = ey, (B i BTl =
/E[nfl] o e[nfl}'

By BII), @BI2), and (EIH), we see that
(52) Val(rg(E™)) = (7,)" (Val(E™)) and Val(ex (‘M) = (&;L,) (Val(E™)) ,
in the notation of (B.I1).

As a result we have:

5.3. Lemma. Assume given an n-stage comparison map ®:W — "W, an (n—1)-
map B for (W, X,¥), and an (n—1)-map 'E" for (W, X,9). Then:
(a) Val(E"=1Y =0 if and only if Val(ry(E"1)) = 0.

(b) If Val'El=1) =0 then Val(ex('E" 1)) =0, but not necessarily conversely.

This explains the need for the following:
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5.4. Definition. Assume given basic data (x) = (Y,X,?), with two choices of
specific data (xx) of the form (W, E) and ('W,’E). If E’ and 'EM  are
n-maps associated respectively to these choices, we write 'El" ~ E" if there is an
n-stage comparison map ® : W — "W such that e, ('E ["]) = E[. The equivalence

relation generated by “ ~ is called the weak equivalence relation on n-maps, and
equivalence classes are denoted by [El].

5.5. The universal homotopy operations. Given basic data (x) = (Y, X, )
as above, we think of each sequential realization W for Y as a template for an infinite
sequence ((x)) = ({(x)),)2%, of higher homotopy operations, with Cone(F™) of
its (n — 1)-st stage e serving as the template for the universal n-th order
homotopy operation ((*)),, for each n >2, asin (L.

Formally, ((x)), is the function which assigns to any choice of specific data
(box) = (W, EL and (n — 1)-map E1 for («x) the value Val(E*~1) in
MYV}, asin ([E26). We write Vals[EM~1] for the set of all values at all
such (n —1)-maps ‘B4 ¢ [El—1)].

We say that ((x)) wanishes coherently for (xx) = (W, E) if for each n > 2,
we are given an (n — 1)-map EM™ Y for (xx) such that Val(E"~1) =0 (and
thus 0 € Vals|[E" 1)), so that E"1 extends by Proposition to an n-map
E". Taken together, we thus obtain a strand E!®!  for (xx).

Finally, we say that ((x)), wvanishes for X if there is some (xx) = (W, El%) with
an (n —1)-map EM U such that Val(E" 1) =0: that is, if 0 € Vals[EM1].

The following consequence of Theorem [B.18 shows that we can in fact disregard
the notion of Vals[—] defined for equivalence classes of (n—1)-maps [E™Y], and
concentrate instead on any one sequential realization W of Y to determine vanishing

of ((x))n:

5.6. Key Lemma. Given (x) =(Y,X,9) asin {{.3 ((*x))n wvanishes for X if and
only if for every (x%) = (W, EI))  (in fact, for any n-stage sequential realization W
forY), there is an (n—1)-map EP~YU  with Val(E"~1) = 0.

Proof. By definition, ((¢))),,  vanishes for X if there is some n-stage sequential
realization "W of Y and an (n — 1)-map 'E"1 for (xx) = (“W,’El")  such
that Val(’E"~Y) = 0. By Theorem (with Y ="Y) we know that there is a
finite zigzag of cospans of comparison maps connecting ‘W to W, say

o~

O WO — W WO, 3O W S wh FE W W)
and so on until &™) : W=D 5 WV — W If o0 = (elbl Rl ym_ o as

in B9, weset EM' =, (Ey (an (n — 1)-map for W®), and see
from (52) that Val(El"Y) = 0. Similarly, if &® = (&) PR we
set Eg"il] = /e\#(E{n*H) (an (n — 1)-map for W), and again see from (5.2)
that Val(EQ["ﬂ]) = 0. Continuing in this way we finally obtain an (n — 1)-map
Er-1 = B for W) =W with Val(EP~1) =0, as required. O

6. HIGHER HOMOTOPY INVARIANTS FOR OBJECTS

In this section we assume given a free simplicial II 4-algebra resolution V, of a
realizable I 4-algebra A = 7Y, for some A € C asin §IlA and any Y € C.
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Because each V,, is a free Il 4-algebra, V, — A can be realized by an augmented
simplicial object W, — Y in the homotopy category hoC, unique up to weak
equivalence. Theorem showed that this can always be rectified to Wy, — Y in
C through a sequential realization W of V.

The main question we address in this section is the following: if we are given some
other (cofibrant) realization Z of A — or equivalently, an isomorphism o : A — 7Z
— can we similarly rectify W, — Z7 More precisely, can we augment the given
rectification W, of W, to Z instead, at least up to homotopy?

6.1. The O0-augmentation. From the proof of Theorem [2.29 we expect a 0-augmen-
tation, the analog of a 0-map in this context, to be completely determined by a choice
of a realization ey : Wy — Z of Yoe : Vy — mAZ. Indeed, such a map always exists,
is unique up to homotopy, and defines a map ey : ¢(Wy)e — ¢(Z),. Composing it
with p* : c(Z)e — ZA" = U, (see §£1) yields & : ¢(W), — U,.
Asin ([@B) we obtain &' VV[._”,[F[O}] — U,, and the composite
&'l

WO = WUpl) 2 wi-pl) = g,

defines the 0-augmentation € : w - U.,. Thus, even though € is formally
part of the specific initial data (*%), we shall omit mention of it henceforth.

6.2. Definition. In this version of §L2 the basic initial data consists of (x) =
(Y,Z,9), with Z cofibrant and o : A — 72Z an isomorphism of Il 4-algebras
while the specific initial data (%) consists of a sequential realization W of a CW-
resolution ¢ :V, = A := 7T*'AY for Y. As before, we let U, = Z2" be our Reedy
fibrant replacement for ¢(Z),.

The corresponding n-maps will then be called n-augmentations — that is, maps
el : Wi 5 U, realizing Woe : Vo — 7AZ = 72| U,|| though simplicial dimension
n.

6.3. Definition. As in §125 given an (n — 1)-augmentation ™1 : W™ — U,
for (%), we define its value Val(e~!) in A{E""'W,} using @&Z6), and
deduce from Proposition that this is zero if and only if €' extends to an
n-augmentation el . VV{."] — U,.

We denote by ((Y)) = ({({Y)),)22, the universal homotopy operation ((x)) =
(((x))n)22, asin §5.0 associated to (%) := (Y, Z, 0 : 7Y = 1A7).
6.4. Example. For (x) = (Y,Z,9) with ¢ = f, induced by an A-equivalence
f Y — Z, we see that ((Y)) vanishes coherently for Z at any sequential
realization (%) = (W) of Y, since by assumption we have an actual augmentation
e: W, = ¢(Y),, inducing a homotopy augmentation p*oc(f)eoe: W, - U, (in
the notation of §4.T)). Restricting this to each Wy yields el™. This shows that
Val(ell) =0 for each n > 1, by Proposition

We may then formulate our next main result as follows:

6.5. Theorem. For A € C asin {I.71, let ¥ : 7Y — 7Z be an isomorphism
of Il y4-algebras. Then the following are equivalent:

(i) The system of higher homotopy operations ((Y)) wvanishes coherently for some
sequential realization W for Y ;
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(i) The system ({Y)) wanishes coherently for every sequential realization for Y ;
(111) U is realizable by a zigzag of A-equivalences between Y and Z (that is, Y and Z
are A-equivalent).

Proof. The equivalence of the first two conditions follows from Key Lemma and
Proposition £.27. As noted in §4.11 the equivalence of the first and third conditions
then reduces to the existence of suitable homotopy augmentations:

If the system of higher operations vanishes coherently for some sequential real-
ization W of Y, there is a strand /™! for (W,Z,9), and thus augmentations
el . Wil 5 U, for all n > 0. These fit together to define a homotopy aug-
mentation € : W, — U, for W, := hocolim VV{."], which induces an isomorphism
oW, — 72| U,||. By assumption §LAT(2), Y is A-equivalent to the realization
|We||, and thus the map e, : |[|[W,|]| = ||U4|| @ Z induced by the augmentation &
realizes 9, so Y and Z are related by a cospan of A-equivalences.

Conversely, if Y and Z are A-equivalent, they are related by a span (or cospan) of
A-equivalences, so it suffices to consider the following two cases:

(a) Given an A-equivalence f:Y — Z and a sequential realization W for Y, we
may assume f lifts to a map f: T, = U, between the fibrant replacements for
c(Y)s and ¢(Z),, respectively (using the functorial factorizations in C, and thus
in CA” assumed in §LT]). Postcomposing the n-augmentations el : Wil — T,
with f, we obtain n-augmentations fo el . Wit U, still realizing V, — A,
since fu: A — 7Z is an isomorphism. Thus, ((Y)) vanishes coherently for
(W,Z,9) by Proposition 27

(b) On the other hand, given an A-equivalence ¢ : Z — Y and a sequential
realization ‘W for Z, by postcomposing the n-augmentations el : wo U,
with ¢ : U, =T, asin (a), we obtain m-augmentations g o gl . VV{.n} — T,
realizing V, — A, and thus making "W itself, with the corresponding actual
augmentations «ay o g o el into a sequential realization ‘W for Y. By
§6.4] we thus have a strand &/  for (“W,Y,Id,), and of course the actual
augmentations ag o el : W 5 Z  themselves form a corresponding strand
el for "W, showing that the system of higher operations vanishes coherently
for ("W,Z,9).

This completes the proof. O

6.6. Corollary. IfY and Y' are weakly equivalent A-cellular spaces, any sequential
realization W for Y is also a sequential realization for Y'. In particular, W, has
an augmentation to its realization ||[W,|| inducing an A-equivalence.

Proof. Since Y and Y’ are fibrant and cofibrant in the A-model category structure
of .15l there is a homotopy equivalence h:Y — Y’ which we may compose with
the augmentation W, — Y to obtain a strict augmentation to Y’. U

6.7. The moduli space of weak homotopy types. Theorem [6.5 provides a more
geometric approach to the “moduli space” M of all A-homotopy types in the
model category C, described in [BDG] for A =S' in C =Top, (see also [P]):
The primary decomposition of M4 s, of course, into connected components
corresponding to non-isomorphic realizable II 4-algebras A. For a given A, we first
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choose some Y with 74Y = A as our base point, with a sequential simplicial
realization W for Y.

We then filter the other realizations Z of A (not weakly equivalent to Y) by the
greatest n for which some n-augmentation 5[%3{,1 dn) exists for Z. Up to a shift in

indexing, this corresponds to the cohomological filtration of the component of Y in

M given in [BDG] (see also [BJTT]).

6.8. An example in rational homotopy theory. As noted in §1.42] we may
apply our theory to Quillen’s model dgfl of reduced differential graded Lie algebras
over Q (DGLs) for the homotopy theory of simply-connected rational spaces (see [Q2),
§1]), with A the standard model for 87, as in the following example:

Let A, :=1L{a,b,c,z,y,z,w,e) denote the free DGL with generators in degrees
la| = |b| = |¢|] = m  (for m even), |x| =|y|=|z| =2m+1, |e|] =3m+1, and
|lw| = 3m + 2, and with differentials d(z) = [b,c|], d(y) =[c,a], d(z)=[a,b], and
d(w) = f for the Lie-Massey product f := [a,z]+ [b,y] + [c,z] of degree 3m + 1.
All other differentials are zero.

Similarly, let B, :=L{a,b,c,z,y,2) with |a| = |b] =|c|=m, |z|=|y|=]|z2| =
2m+1, and non-zero differentials d(x) = [b,c], d(y) = [c,a], and d(z) = [a,b]. We
truncate A, and B, in degree 4m, so all Lie brackets vanish in H,A, = H,B,.

Using the obvious free simplicial I 4-algebra resolution (as graded Lie algebras), we
obtain the following augmented simplicial DGL W, — A, in simplicial dimensions
<2 (with degrees indicated by subscripts):

(a) In dimension 0 we have Wy = Wy I1 CW, I1 CXW,, where

(i) Wy = L{a,,, by, Cpny €341)  With simplicial augmentation e : Wy — A,
given by a, +a, b, =0, c,c and es, ;e

(11) CWl = }L<)/<2m7 YQWN Z2m7 &2m+17 },}2m+17 %2m+1> with differential d<},é2m+1) =
Xom, A(Foms1) = Yom, and d(Zami1) = Zom.

The simplicial augmentation is given by <X, +— [b,¢|, ¥, — [c,a], and
Zom F [a,b], while Xo,11 =z, Vo — Y, and Zoypq > 2.

(iii) OXW, = L(Wapi1, Wamyo) with differential d(Wspi0) = Wamp1  and
augmentation Ws,,11 — f, and Wsz,,0 — —w (the sign is the usual one
for the suspension in chain complexes).

(b) In dimension 1 we have W; = W; IICOW, 11 5,W,, where soW,, as a coproduct
summand, is the image of W, under the simplicial degeneracy so: Wy — Wj.
We have:

(i) W, = L(X9n,¥,, +Zom)  With simplicial face maps  do(xy,,) = [by,, Cpl,
dO(XQm) = [Qm7 am]’ and d0<z2m> = [@m, bm]’ while  d; (XZm) = Xom,
dl(}_’2m) = Yva and dl (ZQm) = ng.

(i) CWy = L(W3y,, W3my1) with differential d(¥sm41) = W3, and simplicial
face maps do(Wam) = —[ay,, Xom] = [bns Vo] = [Cns Z2m], and do(Wzmi1) =
— 2 Xom11] = [bys Foms1] = [Cms Z2mr1]s di(¥3mi1) = Wamp1, while dy(Ws) =
d1<d(\5\,73m+1)) = d(dl (\X73m+1)) = d<w3m+1) = dd(VvV3m+2) =0 (see above).

(c) Finally, in dimension 2 Wy = L(wj,,,), with simplicial face maps

dO (WBm) = [Soé_lm, }—(Qm] + [sObrm }_727”] + [SQQm, Z2m] —50 [@ma }—(2m] —3So [bm7 }_lgm] —3So0 [gm7 ZQm]

and di(ws,,) = Wapn.
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If we try to augment this simplicial DGL to B,, rather than A,, we see that
necessarily ws,, 1 — f, but then we have nowhere to map Wws,, 2, precisely because
the Massey product f := [a, 2]+ [b,y] + [c,z] survives in B,.

This shows us that A, and B, are not homotopy equivalent, as expected.

7. HIGHER HOMOTOPY INVARIANTS FOR MAPS

The systems of higher homotopy operations described in Section [@l for a II 4-algebra
A = mAY may be thought of as obstructions to realizing an algebraic isomorphism
V:A=27rZ byamap f:Y —Z (necessarily an A-equivalence) — as well as
constituting a complete set of higher invariants for the A-homotopy type of objects in
C realizing the given A. In this section we address the analogous problem for arbitrary
morphisms of II 4-algebras.

7.1. A-invisible maps. We begin with the simple but important case of a map
f:Y — Z which is “A-invisible” — that is, induces the zero map 0 = fy : 7Y —
7AZ.  We can think of the associated higher invariants as obstructions to f being
nullhomotopic. (Note that we do not have an analogous situation for objects Y € C:
if 74Y =0, themap Y — * is an A-equivalence, so Y is A-weakly contractible.)

Consider a sequential realization W for Y, with (actual) augmentations e :
w oy (n > 0), starting with sg)] : Wy — Y. Since we assumed fu = 0,
the composite f' := fo s([)ol : Wy, — Z is nullhomotopic, and we may choose a
nullhomotopy Hy : f' ~ 0. On the other hand, we have a nullhomotopy Fj :
CW, - Y for sgﬂ o E(l] (as in the second step in the proof of Proposition 2.
Thus we have the (ordinary) Toda bracket

(f, €9 a) C =Wy, 7],

associated to the diagram

(compare ([.3))). This serves as the first obstruction to extending Hy to compatible

nullhomotopies of the augmentations f o el : wo Z, which would induce a

nullhomotopy of the map |[foel :||[W,| ~Y — Z (homotopic to the original f).
This is a special case of a more general setup:

7.3. n-homotopies. For our new version of §4.2] the basic initial data (x) consists
of two maps @, f1) .Y — Z in C which induce the same homomorphism of II 4-
algebras v : 7Y — 7AZ. The specific initial data (%x) consists of a sequential
realization W of a CW-resolution ¢ : V, — A = 7T;4Y for Y (induced by the

augmentation € : W, — Y) together with a homotopy H([]O} : Wy — Path(Z)
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between f®ogy, and f(og, making the following diagram commute:

(0]

_ H
W =W, ° Path(Z)
<74) s([)O]l/ le:evo Tevy
(0) (1)
Y ) 7 <7 .

Here factoring the diagonal A :Z — Z xZ as an acyclic cofibration Z < Path(Z)
followed by a fibration e : Path(Z) — Z x Z makes Path(Z) a path object for Z
in the sense of [Hir, §7.3.1]. In general, ev, : Path(Z) = Z (j=0,1) are given by
the structure maps for the product; if C = Top, we may choose Path(Z) := Z[%!,
with the obvious evaluation maps ev; induced by the inclusions i; : {j} < [0, 1]
(7 =0,1).

Since Z is fibrant, the projections proj; : Z x Z — Z are fibrations, and thus the
composite proj;oe : Path(Z) — Z is a trivial fibration. Since Z is also cofibrant,
this map has a splitting o; : Z — Path(Z) (j =0,1). When C = Top and
Path(Z) := ZI®YU, we may let 0y = 0y, sending 2z € Z to the constant path at 2.

As in §61 the map H)) in (Z4) defines a O-map H := H®op: W —
Path(Z)A", which we call a 0-homotopy for (W, f© f().

For any n > 1, we then have a corresponding notion of an n-map as in §4.2]
with X := Path(Z), called an n-homotopy for (W, f©, fM):  namely, a map
g Wil Path(Z)A" extending the given 0-homotopy H!°. More generally we
say HI" extends an (n—1)-homotopy HPY if HIMoM = g1 (see ([@24)).
A difference strand is a sequence H!* := (HI")>  such that H extends HM
for each n > 1.

7.5. Extending n-homotopies. by Proposition [L.17] given an (n — 1)-homotopy
Hr-U Wi Path(Z)A" any choice of maps ]/-\I,[gn} . C'xn—F-1W, — Path(Z)A"
(0<k<n) satisfying @I9) determines a unique extension to H" : W, @ P —
Path(Z). We associate to this data a map h,_; : W, ® 9P" — Path(Z) as in
§4.20 and (if C satisfies the assumptions of §L211), this map is uniquely determined
up to homotopy by the induced map g,_; : X" 'W,, — Path(Z). The value of the
(n — 1)-homotopy H[™ Y is then the class Val(H" 1) :=[g, 1] in A{Z"'W,},
for A := n/Z.

Moreover, by Proposition @27 the value for H"~! is zero if and only if the (n—1)-
homotopy extends to an n-homotopy. However, unlike the values Val(el™) of §6.31
this depends also on our initial choice of a 0-homotopy H for (W, f©@, f1) (see
§7.3). Thus the specific initial data (xx) consists here of (W, H).

7.6. Definition. Given (x) = (f©, fM Y — Z) asin .3 an n-stage comparison
map ¢ :W — ‘W  between two sequential realizations for Y as in ([3.9]), and two
n-homotopies H[ and 'H™ for W and 'W, respectively, as in §5.1] we write
HIN =y (HM) it H™Y = o B W Path(Z)A" and HIY = ey ("HIM)
if ngm} = eLm] o ’H,Em} : ka] — Path(Z)Ak foreach 0 <k <m <n.

By ([B2) we have

(7.7) Val(ry(H"™)) = (7,).(Val(H"™)) - and Val(ey ("H™)) = (2,).(Val("H™)) |
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so by Lemma 5.3}

(7.8) (a) Val(H™) =0 if and only if Val(r#(H[”])) -0
' (b) 1If Val(’HI") = 0 then Val(ey("H™)) =0 .

7.9. Definition. Given (x) = (f©, fM Y — Z) asin 73] the universal homotopy
operation ((x)) of §5.5 will be denoted by (({f©OD)) = (((fOD)), )

n=2"
We then have the following analogue of Theorem [G.5

7.10. Theorem. Let fO, f1) .Y — Z  be maps between fibrant and cofibrant
objects in C, inducing the same map of U 4-algebras ¢ : 7AY — 72Z. Then f©
and O are A-equivalent (see §I.13) if and only if the associated system of higher

operations {((fOY))  wanishes for some (and thus for any) sequential realization W
of Y.

Proof. If f© and f®M are A-equivalent, then by Remark [LI5 CW,f© and
CW,fM  are homotopic. By post-composing the augmentation of a sequential re-
alization W of CW,Y  with the A-equivalence CW,Y — Y, we may think
of W as a sequential realization of Y (see Corollary [6.0). Similarly, we have a
natural levelwise A-equivalence h : Path(CW4Z) — Path(Z). Therefore, given
G : CW,Y — Path(CW,4Z) providing a homotopy CW,f© ~ CW, f® in C ([Hix,
§7.3.1]), the map ho G : CW,Y — Path(Z), composed with each augmentation
el W' — CW,Y, defines a map a"owlel Path(Z), which lifts by the
splitting p* : Path(Z) — Path(Z)2" (see §LI) to G : Wi — Path(Z)A". This
defines compatible n-homotopies (see §7.3)) for all n > 1, showing that ({f©V)),
vanishes by Proposition [4.27]

Conversely, compatible n-homotopies for n > 1 define a map H : W, —
Path(Z)2" fitting into a commutative diagram of simplicial objects:

H

Path(Z)2"

A A®
‘/E y &
11 (0) . . . .
(7-1) o(Y)e —= z~ of oft z~"

\/

o)

where ) := p* o c(fW),, and the maps e, ev;, and o; (j = 0,1) are
induced by the corresponding maps of §7.3, and p* : ¢(Z), — Z2" is the Reedy
weak equivalence of §4.1] (this time for Z).

Applying geometric realization to (II) yields a path object

evy,evi o | Path(Z)2"|| — [|Z4°] ~ Z

(see I, §1]), and thus ||H| : ||[W,|| — || Path(Z)2"|| is a homotopy between
oo 7 o llel and |l o 0o fle]. Since [p7] : Z - ZA%] s a weak
equivalence and |[e]| : ||[W,|| = Y is an A-equivalence, this implies that f(® and
fMare A-equivalent. O

From Theorem [Z.I0 and Proposition we deduce:
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7.12. Corollary. If fO fM .Y —Z have f(o) = f?(;) :mAY — mAZ, the system
of higher operations {({fOV)) s a complete set of invariants for distinguishing
between the A-equivalence classes [fO] and [fM] in [Y,Z]a (see {I.13).

7.13. An example of an A-invisible map. Consider the pinch map V :
YnolRP?2 = S* U, et — S™F1 which collapses S™  to a point. If we apply
the (n + 1)-Postnikov section functor P"*!  to it, we obtain amap f:Y — Z =
K(Z,n+1) which represents f7(t,), where Sz : H"(Y;Z/2) — H" ™ (Y;Z) is
the Bockstein and 0 # ¢, € H*(Y;Z/2) =7Z/2 (see [MT, Ch. 3]). In particular, f
is trivial in ,. Thus we can use the simplified approach of §7.1k

The cofibration sequence

*

(7.14) 2

Sn Sn i En_lRPQ Vv Sn+1

is also a fibration sequence in the stable range, so for n >3 we have a free chain
complex resolution of (n + 1)-truncated II-algebras:

(715> Vg = 7T*Sn+1 —2>VQ = 7T*Sn+1 ivl = 7T*Sn —2> VO = W*Sn — A= 7T*Y.

Thus the simplicial resolution W;ZW, =Y in dimensions < 1, together with the
map f:Y — Z, is given by

9=2 inc S™ Us entl v gntl

S qn
\X\ \ /
CcS”

where H is a nullhomotopy for 2 -inc. Since V oinc is zero, diagram (7.2
simplifies to the solid portion of

CS™ o dosn CSn
A LJA 0
(7.16) Sun 2 Sn ¢ inc gn UQ en+1 Sn+1
\VL / v ?
cs” !

Here g, the structure map for the pushout defining S™ U, e**!, is the identity on

the interior of C'S™ = e™*1. Since the left copy of S™ maps by 0 to S™™!, the
associated Toda bracket is simply the map XS™ = C'S"/S™ = S**+1  which has
degree 1.

Since the indeterminacy is 2-[2S", S"™| = 2Z inside m,1S"™ =Z, the Toda
bracket does not vanish, which shows (as expected) that f is non-trivial, despite

inducing the zero map in m, in the relevant range.
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8. A FILTRATION INDEX INVARIANT

As an application of our methods, we show how our constructions can be used to
describe explicitly a certain filtration index invariant for mod p cohomology classes,
dual to the Adams filtration for elements in 7,Y,.

BLA. A reverse Adams spectral sequence

In order to define our index, we now set up an ad hoc cohomological reverse Adams
spectral sequence (see [B2]), which is not particularly well behaved or accessible to
computation, but suffices to show that our index is indeed homotopy invariant.

From now on, let C = Top,, A =S!' and x=w, asin §L.8, and let Y & Top,
be simply connected, with the II-algebra A := 7, Y of finite type (i.e., a finitely
generated abelian group in each degree). We choose some CW-resolution V, of A,
with CW basis {V,}22,, and a sequential realization W.

Next, fix a prime p and let K be a strict topological Abelian group model of
K(F,,N), for some N > 0 to be determined later. Applying the functor
map, (—, K) dimensionwise to each simplicial space in ([224]) yields

. (In+1]yx R (uInhy* R o (e[~ .
81 ... » X b — Xy —— Xy & = X 7 Ao

[n

with XP = map*(VV{."], K). Since M"map,(W,,K) = map,(L,+1 W, K) for

any simplicial space W, (see [GJ, VII, §1,4]), we see that each X, is Reedy
fibrant (since W is Reedy cofibrant), and the maps in (81)) are Reedy fibrations.
Thus the (homotopy) limit of this tower is X*® := map,(W,, K).

Moreover, applying Tot := mapg(A®, —) to ([BI]) also yields a tower of fibrations

° (L[n+1])* ° ° (L[l])* °

by [QIL 1L, §2, SM7], with Tot X2, = map,(|W."|, K). By [BKl XII, 4.3], its
(homotopy) limit is thus:

(8.3) TotX* = map,(|Wa], K) ~ map,(Y,K)

8.4. Identifying the fibers. Let sDI" denote the chain complex in Top, with
O¥X"W,,_;_; in dimension k (see §2), and yD .= £e¥ D" the corresponding
simplicial space (see §L.24HT.29).

By §2.23(ii), wo e /VVI.M — >DI isa (homotopy) cofibration sequence in
Top2™, so if we set YEp, = map*(ZD[."],K) and )/i['n] = map*(/\ﬁ[.n],K), we

have a (homotopy) fibration sequence

n
of cosimplicial spaces. Applying Tot to (BZ) yields another fibration sequence.
Since W and /Vvl.n} are weakly equivalent Reedy cofibrant simplicial spaces, by
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(ZI4) (where W s denoted by X.[F]), )A(fn] and X}, are weakly equivalent
Reedy fibrant objects in 82, so we have a homotopy fibration sequence

*

by [BK] XI, 4.3].

Since the restricted simplicial space & 2D is contractible in all simplicial di-
mensions but n, and ZE['n] is a strict cosimplicial simplicial Abelian group, the
homotopy spectral sequence for ZE['n] (see [BK|, X, 6]) collapses at the Fy-term,
and thus we have a weak equivalence of IF,-GEMs:

(8.7) Tot YEp,, ~ Q" map, (W, K) .

8.8. Identifying the Es-terms. Now consider the homotopy spectral sequence of
the tower of fibrations (82]), with

EY = mTot SEp,) = 7 Tot X° .
From (&7), (&3), and the fact that K = K(F,, N) we see that this is:
(8.9) EY = V""" (W, F,) = HY(Y;F,) .

In fact, from the description in §21B we see that the n-th normalized cochain
object N"X* of the cosimplicial space X°® ~ map,(W,,K) is weakly equivalent
to map,(W,, K), so in fact from the E)-term on our spectral sequence is naturally
isomorphic to the homotopy spectral sequence for X°® (see [BK| X, 6]).

Note that 'W,, is, up to homotopy, a wedge of spheres realizing the free II-algebra
V., the n-th CW basis of the given free simplicial resolution V, — A = 7,Y.
Moreover, since H*(W,,;F,) = Hom(H;W,, F,) and we have a natural identification
of HW, with QV,, where @ :1II A-Alg — grAbgp is the indecomposables
functor of [BI], §2.2.1], we can write E}"' = TN=="V, = where the graded functor
T : 1 4-Alg®™ — grVectg, is defined for any Il-algebra V by T'(V) = Hom(QV,F,).

Moreover, since TV, 1is a cosimplicial graded I,-vector space, we can calculate
the cohomotopy groups =TV, using the Moore cochain complex C*TV, (see
§I.21] and compare [BS| 1.8]), and as in [BJT3, §2] we have a natural isomorphism
C"TV, = TV,. Therefore, as in [BI] §3], we can identify the E,-term of our spectral
sequence as

(8.10) EPY = [L,TN"7"(A)

the n-th derived functor of T' (in degree N — i — n), applied to the Il-algebra
A=7Y.

8.11. Remark. Since any two sequential resolutions are connected by zigzags of com-
parison maps (as we saw in Section [3]), and these induce weak equivalences of simpli-
cial resolutions (in the sense of Proposition [[7)), we see that the associated spectral
sequences are all isomorphic from the Fs-term on.

Moreover, since we assume that A := 7w, Y is of finite type, we can choose a CW
resolution V, — A with each V,, (and thus each V) of finite type — so each
EY *and thus each E; * will actually be a finite dimensional [F,-vector space, and
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thus a finite set. This guarantees that the spectral sequence converges strongly for
any choice of sequential realization W (see [BK| IX, 3]).

Finally, although the FEj-term for this spectral sequence as defined vanishes unless
0 <i< N —n, itis clear from the construction that replacing K = K(F,, N) by
K(F,, N —1) has the effect of applying loops to every space in the tower (81]),
and thus in the tower (82)), too — which results in simply re-indexing the spectral
sequence by one in the ¢-grading. Thus in order to calculate a differential on a
particular element o in  E™', we may simply choose N large enough so both the
source and target are defined, and disregard the dependence of our construction on

N.
We may summarize our results so far in the following:

8.12. Pr0p0s1t10n For each sequential realization of a simply-connected finite type
Y € Top,, <VV{"] "] D[n JF Tinhee o and N > 1, there is a strongly
convergent spectml sequence wzth

EY = HYY (W, Fy) = HY (Y F,) .

The E,-term is independent of the choice of W, and if we replace N by N' = N +1,
then E3"  for the new spectral sequence is isomorphic to Ey "' for the old whenever
the latter 1S MOn-zero.

BL.B. The filtration index

The FEj-exact couple for our spectral sequence has the form:

an+1

TN—k+1 Tot X[ ] Hk n- 1W n+1 —>7TN kTOt X[nJrl} Hk n- IWn+2
(8.13) \L(L[n])* J/(L nt1])s
an— . ‘n—1 n .
TN —k+1 Tot X[.nfl] —l> kanwn ]—> TN —k Tot X[.n] —a> HkianJrl.

8.14. Definition. Consider an element ~ € H*(Y;F,) & ny_jmap,(Y,K) =
wn_r Tot X®.  Its filtration index I(vy) is the least n > 0 such that the im-
age of v in my_, Tot X7, (under the iterated fibrations (") in ®2)) s
non-zero. Convergence of the spectral sequence implies that I(y) = oo if and only
if v=0.

];‘Yrom ([BI3) we see that this image lifts (though not uniquely) to my_; Tot ZE? =
H*"(W,,;F,). This means that v is represented by an element in E%Y~* and thus
in EpN7F which is independent of W.

8.15. Lifting nullhomotopies. =~ We can represent v € H*(Y;F,) by a map
g:Y — K :=K(F, k). Precomposing with the augmentations el : VV{"] —Y
yields a particularly simple map I'™ : ||VV{."]|| — K, which we can think of as
O-simplex in Tot X, = map*(||VV[.n}||, K).

Noting that |[WL'|| ~ W, we see that 'Y is not nullhomotopic — that is,
I(y) =0 — if and only if g is “visible to homotopy” - that is, gz : mY — K
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is non-trivial. Otherwise we can choose a nullhomotopy G for T'” and try
to extend it inductively to a nullhomotopy G for T'I"l| for the largest possible
n > 0.

We therefore assume that we have a nullhomotopy G"~! for T~ To extend
it, it is more convenient to work with the explicit description of /VVI:L] in 2B - in
fact, in view of the coproduct decomposition of (ZIT), it suffices to extend G~
to Wi By Remark (and Section B]) we can use any sequential realization we
like, so we may assume for simplicity that we use the standard sequential realization
with CXIW, = CY/W,,. forall —1<j<n

From the usual description of HVVL"”\ in [G.J, VIL, 3] (or of TotXp —in [BK]
X, 3.2]), we think of T"™1 as a map of simplicial spaces wil o kA (which
happens to factor through the constant simplicial space ¢(Y),). However, G~
we o gea (viewed as a reduced path space) does not have this simple form
(unless ¢ itself is nullhomotopic). An extension to WL thus consists of a sequence
of maps H; = Hj["} : OXi-1W, — KA’ fitting into a commutative diagram:

wir

J " pln
J

(8.16) doldll-idjﬁ LBJD (no)*[(n[)"[(nj)* (Cn0)*
7ln]

w 1 Ccer W, —- KA

Clty*| (Cni)*

—

-

for each 1 < j <n, where the path fibration p : K% 5 K& s induced by the
inclusion of the cone base A7 — CAJ.

Note that the maps Tg."] : AV@Z} = Vv{,f] IICYy7-'W, — KA’  have the form

T;"_”J_hj, where h; : CX"I71W,, — KA’ factors through the iterated face map
D; : C¥"7'W,, — Y, and thus through d;, which vanishes for j > 2 by the
description in the proof of Lemma

Identifying CAJ with A" as in §€10 the adjoint of each H j[n} defines a
pointed map H ]["] : W, ® A" - K. If we denote the copy of A" associated

to H J[-"] by A?J.J)rl, then the 0-th facet of A?jgl corresponds to the cone direction
of CAJ in the adjunction to KO facets 1,..., j+ 1 correspond to facets
0,...,7 of éj the next n—j —1 facets correspond to the suspension directions
of CY"7'W,, and the (n + 1)-st facet corresponds to the cone direction of

Cx W,
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Commutativity of (8I€) translates into the requirement that

p

h; if i =0
G@Fj ifi=1

(8.17) H" on = H%D if i=2 and j > 1
H%l it i=n+1 andj<n
0 otherwise .

\
foreach 0 <7< 75 <n.

8.18. Definition. For each n > 1, the n-th modified folding polytope P is obtained

n

from the disjoint union of n n-simplices A?O), ceey A?n_l) by identifying 8nA(j_1)
with AT foreach 1< j<mn (see [BBSI §4.11]). Its boundary OP" s the
image of all facets of the n-simplices A’(Tj) (1 <j<n) notidentified as above.

Note that a nullhomotopy G~ : we 5 KA for T determines a

e~

pointed map Wi, W, ® 9P — K with \I’/(F7G)‘81AZ$1: G’E@leFj, and
Uipg = * on all other (non-identified) /f\acets of A?,:Sl. As in §L20  Wip g
induces a unique map ¥ = U g : W, A 9P — K.
We now have the following analog of Lemma [£.13t
8.19. Lemma. Foreach n > 1, the pair (73",873") is homeomorphic to (D™, S"71).
Choosing f =% in Propositions .17 and [£.27] we have:

8.20. Proposition. Given a sequential realization W for Y as above, a map ¢ :
Y - K = K(F,,k) estending by iterated face maps to T : HVV{.m}H — K2 for
each m >0, and a nullhomotopy GI—1 . wil o goa for TP the map
Uipe : W, A opP™+l 5 K of 818 is null-homotopic if and only if G~ extends
to a nullhomotopy G : Wil — KCA  for T,

8.21. Higher homotopy operations and the filtration index. Although the
maps V(g were formally defined only for standard sequential realizations (with

CYIW, = C¥'W, for all j and n), one can show (as in the proof of Proposition
417) that Proposition R20 in fact holds for any sequential realization W.

This allows us to think of the cohomology class [¥(r)] € H*"(W,;F,) as the
value of a system of higher homotopy operations {({)) = ({((7))n)>, associated to
the class v € H¥(Y;F,). This value is determined by the choice of a nullhomotopy
GI"=1 in Tot Xh = map*(||VV[."}||, K), and serves as the obstruction to lifting it
to G,

Moreover, one can use Theorem to show, as in the proof of Lemma (.6l that
if for some sequential realization W, T HVV{."] | = KA has a nullhomotopy G'™,
then this holds for every sequential realization.

We may thus summarize the situation in the following
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8.22. Proposition. The filtration index I(7y) of a cohomology class v € H*(Y;F,)
is the largest n for which {((7)), does not vanish. In particular, the system {({~y))
vanishes coherently if and only if ~+ = 0.

8.23. Example. Let Y = P""1(S"Uye™™!) (the (n+1)-Postnikov section of a Moore
space), with f:Y — Z =K(Z,n+ 1) induced by the pinch map, as in §.13] and let
g:Y — K(Fy,n+ 1) be the composite pof, with p:K(Z,n+1) = K(Fy,n+1)
the reduction mod 2 map. Thus v := [g] = Sq' op, with p:Y — K(Fy,n) the
Postnikov fibration.

Asin (ZI8), g4 :mY — n.K(Fy,n+1) is trivial, and since the Toda bracket
(V,inc,2) of (ZI0) is nontrivial, the same is true for (g,inc,2) (see [T} I]). Thus
((7))1 # 0, so v has filtration index 1.

APPENDIX A. COMPARISON MAPS

In this appendix we state and prove two facts about the comparison maps of Section
needed in the paper; we deferred the proofs until now because they are somewhat
technical.

A.1. Definition. A sequential realization W will be called fibrational if for each
n > 1, the chain map FIM : DI — C’iv[“in_u is a (levelwise) fibration in the
(projective) model category of chain complexes ChCST“1 of .18

We now have a mild extension of Theorem [2.29]

A2, Lemma. For A € C as in {1.71, any CW-resolution Vs  of a realizable
I 4-algebra A = 7Y has a fibrational sequential realization

W = (Wi, i Dl il pllyee

Proof. To make the sequential realization W of Theorem fibrational, we factor
F as an acyclic cofibration 7T : p (W,,) — D" followed by a fibration FI :
D" C’iv[“in_l} in the model category ChZ""'.

O

Note that the vertical acyclic cofibrations of ([227) are obtained from the map
T,

A.3. Proposition. For any algebraic comparison map V¥ : V, — 'V, for Y and
sequential realization W of Vi, there is a fibrational sequential realization "W  of
Vo with a comparison map ®:W — "W over V.

Proof. We construct ‘W, with the cofibrations el™ : W WY and retractions
il Wi s Wi by induction on n > 0:

Since V, is a coproduct summand in 'V, = U, 11V, say, if we realize V, by
W, and U, by X, then 'V, isrealized by '\/ﬁn = X,IIW,. By Definition 223,
the n-th stage of W is determined by the choice of strongly cofibrant replacement D,
of W, X S" ! equipped with a levelwise fibration F : D, — Ciw“é"*l] realizing
the given attaching map 53 :Vp— Cy Ve, If G, issimilarly a strongly cofibrant
replacement for X, X .S™ ', note that the attaching map @g 'V, — Cno_1'Vy has
the form Oy L7, and we may realize 7:U, — C,_1'Va by T:G, — Ci\/lwn_”,
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with 7, : X, = W, inducing R:G, — D,. We then realize p,:V —V, by
oL Iy < X, IIW, = W,

Following §21 A-B, we now consider the following diagram in the projective model
category of n-truncated chain complexes over C, in which P, is the pullback of the
lower right square.

(A.4) \S i P i
q F
T oy S g

~— -
Civ[e["*l]

and the section e for p is induced by the section CMel»~1  for CMypn—1,

Since by Definition Cro1po’0y =0y 0p,, also C,_ipoT =0, °p,|z,, so the
outer square in ([A4) commutes up to homotopy. Since F' is a fibration, we may
change R up to homotopy to make it commute on the nose by Lemma 5.11].
The maps R and T then induce S as indicated. This allows us to extend ([A4) to
the solid commuting diagram

G, I D, P, D.
~ Sle 7 p
(A.5) i ¢
Jic q F
¥ e S
E. CMrVVI.n—ﬂ ol CMvv{.n—ﬂ
* - *
Cble[n—l]

with G, I D, strongly cofibrant.

If we now factor S.le as an acyclic cofibration j: G, II D, — E, followed
by a fibration Q : E, - P, and set G : E, —» CMWI'! equal to qo Q,
e:D, — E, equalto joinc, and 7:E, — D, equal to po(@, we see that E,
is strongly cofibrant (since j is a cofibration), F' is a levelwise fibration, and they fit
into a diagram

CM r‘V[.n*H CMypln—1] CM\V[.nfl}

~——
Cye[”’”
in which the squares commute in both horizontal directions, and 7 oe = Id.
By Lemma[2.I8 and the fact that the map induced by the identity clearly is another
identity, we obtain an n-stage comparison map ® : W — ‘W extending the given
(n — 1)-stage comparison map. O
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We now prove Theorem B.I8, which we re-state as follows:

A.7. Theorem. Any two sequential realizations WO and WY of two CW reso-
lutions V¥ and V.(l), for two A-equivalent spaces Y© and Y, respectively,

are weakly equivalent under a (locally finite) zigzag of comparison maps, in the sense
of Definition 316l

Proof. Assume W© and WM are associated respectively to the two CW-
resolutions V&% and VY of the II a-algebra A = 7AY 0 =2 pAYM) - with
CW bases (VS))%N for i =0,1.

By Lemma B3] there is a third CW resolution ‘= : 'V, — A, with CW basis
("V)nen, equipped with algebraic comparison maps W : /AR 74 (1=0,1).
By Proposition [A.3] there are then two fibrational sequential realizations "W®  of
Vo — A, for i =0,1, each equipped with a comparison map ®® : W& — "W
over W Thus we are reduced to dealing with the case where the two fibrational
sequential realizations W® and W1 (ie., the W@ just constructed) are of
the same CW resolution V, — A (i.e., the above 'V,), with CW basis (V,)nen.
We construct a zigzag of comparison maps between them, by induction on n > 0
(where the case n =0 is trivial):

We assume by induction the existence of a cospan of (n—1)-stage trivial comparison
maps &0 : WO W (i =0,1) over Idy,. By Definition ZZ3 the n-th stage
for W@ is determined by the choice of strongly cofibrant replacements DY of
W, X S"~1  (where W, is some realization of the n-th algebraic CW basis object
V,), together with levelwise fibrations F® : DY — cMWI U0 (i = 0,1)
realizing the given attaching map 58 Vo, — Co_iVe.

Again following §21 A-B, we consider the following diagram in the projective model
category of n-truncated chain complexes over C, in which PY s the pullback of
the lower square

S0y o0 5
e
(A.8) i P i

q@® )

CMr[r,kl] )
CM“]{.nfl] * (D) CM\V[.nfl](z)
'\;//

CME[”_I]

* ()

The section e® for p isinduced by the section C'i\/[eg?)_u for C’iv[rg?)_u. We then

factor e as a cofibration £ followed by the acyclic fibration S . gD _, pW

(so 'BEY s a cofibrant replacement for P).
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Applying Lemma to the following diagram:

@
/E(l) = D(Z)
* FO) .
(A.9) 405 =G i iF(i)
: CM [n 1]
cowie ) T
\_/
CM [n—1]

()

we obtain n-stage trivial comparison maps ®® : W& — "W (7 =0,1) extending
the given ones to W.

Note, however, that G(® and G® are weakly equivalent fibrant and cofibrant
objects in the slice category Ch?" / C’}FVIM"_”, with its standard model category
structure (see [Hir, Theorem 7.6.5(a)]). We can therefore apply Lemma BT to obtain
an intermediate object GG in the slice category fitting into the following diagram:

5O s

/\ /_\
/E>(.<O) C =~ E =~ ),ES})

(A.10) \f“”& ) y
G iG M
CMVV{.nfl]

in which all four triangles commute, and s® o f =1d (i =0,1).
Applying Lemma 2.T§ yields a new n-stage sequential realization 'W  (corre-

sponding to G:E, —» C’i\/[\mn_l]), with two new n-stage trivial comparison maps
‘D0 WO — W (i =0,1).
The two composites:

(A.ll) W) $© W) '9(0) W ‘(1) W 27 oM W

then yield the required cospan of n-stage comparison maps. U
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