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Abstract:The set of subsumsof the series
∑∞

n=1 xn is known to be one of three types: a �nite union of intervals,
homeomorphic to the Cantor set, or of the type known as a Cantorval. Bartoszewicz, Filipczak and Szymonik
have described a family of series which contained all known examples of subsum sets which are Cantorvals.
We construct another family of series which produces new examples of subsum sets which are Cantorvals.
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1 Introduction

1.1 Notation

We consider an in�nite sequence {x} = {x2, x,x3, . . . } of positive terms.
It is well known that rearranging the terms of an absolutely convergent series does not change the sum

of the series. We use ẋ =
∞∑
n=1

xn to denote the series arising from {x}. Throughout this paper such a series ẋ

will be assumed to be a convergent series of positive terms.

De�nition 1.1. Let ẋ be a convergent series of positive terms.

(i) A subsum of ẋ is a number x ∈ R such that x =
∞∑
n=1

cnxn where cn ∈ {0, 1} for all n ≥ 1.

(ii) The set E(ẋ) ⊂ R is the set of all subsums of ẋ.

(iii) Xn =
∞∑

i=n+1
xi is the n-th tail of ẋ.

We now de�ne the well-known Cantor set C.

De�nition 1.2. We recursively de�ne the following subsets of the interval [0, 1]:

(i) C1 =
(
1
3 ,

2
3

)
;

(ii) Cn =
Cn−1
3 ∪

(
2
3 + Cn−13

)
for n ≥ 2.

The ternary Cantor set is C = [0, 1] \
(⋃∞

n=1 Cn
)
.
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Remark 1. Each Cn is a union of disjoint 2n−1 disjoint open intervals, each of length 1
3n .

1.2 Kakeya’s results

The following theorem is found in [1], and refers to results from [2–5].

Theorem 1.1. For any convergent series of positive terms ẋ, E(ẋ) is exactly one of the following:

(i) a �nite union of closed and bounded intervals.
(ii) homeomorphic to the Cantor set C.
(iii) homeomorphic to the set C

⋃
(
⋃∞
n=1 C2n−1).

De�nition 1.3. A Cantorval is a subset of R that is homeomorphic to C
⋃
(
⋃∞
n=1 C2n−1).

Note that the term Cantorval is used in a more general sense. (See [6], for instance). Our de�nition above
applies to what is often known as an M-Cantorval.

Remark 2. When discussing Cantorvals, the following equality of sets may be useful:

C
⋃

(
∞⋃
n=1

C2n−1) = [0, 1] \ (
∞⋃
n=1

C2n).

The possibilities (i) and (ii) in Theorem 1.1 were �rst stated by Kakeya in [2] as early as 1914. Kakeya’s results
are stated below.

Theorem 1.2 (Kakeya’s Results).

(i) E(ẋ) is a �nite union of closed and bounded intervals if xn ≤ Xn for all but �nitely many n.
(ii) Furthermore, if {x} is a non-increasing sequence and E(ẋ) is a �nite union of closed and bounded

intervals, then xn ≤ Xn for all but �nitely many n.
(iii) E(ẋ) is homeomorphic to C if xn > Xn for all but �nitely many n.

From Theorem 1.1 and Kakeya’s Results, we can deduce the following corollary.

Corollary 1.2.1. If E(ẋ) is a Cantorval, then xn ≤ Xn for in�nitely many n and xn > Xn for in�nitely many n.

It should be noted that these conditions do not guarantee that E(ẋ) is a Cantorval. For instance, let ẋ be the
series such that x2n−1 =

10
11n and x2n =

1
11n for n ≥ 1. It is the case that xn > Xn for all odd n, and xn ≤ Xn for

all even n, but yet the set E(ẋ) is homeomorphic to the Cantor set C. This follows from a result in a paper by
Z. Nitecki. (See Remark 16 in [7].)

For a convergent series of positive terms, conditionswhich guarantee that its subsumset is a Cantorval are
not known. Bartoszewicz, Filipczak and Szymonik in [1] describe families of series which contain all known
examples of series for which the set of subsums is a Cantorval. In particular, they consider multigeometric
series, and they construct a family of such series whose subsum sets are Cantorvals. In this paper we extend
their result by constructing a di�erent family of multigeometric series whose subsum sets are new examples
of Cantorvals.

In Section 2 of this paper we generalize a result from [1] by replacing a hypothesis in which the subsum
set of a multigeometric series contains a set of consecutive integers by one in which it contains an arithmetic
progression. In Section 3 we prove a result which describes a family of series satisfying the latter hypothesis,
andwhose subsumsets are Cantorvals. Finally in Section 4wedescribe a very simple algorithm for generating
in�nite families of series whose subsum sets are Cantorvals, and we use it to construct two examples.

A referee of the �rst draft of this paper pointed the authors to the paper by Banakh, Bartoszewicz,
Filipczak and Szymonik [8] which gives much more general su�cient conditions for the subsum set of a
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multigeometric series to be a Cantorval. In Section 4 wewill state some of these conditions and apply them to
our two examples. Although [8] does give more general conditions than this paper, these conditions do not
completely overlap our results. Furthermore our algorithm for producing Cantorvals is new.

2 The main result in [1] and a generalization
Let k1, k2, . . . km and q be constants with 0 < q < 1. Then the sequence

(k1, k2, . . . km , k1q, k2q, . . . kmq, k1q2, k2q2, . . . kmq2, . . . )

is called a multigeometric sequence, and is denoted by (k1, k2, . . . km; q), and its set of subsums by
E(k1, k2, . . . , km; q). (See [1]). Here is the main result by Bartoszewicz, Filipczak and Szymonik in [1].

Theorem 2.1. Let k1 ≥ k2 ≥ · · · km be positive integers and let K =
m∑
i=1

ki.

Suppose that the set
{ m∑
i=1

ciki : ci = 0 or ci = 1
}

contains the numbers n0, n0 + 1, n0 + 2, . . . n0 + n for

some positive integers n0 and n. Then the following are true.

(i) If q ≥ 1
n + 1 , then E(k1, k2, . . . , km; q) contains an interval.

(ii) If q < km
K + km

, then E(k1, k2, . . . , km; q) is not a �nite union of intervals.

It follows that if 1
n + 1 ≤ q < km

K + km
, then E(k1, k2, . . . , km; q) is a Cantorval. The following theorem

generalizes this result.

Theorem 2.2. Let k1 ≥ k2 ≥ · · · km be positive integers, and let K =
∞∑
i=1

ki. Suppose that the set{ m∑
i=1

ciki : ci = 0 or ci = 1
}

contains the numbers a, a + d, a + 2d, . . . , a + nd for some positive integers a, d

and n. Then the following are true:

(i) If q ≥ 1
n + 1 , then E(k1, k2, . . . , km; q) contains an interval.

(ii) If q < km
K + km

, then E(k1, k2, . . . km; q) is not a �nite union of intervals.

(iii) If 1
n + 1 ≤ q <

km
K + km

, then E(k1, k2, . . . km; q) is a Cantorval.

Our proofs are very similar to the proofs of the result by Bartoszewicz, Filipczak and Szymonik in [1].

Proof of (i). Consider the multigeometric sequence (d, d, . . . , d; q)with d repeated n times. Let xr be the r-th

term, and let Xr =
∞∑

i=r+1
xi. We show that xr ≤ Xr for all r.

For any r which is not a multiple of n, xr = xr+1, and hence xr ≤ Xr. Suppose that r = kn for some positive

integer k. Then xkn = dqk−1, and Xkn =
∞∑
i=0

ndqk+i = ndq
k

1 − q . Hence xkn ≤ Xkn if and only if dqk−1 ≤ ndq
k

1 − q , if

and only if 1
n + 1 ≤ q, which we have assumed to be true. Therefore xr ≤ Xr for all r. It follows from (i) of

Kakeya’s results that E(d, d, . . . , d; q) is a �nite union of intervals.

Next we show that
∞∑
n=0

aqn + E(d, d, . . . , d; q) is contained in E(k1, k2, . . . , km; q).
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Let x ∈
∞∑
n=0

aqn + E(d, d, . . . , d; q). Then x = (a + aq + aq2 + . . . ) + d(p0 + p1q + p2q2 + . . . ) for some

pi ∈ {0, 1, 2, . . . , n}, that is, x = (a + p0d) + (a + p1d)q + (a + p2d)q2 + · · · . By hypothesis, each (a + pjd) has

the form
m∑
i=1

ciki where ci = 0 or ci = 1. Therefore we have x ∈ E(k1, k2, . . . km; q).

We have shown that E(d, d, . . . , d; q) is a �nite union of intervals. Since
∞∑
n=0

aqn + E(d, d, . . . , ; q) is a

translation of E(d, d, . . . d; q), it is a �nite union of intervals. Therefore E(k1, k2, . . . km; q) contains a �nite
union of intervals, thus proving (i).

Proof of (ii). Now suppose that q < km
K + km

. We will show that the sequence (k1, k2, . . . km; q) is non-
increasing and that xsm > Xsm for all positive integers m.

Recall that k1 ≥ k2 ≥ · · · km. Hence, to show that the sequence is non-increasing, it is su�cient to show
that km ≥ k1q. This is true if and only if q ≤ kmk1

. But q < km
K + km

= km
(k1 + k2 + · · · km) + km

< kmk1
. Therefore

the sequence is non-increasing.
Observe that xsm = kmqs−1 and that Xsm = kmqs−1 and that Xsm = Kqs

1 − q . So xsm > Xsm if and only if

kmqs−1 >
Kqs
1 − q if and only if q < km

K + km
, which we have supposed to be true. From (ii) of Kakeya’s results we

conclude that E(k1, k2, . . . , km; q) is not a �nite union of intervals, thus proving (ii).

Proof of (iii). Now suppose that 1
n + 1 ≤ q < km

K + km
Then as previously shown, E(k1, k2, . . . , km) contains

an interval but is not a �nite union of intervals. By Theorem 1.1, E(k1, k2, . . . , km; q) is a Cantorval.

3 A family of Cantorvals
The statement of Theorem 2 describes serieswhose subsum sets are Cantorvals, but it does not provide simple
examples of such series. The next theorem describes such a family of series.

Theorem 3.1. Let (a+2nd, a+(2n−2)d, . . . a+2d, a, d; q) be amultigeometric sequence with 2nd < a < (2n+

2)d and n ≥ 4. If 1
2n + 2 ≤ q < min

(
d
a ,

a − d
(n + 2)a + (n2 + n)d

)
, then E(a+2nd, a+(2n−2)d, . . . , a+2d, a, d; q)

is a Cantorval.

The proof of the theorem is contained in the following three lemmas.

Lemma 3.2. If 1
2n + 2 ≤ q, then E(a+2nd, a+(2n−2)d, . . . , a+2d, a, d; q) contains a �nite union of intervals.

Proof. Observe that for the series (a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) the set

S =
{ m∑
i=1

ciki : ci = 0 or ci = 1
}

contains the arithmetic progression (a, a + d, a +2d, . . . , a +2nd, a + (2n +1)d). It follows from Theorem 2.2
that if 1

2n + 2 ≤ q, then E(a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) contains a �nite union of intervals.

Next we want to show that E(a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) is not equal to a �nite union of
intervals. We will do so by using (ii) of Kakeya’s results, which implies that if the sequence is non-increasing
and xn > Xn for in�nitelymany n, E(a+2nd, a+(2n−2)d, . . . , a+2d, a, d; q) is not a �nite union of intervals.

But the terms of the sequence (a + 2nd, a + (2n − 2)d, . . . , a + 2d, ad , d; q)may not be non-increasing.
Therefore, in order to apply Kakeya’s result, wemust �rst rearrange the terms so that they are non-increasing.
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Remark 3. It is important to note that a convergent series
∞∑
n=1

xn of positive terms and any rearrangement

of it will have the same subsum sets. To see this, observe that if x =
∞∑
n=1

cnxn is a subsum of
∞∑
n=1

xn, then by

rearranging the series we will get a subsum of the rearrangement, and since we have absolute convergence,
the rearranged sum is also equal to x. By the same reasoning, a subsum of the rearranged series will be a

subsum of
∞∑
n=1

xn. Hence any conclusions about the subsum set of the rearranged series will be true for the

original series as well.

Lemma 3.3. If we rearrange the terms of the sequence so that dqn−1 comes between (a + 2d)qn and aqn, then
the sequence is non-increasing.

Proof. Consider the �rst few terms of the sequence:

a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d, (a + 2nd)q, . . . , (a + 2d)q, aq, . . .

Wemove d so that it is between (a+2d)q and aq, and in general wemove dqn−1 between (a+2d)qn and aqn.
The �rst few terms of the rearranged sequence become:

a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, (a + 2nd)q, (a + (2n − 2)d)q, . . . ,
(a + 2d)q, d, aq, (a + 2nd)q2, (a + (2n − 2)d)q2, . . . , (a + 2d)q2, dq, aq2, . . .

To show that this rearrangement is non-increasing, it is su�cient to show that:

1. a ≥ (a + 2nd)q;
2. (a + 2d)q ≥ d;
3. d ≥ aq.

We �rst prove 1. By one of the hypotheses of Theorem 3.1 we have that

q ≤ a − d
(n + 2)a + (n2 + n)d .

Hence we see that
(a + 2nd)q ≤ (a + 2nd) a − d

(n + 2)a + (n2 + n)d .

By another of the hypotheses of Theorem 3.1, 2nd < a, and hence a + 2nd < 2a. Also a − d < a.
Therefore

(a + 2nd)q ≤ 2a a
(n + 2)a + (n2 + n)d . (1)

By still another hypothesis of Theorem 3.1, n ≥ 4. It follows that

(n + 2)a + (n2 + n)d ≥ 6a + 20d > 2a.

Combining this with (1) gives
(a + 2nd)a ≤ 2a a2a = a

thus proving 1.
To prove 2 we see that by the hypotheses of Theorem 3.1, a > 2nd and q ≥ 1

2n + 2 , and so

(a + 2d)q > 2nd + 2d
2n + 2 = d.

To prove 3 we see that by yet another of the hypotheses of Theorem 3.1, q < d
a , which implies

that d > aq.
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Lemma 3.4. The set of subsums of the rearrangement described in Lemma 3.3 is not a �nite union of intervals.

Proof. We will show that in the rearranged series there are in�nitely many terms which are strictly greater
than their tails. First we show that the term a in the rearranged series is strictly greater than its tail.

Let
K = (a + 2nd) + (a + (2n − 2)d) + · · · + (a + 2d) + a + d.

The tail of a is d +
∞∑
n=1

Kqn = d + Kq
1 − q . Hence a is strictly greater than its tail if and only if a > d + Kq

1 − q , if

and only if q < a − d
a − d + K . Now oberve that

K = (n + 1)a + d + 2d(1 + 2 + · · · + n)

= (n + 1)a + d + 2d
(
n(n + 1)

2

)
= (n + 1)a + (n2 + n + 1)d.

Substituting this value for K in the inequality for q, we get that a is strictly greater than its tail if and only
if q < a − d

(n + 2)a + (n2 + n)d . But this is true by one of the hypotheses of Theorem 3.1.
For every positive integer n, the tail of aqn is given by

dqn +
∞∑
i=1

Kqn+i = dqn + Kq
n+1

1 − q .

We have shown above that a > d + Kq
1 − q . It follows that aqn > dqn + Kqn+1

1 − q for every positive integer n.
Therefore there are in�nitely many terms which are strictly greater than their tails. It follows from (ii) of
Kakeya’s results that the subsum set of the rearranged series is not a �nite union of intervals.

Remark 4. In Remark 3,we showed that rearranging the terms of a serieswith positive termsdoes not change
its set of subsums. It follows from Lemma 3.4 that E(a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) is not equal
to a �nite union of intervals.

We can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, E(a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) contains a �nite union of
intervals. By Remark 4, E(a +2nd, a + (2n −2)d, . . . , a +2d, a, d; q) is not equal to a �nite union of intervals.
Hence by Theorem 1.1, E(a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) is a Cantorval.

4 Two examples
We consider the question of how to construct a family of multigeometric series which satis�es the somewhat
complicated hypotheses of Theorem 3.1. We need values of d, a and n which satisfy the following conditions:

(1) 2nd < a < (2n + 2)d;
(2) n ≥ 4;
(3) 1

2n + 2 < min
{
d
a ,

a − d
(n + 2)a + (n2 + n)d

}
.

Proposition 1. If (1) and (2) are satis�ed, then (3) is also satis�ed.
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Proof. Suppose that (1) and (2) are true. From (1) we see that a < (2n + 2)d implies that 1
2n + 2 < d

a . By a

straightforward calculation we see that (3) is true if and only n
2 + 3n + 2

n < ad . Since n ≥ 4 and 2nd < a, we
see that

n2 + 3n + 2
n = n + 3 + 2

n < n + 3 + 1 = n + 4 ≤ 2n < ad .

Example 4.1. (17, 15, 13, 11, 9, 1; q) is a Cantorval if 1
10 < q < 4

37 .

Proof. Let n = 4. Then we need 8 < ad < 10. We could choose a = 9 and d = 1, which gives us the sequence
(17, 15, 13, 11, 9, 1; q). Then

a − d
(n + 2)a + (n2 + n)d = 9 − 1

(4 + 2)9 + (42 + 4)1 = 4
37 .

By Theorem 3.1, E(17, 15, 13, 11, 9, 1; q) is a Cantorval if 1
10 < q < min

(
1
9 ,

4
37

)
, or 1

10 < q < 4
37 .

Example 4.2. E(41, 37, 33, 29, 25, 21, 2; q) is a Cantorval if 1
12 < q < 19

207 .

Proof. Suppose that n = 5, so that 10 < a
d < 12. If we choose d = 2 and a = 21, we then get the sequence

(41, 37, 29, 25, 21, 2; q). Using Theorem 3.1 we see that E(41, 37, 33, 29, 25, 21, 2; q) is a Cantorval if
1
12 < q < min

(
2
21 ,

19
207

)
, or 1

12 < q < 19
207 .

It should be noted that the sequence (17, 15, 13, 11, 9, 1) satis�es the hypotheses of the Bar-

toszewicz, Filipczak and Szymonik result, since the set
{ m∑
i=1

ciki : ci = 0 or ci = 1
}

contains the numbers

9, 10, 11, . . . , 17, 18, but the result cannot be used to show that E(17, 15, 13, 11, 9, 1; q) is a Cantorval.

With their notation, n = 10, km = 1 and K = 66, so that the interval
[

1
n + 1 ,

km
K + km

]
=
[
1
11 ,

1
67

]
is empty.

As promised in Section 1, we shall now state the more general results found in [8]. We begin with some
de�nitions.

De�nition 4.1. Let A ⊂ R be a compact set containing more than one point.

(i) diamA = sup{|a − b| : a, b ∈ A} is the diameter of A.
(ii) ∆(A) = sup{|a − b| : a, b ∈ A, (a, b) ∩ A = ∅}. Note that ∆(A) gives the largest gap in A.

(iii) I(A) = ∆(A)
∆(A) + diam(A) .

(iv) i(A) = inf{I(B) : B ⊂ A, |B| ≥ 2}.

Let k1 ≥ k2 ≥ · · · ≥ km be positive real numbers and let S =
{ m∑
i=1

ciki : ci ∈ {0, 1}
}
. Also let q ∈ (0, 1).

Theorem 4.1. [8]

1. E(k1, k2, . . . , km; q) is an interval if and only if q ≥ I(S).
2. E(k1, k2, . . . km; q) contains an interval if q ≥ i(S).
3. E(k1, k2, . . . , km; q) is a Cantor set of zero Lebesgue measure if q < 1

|S| .

For Example 4.1, the sequence (17, 15, 13, 11, 9, 1; q), we �nd that

S = {0, 1} ∪ {9, 10, 11, . . . , 18} ∪ {20, 21, 22, . . . , 46} ∪ {48, 49, 50, . . . , 57} ∪ {65, 66}.
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It follows that diamS = 66, ∆(S) = 8, I(S) = 4
37 , and i(S) = 1

27 . (Note that the set

B = {20, 21, 22, . . . , 46} ⊂ S and I(B) = 1
27 .) Finally |S| = 51. By Theorem 4.1, we see that

E(17, 15, 13, 11, 9, 1; q) is a Cantor set of zero measure if q < 1
51 , contains an interval if 1

27 ≤ q, and

is an interval if q ≥ 4
37 . The proof of Lemma 3.4 in Section 3, together with Remark 4 which follows it,

implies that the subsum set E(a + 2nd, a + (2n − 2)d, . . . , a + 2d, a, d; q) is not a �nite union of intervals

if q < min
(
d
a ,

a − d
(n + 2) + (n2 + n)d

)
. Since a = 9, d = 1 and n = 4, it follows that E(17, 15, 13, 11, 9, 1; q) is

not a �nite union of intervals if q < 4
37 . Therefore E(17, 15, 13, 11, 9, 1; q) is a Cantor set of zero measure if

q < 1
51 , is a Cantorval if 1

10 ≤ q <
4
37 , and is an interval if q ≥ 4

37 .
For Example 4.2, the sequence (41, 37, 33, 29, 25, 21, 2; q), we have diam(S) = 188, ∆(S) = 19, I(S) =

19
207 , i(S) =

3
149 , and |S| = 84. Hence by the same reasoning, E(41, 37, 33, 29, 25, 21, 2; q) is a Cantor set

of zero measure if q < 1
84 , is a Cantorval if 3

149 ≤ q <
19
207 and is an interval if q ≥ 19

207 .
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