
Calvin University Calvin University

Calvin Digital Commons Calvin Digital Commons

University Faculty Publications and Creative
Works University Faculty Scholarship

3-1-2021

Disputing Dijkstra, and birthdays in base 2 Disputing Dijkstra, and birthdays in base 2

Mark Guzdial
University of Michigan

Joel C. Adams
Calvin University

Follow this and additional works at: https://digitalcommons.calvin.edu/calvin_facultypubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Guzdial, Mark and Adams, Joel C., "Disputing Dijkstra, and birthdays in base 2" (2021). University Faculty
Publications and Creative Works. 120.
https://digitalcommons.calvin.edu/calvin_facultypubs/120

This Article is brought to you for free and open access by the University Faculty Scholarship at Calvin Digital
Commons. It has been accepted for inclusion in University Faculty Publications and Creative Works by an
authorized administrator of Calvin Digital Commons. For more information, please contact
digitalcommons@calvin.edu.

https://digitalcommons.calvin.edu/
https://digitalcommons.calvin.edu/calvin_facultypubs
https://digitalcommons.calvin.edu/calvin_facultypubs
https://digitalcommons.calvin.edu/university_scholarship
https://digitalcommons.calvin.edu/calvin_facultypubs?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.calvin.edu/calvin_facultypubs/120?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@calvin.edu

12 COMMUNICATIONS OF THE ACM | MARCH 2021 | VOL. 64 | NO. 3

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Dijkstra’s argument is that comput-
ers represent “radical novelty.” There’s
nothing like them in human experi-
ence, and we cannot use our past expe-
rience to understand them. In particu-
lar, we shouldn’t use metaphors.

“It is the most common way
of trying to cope with novelty: by
means of metaphors and analo-
gies we try to link the new to the
old, the novel to the familiar. Un-
der sufficiently slow and gradual
change, it works reasonably well;
in the case of a sharp discontinu-
ity, however, the method breaks
down: though we may glorify it
with the name ‘common sense,’
our past experience is no longer
relevant, the analogies become
too shallow, and the metaphors
become more misleading than
illuminating. This is the situa-
tion that is characteristic for the
“radical” novelty.

“Coping with radical novelty
requires an orthogonal method.
One must consider one’s own
past, the experiences collected,
and the habits formed in it as
an unfortunate accident of his-
tory, and one has to approach

the radical novelty with a blank
mind, consciously refusing to
try to link it with what is already
familiar, because the familiar is
hopelessly inadequate.”
We now know this is likely impos-

sible. The learning sciences tell us all
learning is based on connecting new
experiences to previous, through a pro-
cess called constructivism developed by
Jean Piaget (see a nice explanation at
http://bit.ly/3oiCZZ8). Trying to learn
something without connection to prior
experience inhibits learning. It leads to
a phenomenon called inert knowledge
(http://bit.ly/3oiCZZ8) where you have
memorized stuff to pass the test, but
you don’t really understand and can’t
really use the knowledge.

I never really thought much about
the metaphors we use to learn and teach
computer science until the SIGCSE 2014
paper “Metaphors we teach by” (https://
bit.ly/3pQ9bn1). CS teachers and stu-
dents have been ignoring Dijkstra’s ad-
monitions all along. They teach with a
variety of metaphors, and though all of
them have limitations (Dijkstra was right
about that), this paper explored how
teachers dealt with the breaking point.

The 2019 paper “Identifying em-
bodied metaphors for computing edu-
cation” (https://bit.ly/3od9uI9) goes a
step further to focus on the metaphors
that are based on physicality. From a
“radical novelty” perspective, this may
seem ridiculous—nothing could be
less physical than ideas like “arrays”
and “control flow.” But from a “con-
structivism” perspective, nothing could
be more natural. The basis for all our

Mark Guzdial
Dijkstra Was Wrong
About ‘Radical
Novelty’: Metaphors
in CS Education
http://bit.ly/35dg21S

November 30, 2020

Edsger Dijkstra’s 1988 paper “On the
Cruelty of Really Teaching Computer
Science” (in plain text form at https://
bit.ly/3b6bFto) is one of the most well-
cited papers on computer science (CS)
education. It is also wrong. A growing
body of recent research explores the
very topic that Dijkstra tried to warn
us away from—how we learn and teach
computer science with metaphor.

According to Google Scholar, Dijk-
stra’s paper has been cited 571 times.
In contrast, the most-cited paper in
all of the ACM Digital Library papers
related to SIGCSE has 412 citations
(see data at https://bit.ly/3bae0Ub).
Dijkstra’s paper has been cited more
than any peer-reviewed CS education
research. Many of these citations
might be citing the “cruelty” paper as
a foil, like Owen Astrachan’s “On the
Cruelty of Really Teaching Computer
Science redux” (https://bit.ly/3pSXSKI).

Disputing Dijkstra,
and Birthdays in Base 2
Mark Guzdial takes issue with Dijkstra’s metaphors, while Joel C. Adams
considers how birthdays might differ if based on binary numbers.

DOI:10.1145/3446806			 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3446806

MARCH 2021 | VOL. 64 | NO. 3 | COMMUNICATIONS OF THE ACM 13

blog@cacm

experiences are being physical beings
in a physical world. When we’re deal-
ing with new ideas, we will likely relate
them to physical processes.

I am working with Ph.D. student
Amber Solomon, who has been study-
ing how teachers teach recursion and
how students learn it. She had a paper
last summer at the 2020 International
Conference of the Learning Sciences
about the embodied metaphors that
teachers use when teaching recursion
(see summary at http://bit.ly/3ogO9xq).
Teachers gesture and point, but it’s not
clear to what. They talk about being
“here” and “going.” They use language
that suggests metaphors like the pro-
gram “says” something.

Solomon is co-advised by Betsy DiSal-
vo and myself. The three of us have been
spending time coding her videos of CS
students understanding and modifying
programs that use recursion. These are
absolutely fascinating, and once you
start looking for metaphors and uses
of embodiment, you see it everywhere.
I particularly like how students shift
metaphors, such as talking about the re-
cursive function “going” and then being
“stopped” by the base case, then talking
about “going down” the stack and exe-
cution being different “on the way back
up.” We know that there is no “down,”
“back,” or “up” in a computer process
—these are examples of using concepts
from our everyday physical world to un-
derstand computational processes.

In 1988 when Dijkstra wrote this
piece, cognitive science journals were
only about a decade old, and learning
sciences was not established until the
1990s. It is understandable that Dijks-
tra might not have known about con-
structivism. Today, we know construc-
tivism as the most widely-accepted
theory of how humans learn. Using a
constructivist lens on learning about
computing, we can better understand
how to help students use their every-
day knowledge as metaphors to learn
computer science.

Joel C. Adams
Birthday Bit
Boundaries
http://bit.ly/38gYp3p

December 1, 2020

My family and I recently celebrated my 63rd
birthday. As we were eating dinner that

night, one of my sons asked if I had any-
thing special planned for this upcom-
ing year. I hadn’t given next year much
thought, but since 6310 is 1111112, it oc-
curred to me that this was my last birth-
day for which my age can be represent-
ed in six bits, as it will take seven bits
(10000002) to represent my age when I
turn 64. When I mentioned this, it trig-
gered a surprisingly long and whimsical
discussion. (My sons have both gradu-
ated with CS degrees and my wife teach-
es statistics, so...) Some of the points
raised during that discussion included:

	˲ We might define a birthday bit
boundary as a birthday that requires
an additional bit to represent one’s
new age. On my next birthday, I will
cross a birthday bit boundary when
my age changes from 1111112 (63) to
10000002 (64).

	˲ After birthday #64, my next pos-
sible birthday bit boundary would
be #128. According to the Guin-
ness Book of World Records, the most
long-lived person on record was
Jean Calment of France, who was
122 when she died in 1997. With no
intention of being morbid, barring
a medical longevity breakthrough,
#64 will almost certainly be the last
time I cross a birthday bit boundary.

	˲ Our culture places special empha-
sis on some birthdays. Often these are
multiples of 10 (like 30, 40, 50, 60, …),
presumably because our culture pri-
marily uses decimal numbers. What
birthdays would be deemed special if
we used a different number system,
such as base 12?

	˲ A few other birthdays also receive
special attention, such as #12 in some
cultures, or “Sweet Sixteen” in popular
U.S. culture.

	˲ My previous birthday bit bound-
ary—#32—is quite close to 30, which is
commonly regarded as the threshold-
age separating youth from non-youth (as
in, “never trust anyone over 30”). Why not
use 32 instead of 30 as that threshold?

	˲ Each birthday bit boundary—#2,
#4, #8, #16, #32, #64—is reasonably
close to a key threshold in one’s life
stages. If our culture were based on bi-
nary numbers instead of decimal num-
bers, might we celebrate these birth-
days as having special significance?

If we were to celebrate birthday bit
boundaries as the entry points to new life
stages, the table here shows the result.

In this table, the bit-boundary ages
map surprisingly well to the start of sig-
nificant life-stage transitions. For ex-
ample, the start of adolescence is often
associated with the onset of puberty,
which can occur anytime in the age-
range 8–14. In many U.S. states, teen-
agers can get their driver licenses at 16,
marking their transition to adulthood.

Likewise, in the U.S., 60–65 is com-
monly thought of as the age at which
one becomes a senior citizen, and
65 has long been thought of as the
typical “retirement” age. However, 65
seems fairly arbitrary; 64 is obviously
close by and might be used instead.

As a result of our family discussion,
I’ve decided to: (i) declare my next
birthday (#64) to be one of extra-spe-
cial significance, and (ii) hold a special
party to celebrate my crossing of this
final birthday bit boundary. Assuming,
of course, that I am still around.

If you have read this far, you may
well be thinking that this seems like
an especially geeky idea. You may even
think this seems like evidence of en-
croaching elderly eccentricity. This
would be difficult to dispute.

However, before you render a final
judgment, it is worth noting there is a
well-known Beatles song about reach-
ing old age, and the title of that song is
not “When I’m Sixty Five,” but rather
“When I’m Sixty Four”!

Mark Guzdial is professor of electrical engineering and
computer science in the College of Engineering, and
professor of information in the School of Information, of
the University of Michigan. Joel C. Adams is a professor
of computer science at Calvin University.

© 2021 ACM 0001-0782/21/3 $15.00

Decimal
Age

Binary
Age

Life Stage

0 0
Infant

1 1
2 10

Toddler
3 11
4 100

Child
7 111
8 1000

Adolescent
15 1111
16 10000

Adult
31 11111
32 100000

Middle Age
63 111111
64 1000000

Senior Citizen
127 1111111

	Disputing Dijkstra, and birthdays in base 2
	Recommended Citation

	tmp.1654973282.pdf.gP0HH

