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NULL-HOMOLOGOUS EXOTIC SURFACES IN 4-MANIFOLDS

NEIL R. HOFFMAN AND NATHAN S. SUNUKJIAN

Abstract. In this paper we exhibit infinite families of embedded tori in 4-

manifolds that are topologically isotopic but smoothly distinct. The interesting
thing about these tori is that they are topologically trivial in the sense that

each bounds a topologically embedded solid handlebody. This implies that

there are stably ribbon surfaces in 4-manifolds that are not ribbon.

1. introduction

Just as a 4-manifold can have many inequivalent smooth structures, there can

be many different smooth embeddings of surfaces into a 4-manifold which are topo-

logically isotopic, but smoothly distinct. Any surface which admits more than

one smooth embedding in a topological isotopy class will be said to admit exotic

embeddings.

In this paper we will show that null-homologous tori first discovered by Fintushel

and Stern in their knot surgery construction in fact provide examples of exotically

embedded tori. Specifically,

Theorem 1.1. Let X be a smooth 4-manifold with b2 ≥ |σ|+6, non-trivial Seiberg-

Witten invariant, and embedded torus T of self intersection 0 such that π1(X \T ) =

1. Then X contains an infinite family of distinct tori {Ti} that are topologically

isotopic to the unknotted torus (a torus that bounds a solid handlebody in X), but

no diffeomorphism of X exists taking Ti to Tj if i 6= j.

The first examples of orientable exotic embeddings come from Fintushel and

Stern’s “rim surgery” technique [4]. Their surfaces all have simply connected com-

plement. A variation on rim surgery was given by Kim, and Kim-Ruberman which

works in the case that the complement has non-trivial fundamental group ([10–12]).

Tom Mark has used Heegaard-Floer homology to show that these constructions are

also effective for constructing exotic embeddings of surfaces with negative self inter-

section ([13]). On the other hand, all of these constructions involve surfaces whose

complement has finite first homology, and moreover all of these constructions es-

sentially begin with symplectically embedded surfaces in a symplectic 4-manifold.

Such surfaces can never be null-homologous. The significance of our examples is

that they are null-homologous and moreover topologically trivial.
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2 NEIL R. HOFFMAN AND NATHAN S. SUNUKJIAN

One of the features of this theorem is that there are numerous tractable examples

where the theorem can be applied. For example, any elliptic surface contains such

a torus and has non-trivial Seiberg-Witten invariant by virtue of being a symplectic

manifold.

The strategy of proof is as follows: The knot surgery construction of Fintushel

and Stern produces an infinite family of exotic smooth structures on a 4-manifold

through a series of log-transforms on null-homologous tori. These are the tori

we will focus on. Using Seiberg-Witten theory, we will define a gauge theoretic

invariant of null-homologous tori to distinguish the tori smoothly. Finally, we will

show that all such tori are topologically isotopic by a theorem of the second author:

Theorem 1.2 ([15, Theorem 7.2]). Let Σ0 and Σ1 be locally flat embedded sur-

faces of the same genus in a simply connected 4-manifold X. The surfaces are

topologically isotopic when π1(X \ Σi) = Z and b2 ≥ |σ|+ 6.

Note that a trivially embedded surface in any 4-manifolds will satisfy π1(X\Σ) =

Z.

One might wonder how robust these exotic embeddings are. That is, what

does it take to make any of the exotically embedded topologically trivial surfaces

constructed here smoothly equivalent again? In [1], Inanc Baykur and the second

author show that these tori become smoothly equivalent once one increases the

genus of each of these surfaces in the most trivial possible way. Namely, tubing any

one of the topologically trivial surfaces of Theorem 1.1 to a smoothly trivial torus

results in a smoothly trivial surface.

It would be interesting to know what the simplest examples of exotic embed-

dings are. For example, this paper provides context for the following two natural

questions, which have motivated work on exotically embedded surfaces.

Question. Do there exist exotically embedded surfaces in S4? In particular, is

there an embedded S2 that is topologically isotopic to the unknot but not smoothly

isotopic to the unknot?

The examples in this paper can be seen as prototypes for answering this sort of

question, as answering this question in other manifolds can be seen as a first step

to better understanding the S4 question. At the same time, the examples of this

paper can better inform an attack on the question above.

We conclude the introduction with the following remark:

Remark 1. The exotically embedded tori constructed in this paper provide examples

of stably ribbon surfaces that are not ribbon. They are stably ribbon, because they

stably smoothly trivial (by [1]). But they are not ribbon because as we shall see, log

transforms on these tori have a different effect than log transforms on trivial tori,
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whereas [15, Theorem 8.3] implies that log transforms on ribbon tori are equivalent

to those on trivial tori.

Acknowledgements: Both authors would like to thank the Max Planck In-

stitute for Mathematics for hosting them while they worked on this project, and

Danny Ruberman and Tom Mark for their comments on an early draft of this

paper. We are also especially grateful to Inanc Baykur who provided extensive

comments on a later version. The first author was partially supported by grant

from the Simons Foundation (#524123 to Neil R. Hoffman) during later revisions

of this paper.

2. Constructing the tori

Let T be an embedded torus with self intersection zero in a 4-manifold X such

that π1(X\T ) = 1. We will not construct exotic embeddings of T , (any such torus is

necessarily homologically essential since it will have a dual), but rather we will find

exotic embeddings of nearby null-homologous tori which arise in the “knot surgery”

construction of Fintushel and Stern ([3] and [5]). Knot surgery along torus T using a

knot K ⊂ S3 is most straightforwardly defined as XK = (X\ν(T ))∪(S1×S3\ν(K))

where the union is formed by taking the longitude of K to the meridian of T (apart

from this requirement, the gluing is not, strictly speaking, well defined, and XK may

depend on the gluing map, but this ambiguity does not factor into our argument

below). Fintushel and Stern proved that X is homeomorphic to XK under the

assumption that the complement of T is simply connected, and they further proved

that their Seiberg-Witten invariants are related by SWXK
= SWX ·∆K(2[T ]) where

∆K is the Alexander polynomial for K. Therefore, by varying K, one can construct

infinitely many smooth structures on X.

The Seiberg-Witten formula is proved by viewing knot surgery as a series of

log-transforms on null-homologous tori. That is, rather than cutting out ν(T ) =

S1× (S1×D2) and replacing it with S1×S3 \ν(K), we can view knot surgery as a

series of log-transforms in S1× (S1×D2) which eventually lead to S1×S3 \ ν(K).

Forgetting the extra S1 direction for the moment, one can go from S3 \ ν(K) to

(S1×D2), the complement of the unknot, by doing ±1 surgery along crossings of K

to unknot it. Crossing this whole picture with S1 gives the log-transforms needed

for knot surgery. It is these null-homologous tori that are needed to do the knot

surgery that will turn out to be the exotically unknotted tori that we are looking

for in our theorem.

We’ll focus on the following particular situation: Suppose that K is a knot

of unknotting number 1, and T is a torus in X with trivial normal bundle and

simply connected complement. Then knot surgery is the result of doing a single

log transform on the null homologous torus TK = S1 × γK in νT ⊂ X (see Figure



4 NEIL R. HOFFMAN AND NATHAN S. SUNUKJIAN

knotsurgery2.{ps,eps,pdf} not found (or no BBox)

Figure 1. The left figure represents νT , which can be thought of
as the complement of the unknot in S3 crossed with S1. Performing
a (+1)-log transform on TK = S1×γK gives S1×(S3\νK), depicted
on the right.

1). The proof of our theorem will show that TK is topologically unknotted, but

smoothly non-trivial. To determine the topological isotopy class of TK we will now

compute the fundamental group of X \ TK : Note that since π1(X \ T ) = 1, we

have that the inclusion π1(∂νT ) → π1(X \ νT ) is trivial. Therefore, by repeated

applications of Van-Kampen’s theorem,

π1(X \ TK) = π1((X \ νT ) ∪ (νT \ TK)

=
π1(νT \ TK)

π1(∂νT )

=
π1(S1 × (S3 \ (νU ∪ γK)))

〈S1〉 × π1(∂νU)

= π1(S3 \ γk) = Z

The second to last line is just a change of notation, since νT \ TK is just the

same thing as S1 × (S3 \ (νU ∪ γK)) where U is the unknot (see Figure 1). And

the final equality is true because γk is necessarily unknotted in S3.

Already we see that this gives at least one exotically embedded torus. Specif-

ically, TK is topologically standard by Theorem 1.2, and moreover, performing a

log-transform on TK will give an exotic smooth structure on X, whereas performing

a log-transform on the standardly embedded torus, (i.e. the one that bounds a solid

handlebody), will not. Therefore these tori are smoothly distinct, but by Theorem

1.2 they must be topologically isotopic.

To construct infinite families of exotic surfaces, we need to be more careful. For

example suppose K1 and K2 are knots with associated null homologous tori TK1

and TK2
. Then it is conceivable that one might be able to construct both XK1

and XK2 by some surgery on TK1 . In this circumstance we would not be able to

distinguish TK1 from TK2 as we did above. To resolve this issue, we have to look

more deeply at how the Seiberg-Witten invariant changes under log-transforms on

TK , and restrict ourselves to certain classes of knots.

3. Smooth invariants of null-homologous tori

The Seiberg-Witten invariant of a 4-manifold X is a map SWX : S −→ Z, where

S is the set of isomorphism classes of spinc structures on X. The basic classes of

X are defined to be the spinc structures that map to non-zero integers. It is a well

known property of the Seiberg-Witten invariant that a closed 4-manifold has only a
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finite number of basic classes. Below, we will often not distinguish between a spinc

structure and its first Chern class or even the Poincare dual of its first Chern class.

We will distinguish our null-homologous tori by computing an invariant that is,

in a technical sense clarified below, related to the Seiberg-Witten basic classes of

the complement of the tori. To do this we will need to understand how the Seiberg-

Witten invariant of a 4-manifold is affected by log-transforms. Suppose we are

given a 4-manifold with T 3 boundary, e.g. X \νT , and suppose H1(T 3) = Z[a, b, c].

Denote the log-transformed 4-manifold constructed by gluing on a D2 × T 2, where

[∂D2] is glued to [pa+ qb+ rc] as XT (p, q, r) or sometimes just X(p,q,r), and denote

the core torus in the D2 × T 2 part of this manifold as T(p,q,r).

A formula of Morgan-Mrowka-Szabo from [14] give a formula relating the Seiberg-

Witten invariants of various log-transforms:

∑
i

SWXT (p,q,r)(k(p,q,r) + i[T(p,q,r)]) = p
∑
i

SWXT (1,0,0)(k(1,0,0) + i[T(1,0,0)])

(1)

+ q
∑
i

SWXT (0,1,0)(k(0,1,0) + i[T(0,1,0)]) + r
∑
i

SWXT (0,0,1)(k(0,0,1) + i[T(0,0,1)])

where the spinc structures agree away from the log-transformed tori, i.e.:

k(p,q,r)|X(p,q,r)\T(p,q,r)
= k(1,0,0)|X(1,0,0)\T(1,0,0)

= k(0,1,0)|X(0,1,0)\T(0,1,0)
(2)

= k(0,0,1)|X(0,0,1)\T(0,0,1)
.

Suppose that T(p,q,r) is null-homologous. Then the left hand side of Equation 1

has only one term. Moreover, since X(1,0,0) has only a finite number of basic classes

k(1,0,0) + i[T(1,0,0)], we see that Equation 2 implies that there are only a fixed finite

number of possible basic classes k(p,q,r) for XT (p,q,r), and these possibilities depend

only on the choice of T , not on (p, q, r). To put this another way, there are only a

finite number of spinc structures on X \ νT that can be extended to basic classes

on XT (p, q, r) when [T(p,q,r)] = 0. Therefore, the following invariant is well defined:

Definition. Let T be a null-homologous torus in X (defined up to smooth isotopy).

Define B(X,T ) to be the maximum divisibility of the difference between any two

basic classes of XT (p, q, r) for any (p, q, r) such that [T(p,q,r)] = 0.

Remark 2. It is important to use the divisibility of the difference of basic classes

rather than just the divisibility of the basic classes because very often after per-

forming knot surgery all of the basic classes have divisibility 1.
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a0

a1

a2

a3 a2n−1

. . .

Figure 2. The two-bridge knot C(a0, . . . , a2n−1).

4. Families of unknotting number one knots, and the proof of

Theorem 1

Now that we have a better understanding of the smooth invariants needed to

distinguish potential infinite families of smooth tori, we can describe an explicit

family of knots that will give rise to smoothly distinct TK . For the invariant B(X,T )

to be useful, we will need to find a family of knots with unknotting number 1 whose

Alexander polynomials have arbitrarily high degree. All two-bridge knots can be

given in the form of Figure 2 where ai is the number of right half-twists when

i is odd, and left half-twists when i is even. We refer to two-bridge knots using

Conway’s notation, C(a0, . . . , am), and we note that it is well known (see [2, §12B]

for instance), that two 2-bridge knots are equivalent if and only if [a0, . . . , am] and

[a′0, . . . , a
′
m′ ] are continued fraction expansions of the same rational number.

Proposition 4.1 (Kanenobu-Murakami [9]). A two-bridge knot has unknotting

number one if and only if it can be expressed as

C(b, b1, b2, . . . , bk,±2,−bk, . . . ,−b2,−b1).

The following proposition of Burde-Zieschang tells us how to compute the rele-

vant polynomial invariants:

Proposition 4.2 (Burde-Zieschang [2, Proposition 12.23]). The Conway polyno-

mial of a two-bridge knot expressed as C(a0, . . . , a2n−1) has degree
∑n−1

j=0 |a2i|.

Remark 3. The notation in Burde-Zieschang is different than that used in Proposi-

tion 4.1. To reconcile the conventions, the two-bridge knot diagram in Figure 2 can

be converted to a 4-plat diagram as in Burde-Zieschang by pulling the inner strand

on the right hand side of the figure over the outer strand. This has the effect of

adding a new crossing (i.e. a2n = +1) and adjusting a2n−1 by +1.

Lemma 4.3. There exists an infinite family of unknotting number one knots whose

Alexander polynomials have arbitrarily high degree.

Proof. Combining Propositions 4.1 and 4.2 shows that there exists an infinite family

of two-bridge knots of unknotting number one such that the Conway polynomial has

arbitrarily high degree. The lemma is thus immediate from the fact that the Conway



NULL-HOMOLOGOUS EXOTIC SURFACES IN 4-MANIFOLDS 7

polynomial is related to the Alexander polynomial by the formula ∇(t − t−1) =

∆(t2). �

Proof of Theorem 1.1. Let {Kj} be a sequence of knots of unknotting number 1

such that the degree of their Alexander polynomials goes to infinity, and let TKj

be the associated (topologically trivial) tori from Section 2.

Since there is a log-transform on TKj that gives XKj , we have that

lim
j→∞

B(X, TKj
) ≥ lim

j→∞

(
max divisibility of the difference
between any two basic classes of XKj

)
≥ lim

j→∞
4deg(∆Kj

) =∞.

The second inequality follows because the knot surgery formula,

SWXK
= SWX ·∆K(2[T ]),

allows us to determine the basic classes of XK from those of X. Specifically, if κ is

a basic class of X, and the degree of ∆Kj
is n, then XKj

has κ+2n[T ] and κ−2n[T ]

as basic classes (among others), and the divisibility of the difference of this pair of

basic classes is 4n, which serves a a lower bound for B(X, TKj ). Therefore, after

possibly passing to a subsequence of the {XKj
} there are an infinite number of the

TKj
that are smoothly distinguished by their B invariant. �
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[1] Inanç Baykur and Nathan Sunukjian, Knotted surfaces in 4-manifolds and stabilizations, Jour-

nal of Topology 9 (2015), 215-231.
[2] Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., de Gruyter Studies in Mathematics,

vol. 5, Walter de Gruyter & Co., Berlin, 2003.

[3] Ronald Fintushel and Ronald J. Stern, Knots, links, and 4-manifolds, Invent. Math. 134
(1998), no. 2, 363–400.

[4] , Surfaces in 4-manifolds, Math. Res. Lett. 4 (1997), no. 6, 907–914.
[5] Ronald Fintushel, Knot surgery revisited, Floer homology, gauge theory, and low-dimensional

topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 195–224.
[6] Ronald Fintushel and Ronald J. Stern, Surgery on nullhomologous tori and simply connected

4-manifolds with b+ = 1, J. Topol. 1 (2008), no. 1, 1–15.
[7] Ian Hambleton and Peter Teichner, A non-extended Hermitian form over Z[Z], Manuscripta

Math. 93 (1997), no. 4, 435–442.
[8] Stefan Friedl, Ian Hambleton, Paul Melvin, and Peter Teichner, Non-smoothable four-

manifolds with infinite cyclic fundamental group, Int. Math. Res. Not. IMRN 11 (2007), Art.
ID rnm031, 20.

[9] Taizo Kanenobu and Hitoshi Murakami, Two-bridge knots with unknotting number one, Proc.
Amer. Math. Soc. 98 (1986), no. 3, 499–502.

[10] Hee Jung Kim, Modifying surfaces in 4-manifolds by twist spinning, Geom. Topol. 10 (2006),
27–56 (electronic).

[11] Hee Jung Kim and Daniel Ruberman, Topological triviality of smoothly knotted surfaces in
4-manifolds, Trans. Amer. Math. Soc. 360 (2008), no. 11, 5869–5881.

[12] , Smooth surfaces with non-simply-connected complements, Algebr. Geom. Topol. 8

(2008), no. 4, 2263–2287.
[13] Thomas Mark, Knotted surfaces in 4-manifolds, Forum Mathematicum 25 (2013), no. 3,

597–637.



8 NEIL R. HOFFMAN AND NATHAN S. SUNUKJIAN

[14] John W. Morgan, Tomasz S. Mrowka, and Zoltán Szabó, Product formulas along T 3 for
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