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Automated peak detection method 
for behavioral event identification: detecting 
Balaenoptera musculus and Grampus griseus 
feeding attempts
David A. Sweeney1* , Stacy L. DeRuiter2, Ye Joo McNamara‑Oh3, Tiago A. Marques4,5, Patricia Arranz6,7 
and John Calambokidis8

Abstract 

The desire of animal behaviorists for more flexible methods of conducting inter‑study and inter‑specific comparisons 
and meta‑analysis of various animal behaviors compelled us to design an automated, animal behavior peak detec‑
tion method that is potentially generalizable to a wide variety of data types, animals, and behaviors. We detected the 
times of feeding attempts by 12 Risso’s dolphins (Grampus griseus) and 36 blue whales (Balaenoptera musculus) using 
the norm‑jerk (rate of change of acceleration) time series. The automated peak detection algorithm identified median 
true‑positive rates of 0.881 for blue whale lunges and 0.410 for Risso’s dolphin prey capture attempts, with median 
false‑positive rates of 0.096 and 0.007 and median miss rates of 0.113 and 0.314, respectively. Our study demonstrates 
that our peak detection method is efficient at automatically detecting animal behaviors from multisensor tag data 
with high accuracy for behaviors that are appropriately characterized by the data time series.
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Background
Studying animal behavior while minimizing levels of 
invasiveness is a challenge many biologists face [1–3]. 
Difficulty also arises while attempting to observe ani-
mals in environments and during time periods that are 
relatively inaccessible to humans [4]. The scientific field 
of biologging arose, in part, to address these two main 
obstacles [5]. Since the first use of tagging devices on 
animals in 1963, the field of biologging has evolved into 
a discipline that allows for the detailed behavioral study 
of animals ranging from chipmunks to blue whales [5–7].

Over the years, a variety of unique tagging devices (i.e., 
DTAGs [8], Acousonde tags [9], etc.) have been devel-
oped by researchers around the world to try to gain 
access into the lives of animals. Using data obtained 
by these tags, scientists can determine the exact time 

when an animal exhibited a certain behavior [10–17]. 
For example, a recent study identified potential sleep-
ing behavior in harbor porpoises (Phocoena phocoena) 
by searching for inactive, uniform diving behavior using 
acceleration, depth, and acoustic data obtained from 
data-logger tags [14]. Another study used accelerometer 
tags attached to the heads of two Antarctic penguin spe-
cies to detect peaks in the acceleration signal and thus 
study prey encounter rates of these species [15]. Addi-
tionally, recent work with Weddell seals (Leptonychotes 
weddellii) and Antarctic fur seals (Arctocephalus gazella) 
used accelerometer tags attached to the mandible to 
detect signatures in the accelerometer signal indicative 
of mouth opening associated with feeding events [18, 19]. 
Due to the often-high sampling rate of multisensor tags 
and the long duration of data recording, the process of 
determining the time of every instance of a given behav-
ior can be quite arduous [1].

Scientists have begun to develop automated animal 
behavior detection algorithms to improve the efficiency 
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of multisensor data analysis. They scan through data 
searching for signal characteristics that are known 
to be indicators of unique animal behaviors. Many of 
these detection algorithms are designed to detect feed-
ing attempts by animals in animal-borne tag data [15, 
20–25]. For example, Cox and colleagues developed a 
method to detect foraging behavior in juvenile southern 
elephant seals, but their code is highly specific to Argos 
relay satellite tags and requires triaxial acceleration and 
pressure data [25]. The detection of feeding attempts is 
commonly desired, because knowing when a predator 
hunts (and captures) prey can allow for more in-depth 
analyses of various ecological parameters, including, for 
example, studying the overall energy expenditure of for-
aging species [26].

While many of these event detection methods have 
very specific data format requirements, more adaptive 
methods that can easily be applied to data from differ-
ent species and tag types would facilitate inter-study 
and inter-specific comparisons and meta-analysis of a 
variety of different animal behaviors. For a behavior to 
be detected and analyzed using automated detection 
methods, a proxy must exist from which the behavior 
can be identified. Blue whales feed by lunging toward a 
prey patch while simultaneously opening their mouths, 
thus generating peaks in the norm-jerk signal due to 
produced and incurred changes in acceleration [27–29]. 
Risso’s dolphins emit buzz sounds during close pursuit, 
attempted capture, or capture of prey. Recently published 
studies have shown that peaks in the norm-jerk signal are 
often associated with the end of the buzz when the sound 
is associated with a prey capture attempt [10, 30, 31]. A 
useful proxy commonly associated with foraging events 
in cetaceans is therefore the norm-jerk signal.

In this study, we demonstrate the overall performance 
of a newly designed automated detection method (titled 
detect_peaks), operational in many versions of three 
widely used software programs (R [32], MATLAB [33], 
and Octave [34]), at detecting the times of Risso’s dolphin 
(Grampus griseus) and blue whale (Balaenoptera muscu-
lus) foraging events from the norm-jerk signal. We also 
compare the accuracy of detections using our method to 
manual detections and other automated detection meth-
ods for two very different species to analyze some of the 
difficulties involved with this approach.

Results
The detect_peaks automated detection algorithm 
detected blue whale and Risso’s dolphin feeding attempts 
with varying accuracies using default and optimized 
parameters. Default parameters were automatically 
set by the detect_peaks detection method for each ani-
mal, as specified in the methods section. Optimized 

threshold levels were set as those that returned the best 
detection results upon receiver operating characteris-
tic (ROC) curve analysis using blanking times of 30  s 
for the blue whales and 2 s for the Risso’s dolphins (i.e., 
biological blanking times). Only 7 of the 12 Risso’s dol-
phins used in this study had known prey capture events 
(max = 261, min = 2, median = 2.5, IQR = 51.25). On the 
other hand, 35 of the 36 blue whales had known times of 
lunge feeding events (max = 189, min = 1, median = 65.5, 
IQR = 64). A detection performance summary is pre-
sented in Table 1.

For Risso’s dolphins, detections using optimized 
thresholds and biological blanking times returned a 
median true-positive detection rate (number of true-
positive detections divided by the total number of known 
behavioral events) of 0.410 (IQR = 0.697) and a median 
false-positive detection rate (number of false-positive 
detections divided by the total number of possible 
behavioral events) of 0.007 (IQR = 0.022). The median 
true-positive rate for optimized blue whale detections 
(median = 0.881, IQR = 0.136) was better than that 
of Risso’s dolphins. The median false-positive rate for 
the optimized blue whale detections (median = 0.096, 
IQR = 0.083) was larger than the Risso’s dolphin median 
false-positive rate (median = 0.007, IQR = 0.022). Opti-
mized blue whale detections produced a median miss rate 
(number of missed detections divided by the total num-
ber of known behavioral events) of 0.113 (IQR = 0.134), 
which was less than half that of the Risso’s dolphin detec-
tions (median = 0.314, IQR = 0.154). ROC curves plotting 
the optimized true-positive rates and false-positive rates 
for all animals of both species as well as the median rates 
across all animals are shown in Fig. 1.

Detections using the default parameters for each 
species seemingly performed better than detections 
using biological blanking times and optimized thresh-
olds (Table  2). Default parameters for blue whales con-
sisted of a median threshold level of 0.454 (IQR = 0.300) 
and a median blanking time of 4.700 (IQR = 13.000). 
The median optimized blue whale threshold was 0.429 
(IQR = 0.432). Default parameters for Risso’s dol-
phins consisted of a median threshold level of 3.027 
(IQR = 2.724) and a median blanking time of 0.540 
(IQR = 0.640). The median optimized Risso’s dolphin 
threshold was 7.774 (IQR = 10.504).

When looking at the side-by-side plots of each dol-
phin’s norm-jerk signal and dive profile (e.g., Fig. 2), we 
noticed that 95.6% of the known prey capture attempts 
occurred at depths greater than 10 m. However, there 
were also strong spikes in the jerk signal, while the dol-
phin was near the surface, resulting in 1.30% of all false-
positive detections occurring while the Risso’s dolphins 
were swimming within 10 m of the water’s surface. Upon 



Page 3 of 10Sweeney et al. Anim Biotelemetry             (2019) 7:7 

conducting detections after removing all data when the 
dolphins were shallower than 10 m, we observed that the 
results from these detections did not produce drastically 

better false-positive detection rates (mean false-positive 
rate improved by 0.001 and median false-positive rate 
improved by 0.004) and our true-positive detection rates 

Table 1 Detection performance summary table for both species

The table shows the mean and median values representing the overall performance of the detection method across all individuals within each species as well as 
the standard error (SE) and interquartile range (IQR) for each element of the table. “Distance from [0,1]” refers to ROC curve analysis, with smaller values (closer to 0) 
representing better performance. Note that the performance statistics for each individual animal in this study are shown in Additional file 1

Default detections Optimal detections

Mean Median SE IQR Mean Median SE IQR

Blue whales True positives 58.306 55.000 6.999 54.250 56.111 49.500 6.693 54.750

False positives 222.528 127.000 40.895 102.250 57.361 45.000 7.453 59.250

Misses 6.886 4.000 1.148 11.000 9.143 7.000 1.326 10.500

True‑positive 
rate

0.865 0.918 0.031 0.132 0.835 0.881 0.028 0.136

False‑positive 
rate

0.067 0.034 0.010 0.081 0.104 0.096 0.010 0.083

Misses rate 0.110 0.079 0.019 0.122 0.141 0.113 0.015 0.134

Distance from 
[0,1]

0.162 0.128 0.031 0.161 0.205 0.172 0.028 0.150

Risso’s dol‑
phins

True positives 27.833 2.500 15.345 37.500 26.000 2.000 14.624 30.500

False posi‑
tives

606.000 218.500 312.347 243.250 85.167 31.500 33.049 145.500

Misses 23.714 14.000 11.004 33.000 26.857 13.000 12.160 36.500

True‑positive 
rate

0.441 0.492 0.122 0.760 0.385 0.410 0.108 0.697

False‑positive 
rate

0.053 0.015 0.027 0.022 0.017 0.007 0.007 0.022

Misses rate 0.243 0.279 0.084 0.286 0.339 0.314 0.080 0.154

Distance from 
[0,1]

0.568 0.508 0.122 0.759 0.617 0.593 0.107 0.695

Fig. 1 ROC curves showing true‑positive versus false‑positive rates and median rates across all animals. The median detection rates for each species 
are shown in black, while the gray points display the overall spread of the detections for each animal at every threshold level. The gray points are 
semitransparent, so areas of darker shading represent areas with more points
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decreased for some individuals. We, therefore, included 
data from all depths in our analysis. Risso’s dolphin prey 
capture attempts were best-detected when the associ-
ated peak was at least above the 0.9 quantile of the norm-
jerk signal. Peaks below this level were still frequently 
detected, but the probability of these detections resulting 
in a missed detection gradually increased as the thresh-
old level decreased.

Blue whale side-by-side plots (e.g., Fig. 2) showed that 
many false-positive detections occurred at times while 
the whale was at or near the surface of the water. 90.6% 
of lunges occurred at depths greater than 10  m. The 
roughly 9.4% of lunges that occurred near the water’s 
surface were detected 52.0% of the time. In contrast to 
the often-sporadic peaks (large peaks associated with 
non-foraging, unknown behaviors) in the Risso’s dol-
phin norm-jerk signals, blue whales’ norm-jerk signals 
appear to have much more uniformity. For many of the 
blue whales, the strongest jerk signal is during a foraging 
event, with fewer occasions of abnormally strong peaks 
representing behaviors other than feeding attempts com-
pared to Risso’s dolphins (see Additional files 2 and 3 for 
norm-jerk signals with marked prey captures and lunges 
for all animals).

Discussion
We have developed an automated behavioral event detec-
tion method, which is successful at identifying the times 
of blue whale and Risso’s dolphin feeding attempts using 
the norm-jerk time series. The accuracy of the detections 
does vary, however, between species and across individu-
als. We observed that the norm-jerk signal is not as good 
of a proxy for detecting feeding attempts for Risso’s dol-
phins as it is for blue whales.

The success of the blue whale detections seems to be 
due to the tendency for the largest peaks in the norm-
jerk signals to be representative of lunges. This allowed 
for more accurate detections with fewer false positives 
and misses. These large peaks are caused by dramatic 
deceleration of blue whales during feeding lunges where 
opening of the mouth and filling of the buccal pouch cre-
ate a sharp increase in drag [28]. This large ratio of prey 

capture jerk peaks to overall signal noise is likely due to 
the large overall body mass of blue whales. Cetaceans 
with greater body mass have been shown to exhibit lower 
overall stroke frequencies, consequentially minimizing 
the norm-jerk signal noise at times when the whale is 
traveling at relatively constant rates [35].

For both species, default detections generally per-
formed better than the optimized parameter detections 
according to ROC curve analyses. Although the default 
thresholds were relatively similar to the optimized 
thresholds, the default blanking times were generally 
far lower than the biologically predetermined blanking 
times. Blanking times are used to reduce the number of 
false-positive detections by allowing for multiple signal 
values to be considered one animal behavior. Therefore, 
the biological blanking times were set based on previ-
ous research that discusses the durations of the desired 
behaviors. A lower blanking time allows for more detec-
tion to be made, thereby commonly increasing the total 
number of true-positive detections. The number of false-
positive detections also increases with lower blanking 
times, but due to the extremely large total number of 
possible behavior events, the false-positive rate increases 
at a drastically lower rate than does the true-positive rate 
per detection made. From this observation, we recom-
mend that future users of this behavioral event detec-
tion method should not fret too much over setting the 
“perfect/optimal” threshold level and blanking time. We 
highly encourage all future users of this automated detec-
tion method to perform post hoc analyses of the events 
detected, given that no matter what parameters are used 
to perform the detections, it is highly unlikely that a true-
positive rate of 1.0 and false-positive rate of 0.0 will be 
obtained.

Risso’s dolphin detections contained many false-posi-
tive detections and missed detections across individuals. 
Risso’s dolphin detections also have very low true-posi-
tive detection rates. The large number of false-positive 
detections and somewhat low number of true-positive 
detections seem to beget the conclusion that the norm-
jerk is not an effective proxy for detecting prey capture 
attempts for this species. The number of desired peaks 

Table 2 Table of detection parameters used in this study

Threshold levels and blanking times used while performing the default and optimized detections are also shown. Note that the threshold levels and blanking times 
used for each specific individual are shown in Additional file 1

Blue whales Risso’s dolphins

Mean Median SE IQR Mean Median SE IQR

Default threshold level 0.583 0.454 0.064 0.300 18.933 3.027 15.864 2.724

Default blanking time 8.584 4.700 1.341 13.000 2.368 0.540 1.340 0.640

Optimal threshold level 0.726 0.429 0.149 0.432 19.276 7.774 8.486 10.504

Biological blanking time 30.000 30.000 0.000 0.000 2.000 2.000 0.000 0.000
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representing prey capture events is too similar to the 
number of undesired peaks representing other com-
mon Risso’s dolphin behaviors (e.g., playful socializing 
and energetic traveling [36]), thereby bringing about a 
large number of false-positive detections for this species. 
Some of the missed detections we presume may be due to 
prey capture attempts when the dolphin did not have to 
maneuver rapidly to catch a potentially stationary prey. 
Similarly, the magnitude of peaks during prey capture 
attempts could differ depending on the DTAG’s (suction-
cup-attached digital tag) location on the dolphin. Tag 
placement can vary between animals due to the difficul-
ties of attaching suction-cup tags or the possibility that 
a suction-cup tag could slide while recording [37]. These 
changes in tag placement can affect accelerometer sig-
nals, thus altering the norm-jerk and potentially leading 
to differences in overall detection rates [37]. There is also 
the possibility that missed detections were due to buzzes 
in which the animal aborted the prey capture attempt, 
buzzes made in a social context, or buzzes that were pro-
duced by a nearby conspecific [30].

When comparing the overall performance of our auto-
mated detection method against those previously devel-
oped, we observe that our detection method performed 
similarly despite the intentional simplicity of our detec-
tion algorithm. Not every paper mentioned earlier that 
describes an automated method to detect prey captures 
has listed accuracy statistics. Some, however, do have 
detection accuracy statistics. Owen et  al. obtained a 
true-positive detection rate of approximately 0.700 for 
the known lunges of humpback whale (Megaptera novae-
angliae) surface, lunge feeding events using a combina-
tion of acceleration and pitch data from DTAGs. They 
obtained a false-positive detection rate of roughly 0.200 
[24]. Allen et al. obtained a true-positive detection rate of 
approximately 0.920 for fin whale lunge feeding events (a 
species with similar lunge feeding to blue whales) using a 
decision-tree method that incorporated a combination of 
jerk, depth, roll, and flow noise data from DTAGs. They 
obtained a false-positive detection rate of roughly 0.310 
[23]. In comparison, our detection statistics show that we 
obtained a median true-positive detection of 0.881 for 
the known lunges of blue whales, with a median false-
positive rate of 0.096.

Among previously developed automated approaches 
to detect feeding attempts by species other than rorqual 

whales, Viviant et  al.’s optimal method obtained a true-
positive detection rate of about 0.90 for the known feed-
ing attempts of Steller sea lions (Eumetopias jubatus), 
with a false-positive rate of about 0.25 using acceler-
ometer data from Little Leonardo acceleration data log-
gers [15]. Cox et  al. had true-positive detection rates of 
about 0.59 for juvenile southern elephant seals (Mirounga 
leonina), with false-positive detection rates of about 0.02 
using a combination of depth, satellite, acceleration, and 
pitch data from custom-designed Argos relay satellite 
tags [25]. Although in no way identical, these seal feed-
ing attempt detection methods are perhaps more closely 
related to our Risso’s dolphins than our blue whales due 
to the enhanced maneuverability of seals and dolphins 
compared to rorquals. One caveat worth mentioning is 
that the tags in the Cox and Viviant studies were attached 
to the heads of the seals, whereas the tags on the Risso’s 
dolphins were initially attached near the dorsal fins. A 
tag attached to the head of a seal would record changes 
in acceleration due to both total body acceleration and 
potential head maneuvering while foraging. Conversely, 
tags attached near a dorsal fin would predominantly 
record changes in total body acceleration. Also, many 
cetaceans (including Risso’s dolphins) have fused cervical 
vertebrae, thus severely minimizing head maneuvering. 
Another caveat to be considered is prey-type preferences 
for these species. Risso’s dolphins often have different 
prey preferences compared to southern elephant seals 
and Steller sea lions, likely resulting in different acceler-
ometer signatures during prey catches. These resulting 
differences in accelerometer signatures could influence 
the accuracy of different detection algorithms. That being 
said, our Risso’s dolphin optimized detection algorithm 
returned a median true-positive rate of 0.410, with a 
median false-positive rate of 0.007.

In making detect_peaks, we created a peak detection 
method that allows for the generalized automated detec-
tion of any behavioral event, given that the signal input to 
the detection algorithm is a good proxy for predicting the 
specific behavior. Ideas for expanding upon our detec-
tion method’s current design have been proposed: allow-
ing for bivariate detections, incorporating an additional 
parameter to adjust a maximum behavioral event dura-
tion, and integrating time-varying parameters. However, 
these ideas were not implemented in the current algo-
rithm because the goal of designing detect_peaks was to 

Fig. 2 Plots of norm‑jerk signals and dive depth for one blue whale (bw10_240b) and one Risso’s dolphin (gg13_262b). Plots on the top for 
each individual show the norm‑jerk signals that were passed through detect_peaks. Default and optimized detections are labeled with their 
corresponding threshold levels. The bottom plots for each individual represent the dive depth of each animal with known feeding attempts and 
the optimized detections marked on the plot. Note that the optimized and default thresholds for the Risso’s dolphin are almost identical, thus 
seemingly overlapping in the figure. The sampling rates for this blue whale and Risso’s dolphin were 5 Hz and 25 Hz, respectively

(See figure on next page.)
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create an easy-to-use, efficient, and flexible behavioral 
event detection method. We currently feel that expand-
ing on the current design of the detection method would 
infringe upon this goal.

Based on the results of our foraging event detections, 
it appears that the norm-jerk signal is a good proxy for 
detecting blue whale lunges and a good, although some-
what less effective, proxy for detecting Risso’s dolphin 
prey capture attempts. More research may help identify 
a better input signal for detect_peaks (one that has strong 
peaks in the signal only during feeding attempts) to allow 
for the enhanced detection of Risso’s dolphin prey cap-
tures. Future work could also shed light on how to best 
utilize blanking times in the detect_peaks algorithm and 
improve the precision of biologically predetermined 
blanking times for animal behaviors.

Conclusions
The performance characteristics of detect_peaks alone 
show evidence for the usefulness of this automated 
behavioral event detection algorithm, given that they 
perform at similarly high levels compared to previously 
developed methods. However, unlike the other previously 
mentioned detection methods [20, 23–25], detect_peaks 
was intentionally designed to be capable of detecting a 
potentially endless list of behaviors from many different 
species. The simple algorithm used by detect_peaks has 
potential for use in real-time or on-board processing in 
telemetry tags, if validated for a particular species and tag 
type. In addition, given that many scientists have limited 
time or software development capabilities, we believe 
that making this detection method freely available as part 
of open-source software for high-resolution movement-
sensing tags has the potential to make event detection in 
biologging data easier and more reproducible.

Methods
Data collection and preparation
This project utilized data from suction-cup digital acous-
tic recording tags (DTAGs) attached to 36 blue whales 
and 12 Risso’s dolphins. Each tag recorded acoustic data 
using hydrophones and recorded animal movement data 
using pressure sensors, triaxial accelerometers, and mag-
netometers [8]. The 36 blue whales were tagged between 
2010 and 2013 in and around the Southern California 
Bight by members of the Southern California Behavioral 
Response Study (SOCAL BRS), and movement sensors 
were sampled at 5 to 25 Hz [38]. The 12 Risso’s dolphins 
were tagged in 2011, 2013, and 2014 mostly around Cat-
alina Island off the coast of California, USA, and move-
ment sensors were sampled at 10 to 200  Hz [30]. All 

data were obtained in accordance with the US National 
Marine Fisheries Service permits #14534 and #19116.

Data obtained from each blue whale’s tag were 
cropped to remove samples of times when the tag was 
not attached to the whale. The Risso’s dolphin data were 
further cropped for consistency with previous studies, 
removing the first fifteen minutes of tag recording to 
exclude data potentially influenced by the tagging pro-
cedure, and also removing data recorded after the begin-
ning of controlled acoustic exposure experiments or data 
recorded after the tag had already fallen off the animal 
[30]. All analyses were performed in R [32] and MATLAB 
[33] using functions from the tagtools package (https ://
githu b.com/stacy derui ter/TagTo ols).

Feeding attempt detections
The times of cetacean foraging events have been previ-
ously determined using kinematic data obtained from 
animal–borne tags [22–24]. A time series commonly 
used in the identification of foraging events is the norm-
jerk signal, which at time t is represented by:

A is the triaxial acceleration matrix at time t, and S is 
the sampling rate. Rorqual lunge feeding events exhibit 
large peaks in the norm-jerk signal due to the sudden 
changes in acceleration related to the increased speed 
upon approach of a prey patch and the drastic decrease 
in acceleration caused by induced drag upon opening of 
the mouth [27, 29, 39]. Similarly, an association has been 
observed between strong jerk signals and buzzes, which 
are known to commonly represent prey capture attempts, 
in several odontocete species due to the rapid physical 
maneuvering required to catch prey items [10, 30, 40].

We have hence developed an automated behavioral 
event detection algorithm that operates as a threshold 
detection method where peaks that surpass a specified 
threshold level are labeled as the behavioral event of 
interest. The detection method, titled detect_peaks, is 
generalizable to a wide variety of potential data types, 
animals, and behaviors. Detect_peaks allows for the 
input of any type of time series or a matrix accompanied 
by a separate function that converts the matrix into a 
time series. The time series that is used by detect_peaks 
may contain positive and/or negative values. For the 
best detection results, the time series should have spikes 
(larger values) coinciding in time with the behavioral 
event and small values otherwise.

Upon running the detect_peaks algorithm, we com-
puted the norm-jerk from the animal’s triaxial accel-
eration. Then, we marked all samples in the norm-jerk 
signal that surpassed a user-adjustable threshold level 

jt = �At − At+1� ∗ S

https://github.com/stacyderuiter/TagTools
https://github.com/stacyderuiter/TagTools
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as candidate behavioral events. All peaks that surpassed 
the threshold level were then broken up into individual 
behavioral events using the blanking time, which is also 
user-adjustable. The blanking time is a specified length 
of time between signal peaks detected above the thresh-
old level (from the moment the first peak recedes below 
the threshold level to the moment the second peak sur-
passes the threshold level again). If the time between 
peaks is greater than the specified blanking time, each 
peak is labeled as a unique behavioral event. If the time 
between peaks is less than the specified blanking time, 
the two peaks are grouped into one larger behavioral 
event. Blanking times are used to account for physical 
and physiological restrictions upon the minimum pos-
sible time between feeding attempts (or other behavioral 
events). The time at which the maximum norm-jerk level 
was reached for each behavioral event and the start and 
end times of the behavioral event were obtained upon 
completion of the detections.

Known lunge times for the blue whales were deter-
mined by expert human analysts who looked for char-
acteristic patterns associated with lunge feeding in a 
combination of plots consisting of the animal’s accel-
eration, dive depth, body orientation, and swim speed 
[11, 12, 27, 28, 41]. For the blue whales, a detection 
was considered a true positive if it was found to exist 
within a 10  s window (5  s before and 5  s after) of the 
known lunge time. If the detection was outside of this 
time window, it was counted as a false-positive detec-
tion. This time window was used to account for the 
possible differences between the times at which the 
maximum norm-jerk level was reached and the SOCAL 
BRS members’ manual detection times. Given that 
lunge behaviors for large rorquals are known to last 
approximately 15  s and are often separated by 30  s of 
time to allow for proper water filtration and for the 
whale to travel to a new prey patch, it is highly unlikely 
that this size time window has caused biased detection 
results [11]. For the Risso’s dolphins, we used the times 
of buzzes as the known times of prey capture attempts. 
Buzzes are rapid echolocation click series that are com-
monly interpreted as attempts to capture prey [10, 30, 
42, 43]. Buzz times were first determined by aural and 
visual inspection of spectrograms by Arranz et al. [30]. 
Arranz et  al. then generated a multivariate Gaussian 
mixture model that distinguished buzzes from other 
communication-related pulsed sounds on the basis of 
duration, temporal proximity to regular echolocation 
clicks, and jerk ratios [30]. The Risso’s dolphin’s detec-
tions were true positives if they occurred within a 4-s 
window (2  s before and 2  s after) of the time of the 
end of known buzz times. If the detection was outside 
of this time window, it was counted as a false-positive 

detection. A 4  s window was used to account for the 
occasions when the maximum peak of the norm-jerk 
signal did not line up precisely with the end of the buzz 
sequence. For both species, if an instance of a known 
behavioral event was not detected, it was counted as a 
missed detection.

Detections were performed on each animal twice: 
once using detect_peaks’s default threshold and blank-
ing time parameters and once using biologically pre-
determined blanking times and threshold levels. The 
default threshold is set as the 0.99 quantile of the norm-
jerk signal, and the default blanking time is set as the 
0.80 quantile of the time differences between consecu-
tive signal values that surpass the threshold level. The 
biological blanking times for each species were deter-
mined based on previously published observations on 
feeding behaviors. The biological blanking time for the 
Risso’s dolphins was set at 2 s (a conservative estimate 
based on observed buzz durations of about 1 s in related 
species: false killer whales (Pseudorca crassidens) and 
bottlenose dolphins (Tursiops truncatus) [31]). The bio-
logical blanking time for the blue whale detections was 
set to 30 s, because a previous study on a group of fin 
whales (Balaenoptera physalus) observed the minimum 
time between consecutive lunge feeding events to be 
around 30 s [11].

Optimal thresholds were determined for each individ-
ual using receiver operating characteristic (ROC) curves 
(all ROC curves are available in Additional files 2 and 
3) ROC curves were constructed for each individual by 
running detect_peaks one hundred times using the bio-
logical blanking time for that species and one hundred 
different threshold levels. These different thresholds were 
equally spaced starting at one hundredth of the maxi-
mum norm-jerk signal value for the individual and going 
to the maximum norm-jerk signal value. True-positive 
and false-positive rates were calculated for each thresh-
old, and they were all plotted to form the ROC curve. 
True-positive rates were calculated as the number of 
true-positive detections divided by the total number of 
known behavioral events. False-positive rates were calcu-
lated as the number of false-positive detections divided 
by the total number of possible behavioral events (set as 
the duration of the tag recording (in seconds) divided by 
the blanking time with the total number of known behav-
ioral events subtracted).

After the ROC curve was completed for each individ-
ual, the optimal threshold was set as that which produced 
true-positive and false-positive rates closest to the upper-
left corner of the plot (corresponding to a true-positive 
rate of one and a false-positive rate of zero). Although 
we defined this as the “optimal” threshold level, differ-
ent instances in different studies may prefer the “optimal” 
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threshold level to be determined based on a different set 
of criteria. However, for the sake of maintaining con-
sistency, we will refer to all detection results using the 
threshold level as determined by our ROC curve criteria 
mentioned previously as the optimal detection results. 
Threshold optimizations were performed for the pur-
pose of testing the effectiveness of our biological blank-
ing times with threshold levels that were determined to 
return accurate detections. Automated detections using 
the detect_peaks’s default settings were performed for 
all animals, including those without known prey capture 
attempts. For the animals that did not have any known 
feeding attempts, their default and optimized true-pos-
itive rates were always zero. The optimal threshold for 
these animals was set as the highest value of the norm-
jerk signal, because this threshold always produced the 
absolute minimum false-positive rate; the threshold level 
allowed for only one false-positive detection.

Analysis on the overall performance of the detec-
tion method was done by comparing the performance 
statistics as listed in Table  1 with those of other, previ-
ously published, automated behavioral event detection 
algorithms. Additional analyses were done by creating 
side-by-side plots (e.g., Fig.  2) of the norm-jerk signal 
and the dive profile of each individual and then observ-
ing trends in predation behaviors and trends in the detec-
tions made by the detect_peaks algorithm. For the Risso’s 
dolphins, an additional set of detections was performed 
with all jerk peaks, while the animal was within 10 m of 
the water’s surface removed. This was done in an effort 
to decrease the false-positive rate of the Risso’s dolphin 
detections. However, because these detection results 
were not drastically better, we included data from all 
depths in our final analyses.

Additional files

Additional file 1. Data spreadsheets displaying the detection statistics 
and tag deployment information for all animal individuals used in this 
study.

Additional file 2. File containing ROC curve and side‑by‑side plot figures 
similar to those displayed above in the manuscript for all Risso’s dolphin 
individuals used in this study.

Additional file 3. File containing ROC curve figures and side‑by‑side 
plot figures similar to those displayed in the manuscript for all blue whale 
individuals used in this study.
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