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Abstract: Capital–labour–energy Constant Elasticity of Substitution (CES) production functions and
their estimated parameters now form a key part of energy–economy models which inform energy and
emissions policy. However, the collation and guidance as to the specification and estimation choices
involved with such energy-extended CES functions is disparate. This risks poorly specified and
estimated CES functions, with knock-on implications for downstream energy–economic models and
climate policy. In response, as a first step, this paper assembles in one place the major considerations
involved in the empirical estimation of these CES functions. Discussions of the choices and their
implications lead to recommendations for CES empiricists. The extensive bibliography allows those
interested to dig deeper into any aspect of the CES parameter estimation process.

Keywords: CES production function; econometrics; estimation; elasticity of substitution; energy
policy; energy

1. Introduction

1.1. The Growing Use of CES Aggregate Production Functions

Production functions seek to explain economic output arising from input factors of production,
and are central to growth accounting (i.e., the study of the components of economic growth), empirical
investigations versus economic theory, and macroeconomic modelling. For our purposes, we define
aggregate production functions as those applied at sector [1,2] or economy-wide [3–5] levels.

The two most common aggregate production functions are the Cobb–Douglas (C-D) and Constant
Elasticity of Substitution (CES) functions [6,7], as shown by the Google Scholar results illustrated
in Figure 1. (Google Scholar was preferred to searching in Scopus or Web of Science, as it enabled
access to wider “real-world” production function literature such as central bank reports). Their central
position in macroeconomic models mean “these functions play an important role in the [government’s]
economic forecasts and policy” ([8], p. 1).
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The C-D function in its famous 1928 formulation [9] is given in Equation (1), which according to
conventional economic theory ascribes economic output (Yt) to two primary factors—capital (Kt) and
labour (Lt):

Yt = θeλtKα
t Lβ

t (1)

where α and β are the elasticities of output (Yt) with respect to capital and labour, respectively
(noting also typically α + β = 1 to meet constant returns-to-scale assumption), θ captures a scale
parameter, eλt is the exogenous Solow residual, i.e., the part of economic output not explained by the
endogenous factors of production, and t is time relative to an initial year. λ is a parameter capturing
(exogenous) productivity growth, as defined by Equation (2), where
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An important parameter in economics is the elasticity of substitution (σ), a measure of the ease by
which one production factor (e.g., labour) may be substituted by another (e.g., capital). For aggregate
production functions, it is most commonly measured by the Hicks Elasticity of Substitution (HES),
as given in Equation (3), where ∂Y/∂Xi is the marginal productivity of input Xi, and ∂Y/∂Xj is the
marginal productivity of input Xj. The HES is thus a measure of the curvature of the production
function isoquant, or as Stern writes, the “difficulty of substitution” ([10], p. 80).
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In a C-D function, the elasticity of substitution has a fixed unity value. This significant constraint is
overcome by the CES function, introduced in 1956 by Solow [11], and subsequently generalized in the
“ACMS” paper by Arrow, Chenery, Minhas and Solow [12] in 1961. The CES function in Equation (4)
has δ as a share parameter, ρ as a substitution parameter (leading to the HES, σ = 1/(1 − ρ)), ν as
a returns-to-scale parameter, θ as a scale parameter, and λ is (as before) the exogenous productivity
growth parameter. The CES is therefore more flexible than the C-D function, with several special cases
depending on the value of σ as noted by Arrow et al. [12]: Leontief (σ = 0), C-D (σ = 1) and Linear
(σ = ∞) functions.

Yt = θ eλt[δKρ
t + (1 − δ) Lρ

t
] ν

ρ (4)

In an empirical study, historical time-series data (of the factors of production and economic
output) is added to the functional form (e.g., Equation (4)) to form an analytical model, whose
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econometric estimation obtains values for the unknown CES function parameters. Solow’s 1957
US study [3] using the C-D function was the first time-series empirical study of its kind and
“a landmark in the development of growth accounting” ([13], p. 1) that was followed by others
including Arrow et al. [12] and Denison [14]. Whilst many studies follow this neo-classical C-D
approach [4,15,16], many researchers—famously including Solow [3]—found that increases in capital
and labour factors of production commonly explained only a minority of output growth, with the
remainder ascribed to exogenous growth parameter λ. Abramovitz ([17], p. 11) described the unknown
component of economic output (i.e., the Solow residual) as “a measure of our ignorance”, whilst
Hulten ([18], p. 9) advocates it “covers many components, some wanted (such as the effects of technical
and organizational innovation), others unwanted (such as measurement error, omitted variables,
aggregation bias, and model misspecification)”. As a result, a focus on growth accounting (including
the Solow residual) has remained a priority for researchers including Jorgenson [19], Denison [20] and
Hulten [18,21].

1.2. Adding Energy as a Factor of Production

Neo-classical capital–labour aggregate production functions ignore the possible role of energy
as a factor of production, since it is viewed as an intermediate product (of capital and labour), rather
than a primary input. The 1970s oil crises focussed attention on the role of energy in economic growth,
and thus provided an opportunity for researchers to add energy (E) as an input [22–24], typically
amending the C-D function in Equation (1) to that shown in Equation (5):

Yt = θeλtKα
t Lβ

t Eγ
t (5)

where γ is the elasticity of output with respect to energy, and α + β + γ = 1 to meet constant returns to
scale assumption.

More recently, adding energy as a factor of production in aggregate production functions has
regained popularity [25]. One possible reason is practicality, in that “increasing attention on the
energy and environmental issues has evoked a revival of the relevant macroeconomic modelling” ([26],
p. 793)—in other words, the effects of energy in an energy–economic model cannot be studied unless it
is included as an endogenous factor of production. Another possible reason is the growing evidence
base that energy is tightly linked to economic growth [27–29].

Energy (E) can be placed inside a nested CES function by augmenting Equation (4) as shown in
Equation (6), with capital and labour in an inner (K-L) nest, and energy in an outer (KL_E) nest.

Yt = θ eλt[δ
[
(δ1 Kρ1

t + (1 − δ1)Lρ1
t
]ρ/ρ1 + (1 − δ)Eρ

t ]
ν
ρ (6)

where ρ and ρ1 are substitution parameters which lead to the inner nest σ1 within the inner (K-L)
nest and an outer nest σ between the inner (K-L) composite and energy (E). Our inner nest (δ1, ρ1)
and inner-to-outer nest (δ, ρ) share and substitution parameter notation follows Henningsen and
Henningsen [30]. For completeness and relevant to the “nesting” discussion in Section 3.3, with three
factors of production (K, L, and E), the CES function has two other possible nests in addition to the
KL(E) structure—EK(L) in Equation (7) and LE(K) in Equation (8):

Yt = θ eλt[δ
[
(δ1 Eρ1

t + (1 − δ1)K
ρ1
t
]ρ/ρ1 + (1 − δ)Lρ

t ]
ν
ρ (7)

Yt = θ eλt[δ
[
(δ1 Lρ1

t + (1 − δ1)Eρ1
t
]ρ/ρ1 + (1 − δ)Kρ

t ]
ν
ρ (8)

1.3. Aim and Scope of Paper

Three propositions provide the rationale for our paper. First, capital–labour–energy CES aggregate
production functions are important to macroeconomic models which inform climate and economic
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policy. Second, this places a due weight of responsibility on the CES empiricist to make the most
appropriate choices regarding the many aspects of their econometric specification and estimation.
It also places a responsibility on the “downstream” users of empirical CES study results, to be aware of
such aspects and their implications. Third, though single aspect literature of CES production function
theory and empirical usage [5,26,30–34] exists, without a succinct collation of the most important
issues and options, analytical blindspots and poorly specified functions are more likely, which may
have significant impacts on the estimated parameters, and ultimately energy policy.

In response, this paper comprises three novel components. First, we evaluate the proposition that
CES functions have become the most important energy-extended aggregate production function in
empirical use. Second, we assemble in one place the major aspects of the econometric specification
and estimation for capital–labour–energy CES functions. Third, the merits of choices relating to these
aspects are discussed, and recommendations made where evidence or consensus exists. Whilst the
primary audience are those CES analysts involved in empirical studies, the succinct and accessible
paper is open to all along the energy modelling-to-policy chain, including macroeconomic modellers
and energy policymakers. The extensive bibliography is deliberate: permitting those interested to dig
deeper into issues than space allows in this single journal paper.

The paper starts with a broader review the applications of C-D and CES aggregate production
function studies in Section 2. This provides the context for the narrowing of focus in Section 3 to
consider the specification of the empirical CES model: comprising the design of the function form and
the input time-series datasets. Next, parameter estimation techniques are examined in Section 4, before
recommendations and conclusions are given in Section 5.

Before we begin, a note on our study boundary. First, our focus is predominantly at the
economy-wide (i.e., national) scale, though many aspects considered are also relevant to sectoral-level
functions. Second, spatial constraints mean we cannot empirically test the collated aspects. Instead,
this is undertaken by Heun et al. [35], which is an empirical complement to this landscape paper,
where four key modelling choices are examined to establish the differences in resulting CES parameter
values, and the potential effects on downstream energy policy. Third, by considering only C-D
and CES aggregate production functions, we exclude further discussion on less popular aggregate
production functions (e.g., translog [36], variable elasticity of substitution (VES) [37], linear exponential
(LINEX) [38], linear [39] and Leontief [40] functions) and cost functions—which are a price-based
alternative to production functions [36,41–43]. We also limit widespread further discussion on the
important class of capital–labour–energy–material (KLEM) CES-based production functions. Whilst
becoming increasingly popular [44–46], we retain our focus on KLE-based CES functions for practical
reasons: spatial constraints and the need for brevity, combined with the reality that our paper is
very relevant for those working with KLEM-based CES functions, since they will share many of
the specification and estimation aspects raised regarding KLE functions. Lastly, we also exclude
computational general equilibrium (CGE) based studies [47,48], since CGE models do not estimate
CES aggregate production function parameters.

2. Applications of C-D and CES Aggregate Production Functions

We now briefly review common applications of C-D and CES aggregate production functions.
The inclusion of the C-D function (in addition to the CES function) is intended to show the changing
focus of application as the C-D function is increasingly replaced by the CES function. We start with
a sample survey, and then move to a wider literature search.

2.1. Sample Survey

We studied a small sample of the Google-Scholar results in Figure 1, seeking to identify
similarities and differences in applications. Whilst Google-Scholar returned results for all
production function types (i.e., firm level to sectoral to economy-wide scales), it nevertheless
provides a guide as to the context and application of production function studies. We reviewed



Energies 2017, 10, 202 5 of 23

46 studies [1,4,6,15,16,22,23,25,46,49–85], with 29 C-D and 17 CES studies, in proportion with their
number in the total returned results. To make the best of the tiny, biased sample (0.1% of 40,000
Google-Scholar references obtained for Figure 1), we selected studies based on three criteria. First,
studies were selected based on Google Scholar’s “highest returned relevance”—which is a metric based
on the publication’s full text, the source publication and author, and the number of scholarly citations.
Secondly, this is then filtered to only include empirical studies at an aggregate (sector or economy-wide)
scale. Thirdly, we selected studies in proportion with the number of CES and C-D studies in each
decade in Figure 1—which was intended to get some sense of the change in direction/focus of the
studies, and to give insights into the transition (in popularity) from C-D to CES functions.

Figure 2 shows a histogram of the different purposes driving the C-D and CES sample studies.
For C-D studies, the most common purpose was analysing historical changes in exogenous component
of economic output (Solow residual), and studying new factors of production in addition to capital
and labour. As the CES studies allow non-unity elasticities of substitution, and are weighted
(in number) towards more recent studies, this helps explain their focus on elasticities of substitution
and computational methods (e.g., use of new parameter estimation algorithm).
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Figure 2. Primary study rationale in the sample.

The output measure was almost exclusively GDP, with the key differentiator being whether it
was GDP in constant prices (30 No.) or GDP per worker (14 No.).

Figure 3 shows the wide variation for choice of factors of production. For the conventional factors
of production of capital and labour, capital stock and number of workers were the most common
metrics. Energy was the most popular additional factor of production, appearing first in the post
oil-crises 1970s [22,23], and reappearing in our sample in the 1990s [1,25,57,64,79,83]. It is interesting
to see in our sample—but unclear why—the C-D studies favoured price-adjusted energy (e.g., values
in £), versus the CES studies which used thermal energy content of primary or final energy (e.g., values
in Joules).
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2.2. Wider Literature Search

Including energy as a factor of production starts from the idea that variables in addition to
labour and capital—such as energy [22,23,70], materials [46,86] or money balance [52,55]—help
explain economic output. As far back as 1974, Binswanger and Ledergerber [87] suggested that
“the decisive mistake of traditional economics is the neglect of energy as a factor of production”.
However, including energy as a factor of production remains controversial. One argument is that
energy is not an independent, primary input, but instead as an intermediate quantity made by labour
and capital is thereby redundant (see Dales’ Biophysical GEMBA model as an example reflecting
this argument [88,89]). To counter, the same argument could be applied to capital (i.e., you cannot
make capital without labour), and authors including Stern [90] advocate energy as an independent
factor of production. Some authors go further: Kümmel [91] suggests energy is the only factor
of production, with capital and labour therefore intermediate products (of energy). Denison [20]
suggests a second argument: that energy’s low “cost-share” (typically below 10% of GDP [92,93])
means it can only make a correspondingly small contribution to economic growth. However, authors
including Stresing et al. [94] have sought to debunk this argument, whilst Aucott and Hall [95] show
how—despite its low “cost-share”—small variations in energy prices have significant impacts on
economic output.

Aggregate production functions themselves are not without criticism. Indeed Mishra ([96], p. 20)
suggests they are “the most turbulent area of research in the economics of production”. Criticism occurs
on three main fronts. First is the accounting identity critique [97,98], which infers the C-D function can
be derived from an income accounting identity: output equals wages plus profits. This is held to explain
the excellent historical fits, with observed correlation coefficients (R2) commonly above 0.99 [15,16].
Later, Felipe and McCombie [99] extended the accounting identity argument to include the CES
function. Second, are concerns about measuring capital: Robinson [100] and Fisher [101] were among
a group involved in the 1950s–1970s “Cambridge-controversy”, who suggested aggregate capital could
not be measured, thereby invalidating the use of aggregate production functions. Third are empirical
concerns, since factors of production typically explain only a minority of economic growth, leading
Solow ([3], p. 312) to remark “it takes something more than the usual ‘willing suspension of disbelief’
to talk seriously of the aggregate production function”.

Despite on-going critiques [102–104], the practical reality is that: (1) “economists have continued
using the aggregate production function in both theoretical and applied works” ([98], p. 262);
and (2) that energy is increasingly used as a factor of production by a wide set of studies beyond
academia, including government agencies [8,68,82,105] and central banks [67,106–109]. Several reasons
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may explain this. First, is the “pull” from energy-related questions including macroeconomic energy
rebound [110,111], the contribution of energy to reducing exogenous growth [112], and climate and
economic implications of energy transitions [5,113]. Second, since the elasticity of substitution (σ)
is an important parameter in economics [114,115], significant effort in capital–labour–energy CES
empirical analysis is directed to estimate values of σ [1,33,46,83]. Third, the comparison between
CES and C-D functions is an important study focus—whether for cross country comparisons [6],
specific countries [81], sectors [105] or business cycles [84]. Fourth, general equilibrium models are
an important application of the empirical CES study results, as highlighted by van der Werf [25],
and are widely used to assess the impact of policy [116,117]. CGE models are the most popular,
and are commonly CES-based [30,48,117,118] since this allows non-unity elasticity of substitution
values, but may also include C-D modules [47,119,120]. Dynamic Stochastic General Equilibrium
(DSGE) models are less common, but also use CES production functions [84,121].

Overall, capital–labour–energy CES aggregate production functions have emerged into
widespread usage, serving as a good compromise between complexity (of the analysis) and flexibility
(i.e., wider range of available parameters). For example, Stern and Kander ([5], p. 58) noted their
choice of CES over translog production function was because “we decided that it was better to model
some of the main features more reliably or believably [in a CES function] than to attempt to model
many features of the data less reliably [in a translog function]”.

3. Empirical CES Model—Specification

3.1. Economic Output (Y)

Three broad classes of economic output (the dependent variable, Y) exist: Gross Domestic
Product (GDP), Gross Value Added (GVA)—also called Net Output, which is equal to GDP minus
subsidies and taxes, and Gross Output (GO)—equal to GDP plus intermediate inputs. (Note also
the valuable in-depth work on this by Hulten [122] and Cobbold [123]). In our case, it seems
initially straightforward (at an economy-wide level) to select economic output as GDP, since this
the most common metric nationally reported, and has been widely adopted in mainstream growth
accounting [69,124], which adopts labour and capital as the two production inputs. However, when
energy is added to the production function, things change, as this “intermediate” input is used by
industry to produce final “products” for end consumers. Ideally, the output measure should be selected
“so that the total value of output is equal to the total value of inputs” ([5], p. 59). Those working with
capital–labour–energy–materials (KLEM) productivity databases, such as O’Mahony and Timmer [125],
use gross output as the economic output measure. In the capital–labour–energy case, lacking materials,
a measure somewhere between GVA and gross output seems logical, and this is indeed the path taken
by Kander and Stern [126] and Van der Werf [25], who adopt a modified “gross output” measure
as GVA plus the value (cost) of energy. It is revealing though that this is not a common approach,
as empirical K-L-E CES studies adopt a wide range of output metrics, as shown in Table 1:

Table 1. Energy and output measures adopted for selected K-L-E empirical CES studies.

Author/Study Year Energy Measure Output Measure

Kemfert [79] 1998 Final energy GVA
Kemfert and Welsch [83] 2000 Final energy GVA

Van der Werf [25] 2008 Final energy GVA + energy cost
Koesler and Schymura [46] 2012 Final energy Gross Output

Turner et al. [127] 2012 Final energy Gross Output
Dissou et al. [1] 2012 Final energy Industry GVA

Sun [128] 2012 Final energy GVA + energy cost
Kander and Stern [5] 2014 Primary energy GVA + energy cost

Shen and Whalley [33] 2014 Primary energy GDP
Zha and Zhou [26] 2014 Final energy Not stated
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A second important issue is whether to specify output in (more common) constant
prices [15,69,70,74] or Purchasing Power Parity (PPP) prices [25,82]. Since PPP places a higher weight
on GDP in non-OECD countries—one $US Dollar in China buys more goods than in the US—PPP may
be useful in cross-country studies [129,130] by providing a more level playing field for comparisons.

3.2. Factors of Production (K, L, and E)

3.2.1. Unadjusted (Basic) Factors

Studies commonly adopt capital stock (K), labour (L) and primary energy (E), which we can
consider as unadjusted (or basic) factors of production, i.e., they are measured without taking into
account qualitative differences. Capital stock (the estimated market value, in currency units, of assets
involved in production) is most commonly derived via the Perpetual Inventory Method (PIM),
where an assumed initial capital stock valuation changes each year via additions (new stock) minus
subtractions. Gross capital stock (GCS) defines subtractions as retirements of existing assets; whilst
Net Capital Stock (NCS) is equal to GCS less depreciation of existing assets. With NCS and GCS
data published by statistical agencies [131,132], CES studies have adopted both NCS [74,133] and
GCS [22,25] datasets. For labour, three options for unadjusted values of workforce labour exist,
listed here in descending accuracy as a measure of labour input: work-hours [22,73], numbers of
workers [33,105], or population (for economy-wide studies only) [85]. Unadjusted energy—typically
given in energy units as terajoules (TJ) or million tonnes of oil equivalent (mtoe)—can be based
on primary energy values or final (purchased) energy. Economy-wide studies most commonly use
primary energy [33], whilst sector-level studies only use final energy [1,25,46] since primary energy
values are not reported at that level.

Overall, these unadjusted variables remain very popular for empirical production function
analysis, due to the availability of national and international time series across countries and
sectors [134–137].

3.2.2. Quality-Adjusted Factors

Quality-adjusted values for capital (K*), labour (L*) and energy (E*) seek to better represent
the productive effect of the basic factors of production (K, L, and E) on economic output (Y).
Since quality-adjusted factors of production typically grow faster than unadjusted values [35,133],
in such cases their use at an economy-wide scale assigns more of the increase in economic output to
the growth in factors of production, and less to exogenous technical change (i.e., Solow residual).

Quality adjustment of capital can be achieved by estimating “capital services”, defined as “a flow
of productive services from the cumulative stock of past investments”([138], p. 7). Consider a machine
in a factory: its capital service can be measured by multiplying the price of the goods by the amount
of goods produced by the machine in each year. As national-level time-series of capital services
emerge [139], their use and application in empirical CES studies is increasing [69,133]. A less common
alternative is capital utilisation, which estimates how productively capital equipment is used following
economic cycles (i.e., less in recessions, more at other times), as shown in Paquet and Robidoux’s
Canadian study [140].

Quality adjustment of labour multiplies (unadjusted) work-hours by a quality index—commonly
of worker schooling or skills. As international datasets of such quality metrics—such as Barro and
Lee [141]—have become more available, quality-adjusted labour appears more widely used in CES
studies [58,65,72,142].

Quality-adjusting energy seeks to capture “the relative economic usefulness of different fuels
and electricity” ([143], p. 302). This can be done on either a physical or economic basis. An example
physical approach can consider the amount of exergy (available energy) of the energy carrier nearer the
end of the energy conversion stage as useful work [144], when it is lost in exchange for energy services.
Regarding economic approaches, Cleveland et al. [143] suggest higher fuel prices are indicators of
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higher quality, whilst Stern ([145], p. 1474) introduces a substitution method whereby quality can
be measured by “how much of one fuel is required to replace another”. Weighting can range from
simple aggregation to Divisia indices. Including quality-adjusted energy in empirical aggregate
production function studies are rare: Ayres and Warr used the physical approach by including useful
work data in economy-wide C-D and LINEX functions [144,146], whilst Stern and Kander [5] provide
an economic-based CES example, using a Divisia weighted price based method for energy quality.

Despite the apparent merits of quality adjustment [63], caution is needed. For capital services,
Inklaar [147] raises concerns about the accuracy of the methodology, such that the Penn World
Tables (PWT) retains capital stock for its capital data [124]. For energy, economic approaches can be
problematic—for example energy price data varies with sector and end use and may be distorted
by taxes and subsidy effects, whilst simple price weighting is biased as it assumes no restrictions on
substitutability between energy inputs [24]. As for physical approaches to energy quality, few national
datasets exist of thermodynamic “useful energy”, leaving researchers to time-consumingly construct
their own datasets [148,149]. The result is that most CES empirical studies continue to use unadjusted
energy, i.e., primary or final energy datasets [25,83].

Interestingly, empirical studies involving only capital and labour expend significant effort to
quality adjust at least one variable [57,85,108,150], but those introducing energy as a third variable
typically use unadjusted values for capital and labour [1,25,79,151]. This seems surprising, but perhaps
reflects the significant effort required to develop or obtain time-series of quality-adjusted variables.

3.3. Nesting and Elasticity of Substitution

Nesting, and elasticity of substitution, are interlinked aspects of CES function specification:
the choice in one affects the other—so they are presented and discussed together in this section.

3.3.1. Nesting

Once the CES function has more than two factors of production, the issue of whether—and
how—to nest them, arises. To see why, let us view the non-nested CES function introduced by
McFadden [152], and used by Edenhofer et al. [153]. It is given in Equation (9), using the notation of
nested Equation (6):

Yt = θ eλt[Kρ
t + Lρ

t + Eρ
t ]

ν
ρ (9)

This formulation assumes all factors of production are equal substitutes (σ = 1/(1 − ρ), which is
highly restrictive and as Broadstock et al. ([154], p. 55) note, this “appears unlikely in practice
and also excludes the possibility of complementarity”. As a result, various authors [25,26,44] report
this structure is rarely used, with instead CES studies preferring to “nest” the factors of production,
which is more flexible by allowing different elasticities of substitution to exist between production
factors. A nested three factor format typically has two factors of production placed within an “inner”
nest and one in an “outer” nest. Such a nest is shown in Figure 4, which portrays the KL(E) nesting
structure of Equation (6), given earlier, where capital–labour is in the inner nest, and energy sits in the
outer nest.
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Van der Werf [25] reviewed numerous capital–labour–energy (KLE) and capital–labour–
energy–materials (KLEM) production functions used in climate-based models. He found whilst
most studies analysed a single, KL(E) nest—a view supported by Zha and Zhou [26]—there was also
considerable variation in nesting structure. This presents two routes forward for analysts. The first
is to constrain the empirical analysis to a single nesting structure, based on a-priori theoretical or
other considerations. For example, Saunders [31] suggests the KL(E) nesting is the nesting structure
that permits the fullest range of energy rebound (Re): from hyperconservation (Re < 0) to backfire
(Re > 1). The second, less common approach, is to separately estimate and report all three types of
nesting [1,25,33,79]—though care is needed in interpretation, since certain solution aspects (such as
elasticity of substitution) will not be comparable between different nestings.

3.3.2. Elasticity of Substitution, σ

Interwoven with the issue of nesting is the elasticity of substitution, σ, which tells us the ease by
which one factor of production (e.g., labour) is substitutable by another (e.g., capital). For aggregate
production functions and downstream macroeconomic models, we most commonly assign sigma
(σ = 1

1+ρ ) as the Hicks Elasticity of Substitution (HES). Taking the CES function in Equation (6),
this leads to the special cases where capital and labour have zero substitutability (i.e., are complements)
in a Leontief function (σ = 0); some substitutability in a C-D function (σ = 1), and are perfect
substitutes in a linear function (σ = ∞). Chirinko and Mallick [114,155,156] highlight the importance
that conventional economics places on the elasticity of substitution between capital and labour—which
appears borne out by Thomas Piketty’s recent work [157] and the subsequent flurry of academic
debate [158–160]. (However, it also reveals how orthodox economists continue with capital–labour
aggregate production functions that ignore energy as a factor of production.).

With multiple factors of production several key issues appear regarding the elasticity of
substitution. The first relates to the confusion and mis-use stemming from multiple definitions
of elasticity of substitution in common use—Stern [10] for example reviews ten different elasticities,
including the Allen Elasticity of Substitution (AES), Cross-price elasticity (CPE), and Morishima
Elasticity of Substitution (MES). Whilst different elasticities may be appropriate for different
purposes—for example Klump and de La Grandville [161] recommended the use of MESs when
studying economic growth, whereas Sancho employs HESs for CGE model calibration [118]—the
multiple definitions are confusing. The choice of elasticity matters, since whilst some elasticities
(e.g., AES = HES) are equal for two-input functions [162], they are not in our three factor (K, L, and E)
CES function case. This creates the situation where downstream mis-use of elasticities occurs.
For example, Sorrell is critical of the use of non-HES elasticities for CGE modelling, since “estimates
of the [more commonly estimated] AES, CPE or MES between two inputs provide little guidance in
choosing the appropriate values of the HES between those inputs that are required for the nested CES
functions used in CGE models.” ([163], p. 2863). Meanwhile, Van der Werf [25] (p. 2965), argues that
even if HES values are selected from the literature, they are likely to be incorrect since “in most applied
dynamic climate policy models, neither the production structure nor the accompanying elasticities of
substitution have an empirical basis.”

The second issue is the impact of nesting structure on the elasticity of substitution. Sato’s [164]
two-level nest CES function in Equation (6) permits separate values for inner-nest (K-L) elasticity
σ1 = σKL and outer-nest (KL-E) elasticity σ = σKL,E,—which he tells us can be used to justify
nesting choice:

Introspection tells us that the [inner-nest] elasticities of substitution should be substantially higher
than the [outer-nest] elasticity. After all, we justify the aggregation by the fact that aggregated
factors are similar in techno-economic characteristics. One of such similarities is obviously the ease
of substitution. [164] (p. 203)
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Sorrell [163] (p. 2863) picks up the implication of this important point, suggesting “estimates of
substitution elasticities are likely to be biased if separability is assumed where not supported by the
data”. This means that the choice of nesting structure matters (e.g., KL(E) versus EK(L)), and amounts
to imposing separability on the factors of production—since they are forced into nesting structures
that may not match the data. Van der Werf [25] continues, illustrating how the estimated elasticity
between two factors of production (e.g., K-L) vary significantly depending on the nesting structure.

Third, is that, as Sato [164] showed, in a two-level CES function only one of the two partial
elasticities is actually constant over time, except in restrictive cases. An example is the constrained
CES function based on Hogan and Manne [165], where the capital–labour inner-nest is assumed as
a Cobb–Douglas function (σ = 1), as given in Equation (10). Saunders [31] adopts this approach, as do
some CGE models [166,167]. However, by setting (pre-analysis) elasticity of substitution values for the
inner nest, this constrains the available values for all parameters to be estimated, including the outer
nest elasticity of substitution.

Yt = θ eλt
[
δ
(

Kα
t L(1−α)

t

)ρ
+ (1 − δ)Et

ρ
] 1

ρ
(10)

All of this matters, since estimated parameters—such the elasticity of substitution in empirical
CES studies [25,26,46,163]—can have a large influence on macroeconomic model results. For example,
with a KL(E) nest, Jacoby et al. [168] found changes to the elasticity of substitution was the main driver
of differences in their CGE model results, whilst in relation to energy rebound, Saunders, who first
suggested the sensitivity (and thus importance) of elasticity of substitution to energy rebound [169]
subsequently found empirical support for this assertion [110].

3.4. Other CES Function Parameters

3.4.1. Productivity/Technical Change Coefficients

The exogenous part of economic output (as captured by the term eλt in Equation (6) can also be
stated as Hicks-neutral technical progress [170], with λ a measure of its rate of change. This means
productivity changes are neutral—rather than biased—across factors of production. Whilst many
studies employ this assumption [79,83], it is restrictive since it assumes the productivity of labour,
energy and capital all increase at the same rate, which may simply not be true.

To overcome this restraint, separate productivity coefficients (τK, τL, and τE) can be introduced
(omitting the time dependant suffix from τ for ease of viewing) as first shown in a 3-factor CES
specification by Saunders [169], and estimated for each factor of production. In our case, this modifies
Equation (6) such that τK, τL and τE replace the (now redundant) term eλt, as shown in Equation (11).
The productivity coefficients represent technological changes of each production factor while leaving
the productivity of the others unchanged. Sorrell [163] describes this as giving the separate
coefficients’ ability to assign bias in technical change to specific production factors. Note if τK = τL = τE,
Equation (11) returns to the Hicks-neutral Equation (6).

Yt = θ [δ1
[
(δ τKKρ1

t + (1 − δ)τLLρ1
t
]ρ/ρ1 + (1 − δ1)τEEρ

t ]
ν
ρ (11)

In a capital–labour–energy CES production function context, van der Werf [25] and Dissou et al. [1]
provide examples of this method, estimating directly the technical change parameters assigned to
the factors of production. Papagerogiou et al. [171] extend this approach, by splitting fossil fuel and
renewables adopting separate technical productivity coefficients.

However, a central caveat is that the factor-augmenting technical change parameters are likely to
overlap with the use of quality-adjusted inputs given earlier, for example “effective labour” (as depicted
by τLL) is closely related to quality-adjusted labour (human capital index × labour).
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3.4.2. Returns to Scale, (ν)

Empirical CES studies almost exclusively assume unity returns-to-scale (ν = 1), which is
an important economic assumption, and matches the popular CES specification set by Arrow et al. [12].
This restrictive assumption is tested by Layson [172], who finds the generalized CES function (where
ν is unconstrained) allows an “explosive” case (where ν and σ are >1). Szeto [82]—who estimated
ν = 1.09, and Duffy and Papageorgiou [6]—who estimated ν = 0.97–1.00, provide rare generalized
CES function examples. Curiously, both these economy-wide studies were then returned to ν = 1,
since as Szeto [82] (p. 7) noted “theory suggests that there are constant returns to scale in production,
we will impose this restriction in the remainder of our empirical analysis”. One caveat attached to the
unconstrained approach is that whilst the results will indicate how well the model supports the unity
returns-to-scale assumption, the model will have fewer degrees of freedom, meaning the parameter
estimates will be less precise.

3.4.3. Output Share Parameters, δ, δ1

In the capital–labour C-D function given in Equation (1), it is a mathematical result that the partial
output elasticity for capital (α) and labour (β) is equal to the respective cost-shares of aggregate output
(typically around 0.3 for capital, 0.7 for labour)—under the neoclassical assumptions that firms are
profit maximizing and markets are perfectly competitive. However, in the nested capital–labour–energy
CES function, the output share parameters (δ, δ1) in Equations (6)–(8) are not equal to (and therefore
cannot be set as) the time-varying output elasticities (αK, αL,αE), as shown in Equation (12)—adapted
from Heun et al. [35]. (The exception is the limiting C-D case where ρ = 0).

αE =
∂Y
∂E
Y
E

=
1 − δ

δEρ[δ1Kρ1 + (1 − δ1)Lρ1 ]
ρ
ρ1 + 1 − δ

(12)

3.5. Normalisation

A historical complaint about aggregate production functions is that they combine different units,
e.g., capital ($), labour (h), and energy (TJ), generating “production function parameters [that] have no
economic interpretation” [108] (p. 7). One approach to overcome this critique is to normalise the factors
of production prior to estimating the unknown parameters, since this “removes the problem that arises
from the fact that labour and capital are measured in different units” ([104], p. 30). The method indexes
time-series data to the base year, so y = Yt/Y0; k = Kt/K0; l = Lt/L0; e = Et/E0; with the resultant
normalised (lower case) version of Equation (6) shown as Equation (13):

yt = θ eλt[δ1
[
(δ kρ1

t + (1 − δ)Lρ1
t
]ρ/ρ1 + (1 − δ1)e

ρ
t ]

ν
ρ (13)

For the estimation of aggregate production functions, the introduction and use of normalised
variables (y, k, l, and e) means different estimated values can be obtained for the leading coefficient
(theta) and share (delta) parameters. The latter could affect economic interpretation of the results.
That said, the effects of normalisation may differ for empirical studies which base their research on
estimating first-order conditions rather than the overall production function.

Advocates of normalization include La Grandville, Klump, and co-authors [32,108,173],
who suggest advantages including a more comparable basis to study elasticities of substitution
between different studies [33,115]. That said, caveats do exist: for example Temple [34] comments on
the misuse of normalization for certain applications. Returning to capital–labour–energy CES empirical
studies, normalization has yet to make significant inroads—Shen and Whalley [33] and Heun et al. [35]
provide rare examples—but this may change as the use and publication of indexed aggregate datasets
such as those of Jorgenson [174] should aid their dissemination and usage in growth accounting.
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4. Empirical CES Model—Parameter Estimation

4.1. Estimation Methods

The C-D function in Equation (5) is typically estimated as a linear equation by ordinary least
squares (OLS), after first taking logarithms. This simple, linear solution method is one reason for its
enduring popularity. However, the CES function in Equation (6) cannot be transformed in the same
simple manner to a linear equation without approximation, and so numerous other techniques have
been developed, as evidenced by the CES sample studies shown in Figure 5.
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The most popular technique in the sample—used by over half the sample [1,6,46,77–79,82,83]—is
direct non-linear estimation of the aggregate function. Though complex, its popularity appears to be
increasing, which may be due to the increased availability of econometric guidance [175], off-the-shelf
programmes [30], and advances in computing power. A common method is a grid based search over
relevant parameter ranges, such as that set out by Henningsen and Henningsen [30,176], and used by
Heun et al. [35]. Though non-linear techniques appear attractive to solve the inherently non-linear CES
function, and have been found to perform better than linear alternatives [46]—care needs to be taken:
for example Papageorgiou et al. [171] (p. 26) note that “results of non-linear estimation procedures
maybe sensitive to the choice of starting values of the estimation parameters”.

A second method indirectly estimates the parameters, since the solution to the non-linear
function is not directly estimated. Instead, three linear simultaneous equations—one for each factor
of production—are derived, based on applying the important first-order economic assumption of
equality between factor prices and marginal products to the CES function—also known as Shephard’s
Lemma. This method is a common approach where the sole parameter of interest is the elasticity
of substitution (σ), as Van der Werf [25] and Dissou et al. [1] show. However, systems estimation
carries with it additional risks, for example misspecification in one equation can have deleterious
consequences for estimates in other equations in the system.

Third, is a hybrid indirect-direct method, based on Nerlove’s 1967 two-step process [177]. Bonga
Bonga [81] provides a rare, recent example, which in the first step estimates the elasticity of substitution
(σ) and distribution parameter (δ), based on the estimated ratio of marginal productivities under perfect
competition, and then in the second step inserts σ and δ back into the CES equation, reducing it to
a linear equation which is then directly estimated.

A fourth method used is direct linear approximation, based on Kmenta’s 1967 simplification
of the non-linear CES equation [178]. However, since the Kmenta approximation cannot be used to
linearise CES production functions with more than two factors of production [176], it is found only in
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our samples for two factor (capital–labour) studies [6,74,85], and is therefore not a valid estimation
technique for the energy-extended (capital–labour–energy) CES function.

Outside of the sample CES studies, Klump et al. [108] raise an additional, “system approach”
method, which involves the non-linear solution of a “system” comprising the aggregate production
function and linear first-order conditions. Two other estimation points are notable. The first relates
to the “endogeneity problem” raised by Mundlak [179]—where an explanatory variable is correlated
with the error term in a regression. Malleck [156] is amongst those who used Instrument Variables (IV)
as a way around this issue. Second is that the production function is a long-run equilibrium concept,
meaning as Chirinko [114] (p. 671) notes, there is a “fundamental tension between the short-run
data that are available and the long-run parameter that is required”. Cointegration [180] and filtering
techniques [181] offer potential routes forward.

4.2. Statistical Reporting

Statistical techniques and reporting provides important context to the empirical results. Three key
aspects are considered here. The first are the common statistical tests on the fitted function and
its econometrically estimated coefficients. From the sample, the majority report goodness-of-fit
via the coefficient of determination (R2) [74,75,78,83] and the Durbin–Watson (D-W) value—testing
for autocorrelation of the residuals of the regression [25,73,77,83]. (However, we also note that
not all econometric techniques can generate the same statistics. For example, R2 is not applicable
with Seemingly Unrelated Regressions). The overall F-test—giving the statistical significance of the
overall relationship—was less commonly reported [75,77,81]. Within our sample, only Easterly and
Fischer [78] and Duffy and Papageorgiou [6] reported tests for heteroskedasticity in the error term
(i.e., the fitted residual).

The second important aspect is the reporting of p-values on the statistical significance of individual
coefficients, which is also common [6,25,77,82], but should be used (and viewed) with caution.
This is because p-values are a measure of the evidence against a null hypothesis, with small p-values
indicate overwhelming evidence against the null. Statistical fitting software typically assumes the null
hypotheses that fitted parameters are zero, which may not be meaningful for some parameters of the
CES production function, for example the share parameter, δ. In short, analysts should be very careful
that reported p-values accord with the purposes of a study.

A third aspect relates to the reporting of standard errors, which adds important information
about the precision with which parameters are estimated. For example, in a study examining the
substitutability of energy for the capital/labour composite in a (KL)E nesting structure (Equation (4)),
the value of sigma is central. If sigma is reported as 0.5 with standard error of 0.3, it will be hard to claim
whether KL and E are substitutes or complements. If, instead, sigma is found to be 0.95 with standard
error 0.02, it could reasonably be claimed that KL and E are substitutable. Bootstrap resampling can
also be used to gain valuable insights on the precision of the estimated parameter values. This may be
particularly relevant for study of parameters estimated close to economically-meaningful boundaries
(e.g., delta = 0.96), which are unlikely to have symmetric distributions. Whilst none of the sample
studies used this technique, it is entering the wider growth accounting literature [109,171,182], and can
be applied to empirical CES analyses, as shown by Heun et al. [35].

Overall, whilst statistical reporting can strengthen the empirical results and provide better
context for comparison of results between studies, it seems an aspect of the estimation process that is
under-reported at present.

5. Recommendations

From the collated aspects in Section 3, we provide a summary of CES specification
recommendations in Table 2.
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Table 2. Specification recommendations for energy-extended CES aggregate production functions.

Section Aspect Options Recommendation

Section 3.1 Output measure, Y
• Gross Domestic Product
• Gross Value Added
• Gross Output

“Modified” gross output metric, measured as
GVA + value of intermediate inputs (i.e., GVA + cost
of energy).

Section 3.2.2 Quality-adjusted inputs • Do not quality-adjust
• Quality adjust

Yes, quality-adjust where possible.

• Capital services if data available
• Skills index data, e.g., follow Barro and Lee [183]
• Price or exergy adjusted energy

Report parameter estimation results from both
unadjusted and quality-adjusted factors of production.

Section 3.3 Nesting
• Estimate one nesting structure
• Estimate all three nests (KL-E,

EK-L, KE-L)

Estimate and report parameters for all three
nesting options.

Section 3.3 Substitution parameters, ρ • Constrained fitting
• Unconstrained fitting

Estimate unconstrained parameters first. Then
re-estimate (for comparison) with constrained
substitution parameters.

Section 3.4.1 Technical change
parameters τL τK τE

• Introduce τL τK τE
• Exclude τL τK τE

Introduce if values are known/available, but be wary
of conflict with quality-adjusted input data.

Section 3.4.2 Returns-to-scale ν

• Specify a-priori constant
returns-to-scale ν = 1

• Unconstrained fitting

Estimate unconstrained parameters first. Then
re-estimate (for comparison) with constant
returns-to-scale (ν = 1) parameter.

Section 3.4.3 Share parameters, δ

• Specify a-priori
(perhaps by cost-share)

• Constrained fitting
(i.e., between 0 and 1),

• Unconstrained fitting
(could be <0 or >1).

Estimate function parameters with constrained
(between 0 and 1) share parameters. Exact values to be
determined by the estimation process.

Section 3.5 Normalisation of Y, K, L, E Normalise or not Always normalize for three factor CES functions.

Two key aspects of CES specification are worthy of further discussion here. First is the linked
issue of output measure and normalization. We saw earlier the variation in Table 1 relating to choice of
output measure in empirical energy-extended CES studies. This was a surprising finding, and one
we would expect perhaps to change in future, if a consensus emerges—e.g., towards a “modified”
gross output (GVA + energy cost). Allied to this is the effect (and thus importance) of normalization.
If absolute measures of economic output (Y) are used when fitting the CES aggregate production
function, a change from GDP to GVA or gross output will affect parameter estimates if GVA or gross
output are different from GDP, as they are likely to be. If indexed (normalized) measures of economic
output (Y) are used when fitting the CES aggregate production function, a change from GDP to GVA
or gross output will affect parameter estimates only if the indexed value of GVA or gross output is
different from the indexed value of GDP. i.e., estimates of fitted parameters will not change if GVA or
gross output is different from GDP by a constant multiplicative factor only. Second—and related to the
first—is the issue of quality-adjusted inputs. Whilst desirable, two caveats can be attached: (1) that
quality-adjusting inputs can bring a direct conflict/duplication with technical change parameters, τ;
and (2) there are different methods of quality-adjusting each input (capital, labour and energy). In sum,
this means great care is required to construct the inputs properly, and to align them to the chosen
output measure.

Moving to CES estimation, two recommendations from Section 4 are made. First is the
advocation—with caveats—for the common use of off-the-shelf non-linear coding to solve the
aggregate function such as Henningsen and Henningsen [30]. The caveat is that caution is required:
there are issues such as near boundary solutions and multiple solutions which require attention—see
Heun et al. [35]. Second is the desire for the deepening of statistical reporting via: (1) reporting all
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nesting structure results; and (2) greater reporting of the estimated precision of parameter values,
such as through bootstrap resampling.

Finally, looking forward, to ultimately provide better inputs to energy policy, effort in two key
areas is required. First, more detailed research by the energy economics community is required
specifically to investigate the impacts of modelling choices (e.g., normalization, or quality adjusting
inputs) on estimated parameter results. This will help identify which of the CES modelling choices have
the most significant impacts on results. The empirical “sister” to this current paper by Heun et al. [35]
is an intended next step in this direction. By improving understanding of modelling parameters,
this will also better inform users of the analytical results—e.g., CGE modellers and policy-makers—as
to the robustness and sensitivity of assumed parameters. Second, empirical CES studies currently
exhibit great variation in the type of results reported. Developing a consistent approach to reporting
would add interpretative value to the study itself, and enable improved inter-study comparisons.
For example, studies could consistently report results showing the effect of: (1) new datasets
(e.g., new quality-adjusted verses incumbent non-adjusted variable); (2) different nesting structures;
and (3) the application of broader statistical techniques (e.g., standard errors and bootstrapping).
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