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Abstract

In understanding the composition and internal structur@stdroids, their density is perhaps the most diagnostictiyaWe aim
here to characterize the surface composition, mutual,cslzié, mass, and density of the small main-belt binary eist¢039)
Isberga. For that, we conduct a suite of multi-techniquenlzions, including optical lightcurves over many epociear-infrared
spectroscopy, and interferometry in the thermal infral@. develop a simple geometric model of binary systems toyaadhe
interferometric data in combination with the results of liglitcurve modeling. From spectroscopy, we classify Ipaaas a Sg-
type asteroid, consistent with the albedo of Q%zg (all uncertainties are reported asr3range) we determine (average albedo
of S-types is 0.19% 0.153, see Pravec et al., 2012, Icarus 221, 365-387). Ligiecanalysis reveals that the mutual orbit has a
period of 26.6304 0.0001 h, is close to circular (eccentricity lower than fabid has pole coordinates withih @f (225°,+86°) in
Ecliptic J2000, implying a low obliquity of 552 degree. The combined analysis of lightcurves and intenfietdic data allows us
to determine the dimension of the system and we find volunuévakgnt diameters of 121%2 km and 3.@8'7 km for Isberga and
its satellite, circling each other on a 33 km wide orbit. FraEnsity is assumed equal and found to 82 :(7)1 g.cnt3, lower than
that of the associated ordinary chondrite meteorites, estijgy the presence of some macroporosity, but typical typ8s of the
same size range (Carry, 2012, P&SS 73, 98-118). The praselytis the first direct measurement of the size of a small rbain
binary. Although the interferometric observations of Igfzeare at the edge of MIDI capabilities, the method desdrhmere is

applicable to others suites of instruments (e.g., LBT, ALMA

Keywords: Asteroids, dynamics, Satellites of asteroids,, Orbit gheiieation

1. Introduction Iltokawa by the Hayabusa spacecrdftakamura et al. 2031
) ) ) _our knowledge on the mineralogy of asteroids has been de-
Of the many properties that describe an asteroid, thereis pejyed from remote-sensing photometry and spectroscoplyen t
haps no quantity more fundamental to understand its compQjisiple and near-infrared, radar polarimetry, and corguari
sition and internal structure than its density. With the&xC  yith meteorites studied in the laboratory (e.§hepard et al.
tion of the fine-grained dust returned from asteroid (25 143)2008 Vernazzaetal. 2000 These observables, however,
tell us about surface composition only, which may or may
not be reflective of the bulk composition of the body. The
bulk density of meteorites spans a wide range, from the low-

UBased on observations made with ESO telescopes at the baPgithnal
Observatory under programme 1088.C-0770
Email addressbcarry@imcce.fr (B. Carry)
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density p~1.6g.cnT®) primitive Cl carbonaceous chondrite
to the densed~ 7.4 g.cnt3) Hexahedrite iron meteorites (see,
e.g., Consolmagno and Britt 1998 onsolmagno et al. 2008
for meteorites density measurements). Comparison ofadter
bulk density with meteorite grain density provides a crugi,
useful, tool in the investigation of their bulk compositidrhis

is particularly valuable for taxonomic types devoid of car
teristic absorption bands in their spectrum, for which thalag
meteorites cannot be ascertained otherwise.

For asteroids with known surface mineralogy and analog me
teorite, the density even allows us to make inference on th
internal structure of the body. By comparing the grain den-
sity of the surface material to the bulk density of the astero
we can detect the presence of denser material below the cru:

X ) 1
Phase (Epoch 2455855.97, P, = 26.643 h)

[J 2011-10-20.0 & 21.0
2011-10-22.0 & 22.9

-+ 2011-10-25.1 & 26.0

X 2011-10-26.9 & 27.2

<> 2011-10-28.9

A 2011-11-01.9

like in the case of (4) VestaRussell et al. 2012 or the pres- o o2 os

k 0.6 0.8
ence of large voids, called macroprorosity, as for the resgille Phase (P = 281603 1)

(25 143) Itokawa Fujiwara et al. 2006 A recent comprehen- _ _ _ _
sive analysis of volume and mass determinations of about 30fj9u"e 1 Lightcurves of Isberga showing the mutual echpsed photometric

. . . variability induced by the primary rotationa: All the lightcurves acquired
asteroids has revealed cleafféfences of density and macrop- petween 2011, October the 2@nd 2011, November theIfolded over the
orosity among taxonomic types, together witlifelient trends  synodic orbital period of 26.643 hb: The same as above, with the orbital
with size and orbital population€arry 20123. This sample is, component of the Iightcur_ve only_; The rotation component of the lightcurve
however, still limited in number and the precision of the anaj  ©": folded over the rotation period of 2.91695 h.
ity of these estimates remains cruder than 50% @utoff).

In our quest for asteroid masses, the study of binary systems
has been the most productive meth@a(ry 2012. Spacecraft 2. Observationsand data reduction
encounters provide the most precise mass determinatidime(at o
percent level, e.gPatzold et al. 2011 but they will always re-  2-1. Optical lightcurves
main limited to a few objects, while studies of orbit defleat The binarity of Isberga was reported Molnar et al.(2008
during planetary encounters provide numerous mass essmatfrom optical lightcurves obtained over 6 nights in 2006 & th
with limited precision (often above 50% relative accurage  Calvin-Rehoboth Observatory. The rotation period of thie pr
Zielenbach 201;1Kuchynka and Folkner 201Jor instance). mary and the orbital period for the satellite were determine
With more than 200 binary systems known, and more discovto 2.9173:0.0003h and 26.8 0.1 h. We report observations
eries announced almost monthly, the study of mutual orbitgarried out during 2 nights from the 20@809 opposition, 43
can provide numerous mass determinations. For large separaights in 2010, 54 nights in 2011, and 2 nights in 2012. We
tion binaries, where the companion can be imaged and trackddfovide a detailed list of all the lightcurves with anciffan-
along its orbit (e.g.Merline et al. 1999 Marchis etal. 2005 formation in Tablel. A subset of the lightcurves is plotted in
Descamps et al. 2011Carry etal. 2011 Vachier etal. 2012  Fig. 1, showing evidences for mutual events.
among others), the mass can be determined to a high precision As many observers acquired lightcurves of Isberga, we do not
typically about 10-15%Garry et al. 2012 For the small bi- 9o here into the specifics of the data reduction and photgmetr
naries, detected and studied by the signature of mutugisesli measurements used by each. Standard procedures were used
and occultations in their lightcurves, the density can i-in to reduce the data, including bad pixel removal, bias sabtra
rectly determined without measuring the absolute size ramsm  tion, and flat-field correction. Aperture photometry wascuse
of the objects (e.gPravec et al. 200@0120). This, however, measure the relative flux of Isberga with surrounding stacs a
requires to assume the same bulk density for both componenilild its lightcurves. In lightcurve decomposition, the gna
(e.g., Scheirich and Pravec 20n9vhich may be problematic tude scale zero points of individual nights (sessions) waen
if these small-sized binaries are formed by rotational kugpa as free parameters. Their uncertainties were generaithes
(Walsh et al. 2008 The accuracy reached with this method can0.01 mag and we checked by experimenting with them that they
range from a few percent to 100% depending on each systeflid not add a significant uncertainty in subsequent modefng
(Carry et al. 2012 the system, and we did not propagate them there.
We present here a suite of observations of the small main-bel

binary asteroid (939) Isberga (orbital elements:2246 au, 2.2. Near-infrared spectroscopy
e=0.177, £2.588) aiming at determining its surface composi- To constrain the surface mineralogy, we acquired a near-
tion, mutual orbit, mass, diameter, density, and macragityro  infrared spectrum of Isberga on 2011, August th&92at a
We describe in Sectiof the diferent methods of observation phase angle of 28as part of the MIT-Hawaii-IRTF joint cam-
we use, we present the analysis of the surface composition giign for NEO reconnaissandgifzel et al. 2006 Data from
Isberga in SectioB and of the physical properties of the systemthis survey are publicly available athass.mit.edu. Obser-
in Section4. vations were taken on the 3-meter NASA Infrared Telescope



MIDI records the interference fringes between two beams of
incoming light, which gives access to the complex degreeof ¢
herence (or complex visibility) between the beams. This-com
plex visibility is the Fourier transform of the object brigless
1.01 h distribution on the plane of the sky, stacked along the fzsel
direction and sampled at the spatial frequeBgy, whereB is
0.8- 4 the baseline vector. In this work, we focused on the cordlat
— Isberga &= Sg-type average and G-eleviation | flux observable, which is the modulus of the complex vistili
e Fringes on Isberga were acquired at three observing epochs
in visitor mode on 2011, October th& 6and at four observing
epochs in service mode on 2011, October th& (Table 2),
following the observing procedure beinert et al(2004. The
fringes were dispersed using the prism of MIDI, which presgd
a spectral resolving power af A1~ 30 at1 = 10um. One cor-
0.8+ - related flux measurement, dispersed over the N-band (fram 8 t
— De-reddened Isherga ~ —  Sete Lagoas H4 | 13 um), was obtained for each observing epoch. Our observa-

o5 10 15 .0 .5 tionsalsoincluded a photometric and interferometridualior
Wavelength (microns) star, HD 15396, to determine the atmospheric and instrumen-
tal transfer function. Our calibrator was chosen to be aartyul
Figure 2:Top: Near-infrared spectrum of Isberga normalized at u@0com- unresolved, and to have a minimum angular separation wéth th
pared with the average Bus-DeMeo Sg-type spectrBoitom: De-reddened  source £3°) and a similar airmass (see Tal2e
spectrum of Isberga (usi_ng the space Weathering mod#iwfetto et al. 2006 The correlated flux measurements of (939) Isberga were ex-
see Sec3) compared with the ordinary chondrite H4 Sete Lagoas (RELAB . .
sample ID: MH-JFB-021). tracted using the data reduction software packege EWS (_Expe
WorkStation, seddfe 2004 for a detailed description). Using
the closest calibrator observation in time, calibratedelated
fluxes of (939) Isberga were obtained by multiplying theaati
Facility at the Mauna Kea Observatory. We used the instrimenargetcalibration star raw correlated flux counts by the abso-
SpeX Rayner et al. 2003 a near-infrared spectrograph in low |ytely calibrated infrared flux of the calibrator (Skfatter et al.

1.2+ B

1.2 B

Normalized reflectance

1.0

resolution mode over 0.8 to 2. o _ _ 2011, 2013 for a complete description of the data reduction and
Isberga was observed near the meridian (airmds8) in  cajibration procedure).
two different positions, here denoted A and B, on a>01% Uncertainties on the correlated flux are estimated consider

arcsecontislit aligned north-south. Exposure times were 120ing two contributions. First, a short timescalffeet (much
seconds, and we measured 4 A-B pairs. Solar analog stars Wegorter than typical observations-a2 min), dominated by pho-
observed at similar airmass throughout the night to cofct on noise from the object and thermal background emission.
telluric absorption. We used the same set of solar analogs a%js statistical uncertainty is estimated by splitting angbete
the SMASS programBinzel et al. 20042008 that have been  exposure, consisting of several thousand of frames anéhigad
in use for over a decade. to one correlated flux measurement, into five equal parts and
Data reduction and spectral extraction were performed Ussy deriving their standard deviation for every spectralroie.
ing the Image Reduction and Analysis Facility (IRAFody  Second, the slow variations in the flux transmission of theoat
1993 provided by the National Optical Astronomy Observa- sphere anr variations of the thermal background can intro-
tories (NOAO). Correction in regions with strong tellurib-a  gyce dfsets between repeated observations across the night.A
sorption was performed in IDL using an atmospheric transmisyough estimate of thisftset-like contribution is obtained by cal-
sion (ATRAN) model byLord (1993. More detailed informa- iprating each correlated flux measurement against all tfie ca
tion on the observing and reduction procedures can be found iyrators of the night, and then computing the standard dewiat
Rivkin et al.(2004 andDeMeo and Binze{2008. We present  (seeChesneau 2007 Such estimate was only possible for the

the resulting spectrum of Isberga in F&y. three measurements of 2011, October tfenhere the error
o ) bars correspond to the quadratic sum of these two sources of
2.3. Mid-infrared interferometry uncertainty.

Mid-infrared interferometry can provide direct measure- The four fringe measurements on 2011, October th€& 10
ments of the angular extension of asteroibgslpo et al. 2009  were acquired over a period of 15 minutes with only one cal-
Matter et al. 201,12013. We used the MID-infrared Interfero- ibrator observation. Since this is short compared to thie est
metric instrument (MIDI) of the Very Large Telescope Ingrf  mated rotation and orbital period of Isberga of 2.9 h and B6.8
ometer (VLTI), combining two of the 8.2 m Unitary Telescopes respectively, the system apparent geometry, which doesgnat
UT1 and UT2, with a baseline separation of 57 m, providingthe data compared to, e.g., putative surface compositiwmdie
a high angular resolution ofg ~0.02" at2 ~ 10um, corre-  geneity, did not change. We thus averaged the four observing
sponding to about 10 km projected at the distance of Isbdrga @pochs to reduce the statistical noise. Assuming that the av
the time of observation. eraging process also removed the possilfiigets &ecting the



Eelpti longitude (mas) We determine a reddening strength@f=-0.6um, a value

O oy —ae ‘ ‘ — \9 - similar to, e.g., (158) Koronis (measured with M4AST on
zj:: (I i o ®. 1 1 the near-infrared spectrum WBurbine and Binze(2002 ob-
o4r . IIIHIHIH \ ’ tained at a phase angle of°}@nd corresponding to significant
o2 Tzzrl, ; ; ; _ L. ... . 1"s weathering (responsible for the higher spectral slopeturga
ol 201" Oet 07 0552 : IHIHIHHH 1 o 1 ; compared with the average Sqg-clasDaMeo et al(2009 in
. zj . IHHII i I e P oo Fig. 2). The spectrum of Isberga was however obtained at a
Yosf TEETT L N oo £ large phase angle of 2§Sec.2.2), and part of the reddening
é i ot om oot 1 1 HHI: N ] 3 may be caused by the_ observing geometry. Spectral observa-
£ ool HHHHHH i .\R 1 og tions of Isberga at visible wavelengths and small phaseeang|
ol e rritt :  will help refine its taxonomic classification and state ofcga
i = S Ak : : : - ——~1"¢  weathering.
ol PO 01000 ISt 10 We determine a visible geometric albedo mf=0.14"532
1 - oo || ® T (Sec. 4.2) which is lower, yet consistent, than the aver-
0ol =TT ‘ " RNE age albedo of asteroids in the S-complex (0497153, see
s W2 et () 2 B Pravec et al. 2012#or values based on WISE mid-infrared sur-

veys) and corresponds to the first quartile of all Bus-DeMeo S
Figure 3: Left: Correlated flux of Isberga observed with MIDI over the four complex asteroids (based on Fig. 6Mginzer et al. 2011 We
epochs listed in Tabl@. The best-fit solution of binary modeFg) is also finally search for the best-fit (|\/|4ASI2 match) meteorite in

plotted as a solid blue lineRight: Corresponding geometry of the system eohe
on the plane of the sky. The red line represents the proje¢tdd baseline, the Relab spectral database to Isberga spectrum, corf d

the black ellipse Isberga, the black disk its satellite, traiblack circle the ~ (N€ reddening (either due to the phase angle or space weath-
projection of the satellite on the baseline. ering. Ordinary chondrites provide the most-promisingdian

dates, as to be expected from the Sqg-type classificatiorthend
best-match is found for the H4 Sete Lagoas (sample MH-JFB-

. 021).
four measurements, the corresponding error bars onlydeclu )

the “averaged” short-term statistical error contributidfig. 3
shows the four measurements resulting from the sevenlinitiad. Mutual orbit: size, mass, and density
individual MIDI measurements listed in Tak?e
We describe here thefirent steps that lead to the determi-
o nation of the geometric properties of the binary Isbergg., e.
3. Surface composition component diameter ratio, semi-major axis of the orbitpabs

) i lute size.
We use the Virtual Observatory (VO) service M4AST

(Popescu et al. 20)20 analyze the near-infrared reflectance
spectrum of Isberga shown in Fig. It presents two broad
absorption bands centered at 0:9%.01 and 1.9% 0.01um, We model the system using the method described in
tracers of olivine and pyroxene assemblages. We classify IsScheirich and Prave¢2009, modified to allow for preces-
berga as an S- or Sg-type asteroid (in the classificatiomsehe sion of the orbit's pericenter. For the modeling, the opti-
by DeMeo etal. 2009 the main class in the inner part of cal lightcurves were reduced using the technique described
the asteroid belt@eMeo and Carry 2012014. We also use in Pravec etal.(2006. In particular, the rotation-induced
M4AST to determine the degree of space weathering presentdightcurve of the primary was fitted using Fourier series and
by Isberga’s surface, following the space weathering mbyglel subtracted from the data. The shapes of the components
Brunetto et al.(2006), valid for pyroxenes and olivines (see, are modeled as ellipsoids, an oblate spheroid for the pri-
e.g., Brunetto et al. 2007 Vernazza et al. 20Q9Fulvioetal. ~Mary (Av=B1>Cy) and a prolate spheroid for the secondary
2012. In this model, the fect of space weathering is a mul- (A2 >B>=C5), and approximated by polyhedra with triangu-
tiplicative exponential continuum written aelCs/).  This lar facets, orbiting each other on Keplerian orbits. We amsu
model is based on many laboratory experiments on ordinar§ame albedo and density for both components. This assump-
chondrites and mimic theffect of space weathering on lunar- tion is required to translate the unknown mass and diamater r
like surfaces (increased spectral slope and decreasedoalbe tio of the components into flux ratio (s&heirich and Pravec
seeSasaki et al. 2001Chapman 2004Strazzulla et al. 2095 2009. Depending on the formation scenario, the satellite’s den
among others). Space weathering trends are more subtle afitly may however be dierent from that of the primary: under-
complex for asteroids within the S-complex, owing to the dif dense for ejecta re-accumulation or over-dense for ejériet

ferent Compositions it encompaﬁifey et al. 1993 Gafey der (Unllkely here giVen the SizeS Of ISberga and I'[S SE&Q&”I
2010, albeit spectral reddening is consistent. The secondary is moreover assumed to be spin-orbit locteed, i

long axis aligned with the centers of the two bodies at the per
center. Finally, spin vectors of both components are asdume
Lhttpy/m4ast.imcce.fr be colinear with mutual orbit pole.

4.1. Lightcurve analysis and orbit determination



http://m4ast.imcce.fr/

The total brightness of the Sy_Ster.n as seen by.the Observ%gble 3: Best-fit values for a circular mutual orbit withr3dancertainties of the
was computed as a sum of contributions from all visible f&icet |, ameters described in Sectiért.
using a ray-tracing code that checks which facets are @atult

by or in shadow from the other component. In modeling the ec Parameter value unit
centric orbit, a precession of the line of apsides was takemn i (ng, ?p) 26 5323205zii%6())aom dehg.
account. A pericenter drift rate depends on primary’s @blat If(; i 3541 3 deg
ness A;/C;, seeMurray and Dermott 199%(q. 6.249) that is To 245379&631170 J[')
only poorly estimated from the lightcurves (see TaB)e so e <010
we fit the pericenter drift rate as an independent paraméjer ( o 0 - 360 deg.
Its initial values were stepped in a range from zero tey@dy; o 0-10 deg.
this range encompasses all possible values for the flagamid a/Dic 5 5+03
other parameters of the system. To reduce a complexity of the Dyc /blc 0.29 i‘%ﬁoz
modeling, the upper limit on eccentricity is estimated biyrfi ’Prot T 291695+ 0.00010 h
data from the best-covered apparition (2011) only. A/Cy 1.3+07

The fitted parameters are the oblateness of the primary, ex- As/Cy 1.‘1%07

pressed as its equatorial-to-polar semi-major axes ratj;;
an elongation of the secondary, expressed as its equetheal 2 The3-o areais approximately an ellipse of semi-major axes @il
largest) to polar (the shortest) semi-major axes r#gCs; &  6°, centered on these coordinates, see &ig.
ratio between the mean cross-section equivalent diameters b e estimated only an upper limit on the eccentricity from Rdata.
the components of the binarp{ c/D1c); the pole coordinates ¢ This is only a formal best-fit value of the elongation of thewedary,
of the mutual orbit in ecliptic frame,dand B, (Epoch J2000); @  a spherical shape is consistent as well.
relative size of the mutual orbit's semi-major axég D, c); the
mean length., (i.e., the sum of angular distance from the as-
cending node and the length of the ascending node) for a givefe model the primary component of the system by a uniform
epochTy; the sidereal orbit perio®q,; and for modeling the  ellipse, thus taking into account the primary ellipsoidshand
eccentric orbit, the eccentricity e; and an argument ofgeeri ~ "otation. We denoté, andd (with 6, > 6;) the apparent ma-
ter (w) as well. jor axes of the ellipse representing the primary comporsert,

We obtain a unique prograde solution of the mutual or-92 the apparent diameter of the secondary component. The two
bit. The best-fit model parameters are given in TaBle COmMponents are separated by the angular distance viectdre
with uncertainties corresponding toc3€onfidence level (see correlated fluxEg) produced by such a binary system is:
Scheirich and Pravec 2009T he orbital pole coordinates of the 1
system, at a high ecliptic latitude (Fi4), implies a small oblig- Fa() = F1(L 6. 65) [(Vf(i) S V2D + 2V Vo) ot COS(Z%B.A)]Z @
uity of 1.5°%2 deg. Mutual events are therefore constantly ob-
servable from Earth, although the geometry remains lintibed where F1(4, 6,,6;) is the total flux of the first component,
the equatorial region, precluding a detailed modelingef3fD  f,, = (6,/ \/g”—gﬁ)Z is the flux ratio between the secondary and
shape of the primary. We constrain the equatorial aRe®0d  primary componentsB is the baseline vector projected on the
By) from the amplitude of lightcurves at low phase angle andplane of the sky, an@; are the intrinsic normalized visibilitiés
find A;/B; =1.23+0.02. The oblateness of the primaky/C; of each componertcomputed as
is, however, loosely constrained, with possible valuegiram
from 1.2 to 2.0. We do not see any evideAder a strong elon- V(1) = 231(”9i ) )
gation of the satellite4,/Cy), even in the long lightcurve obser- ' n6; 2
vations (6—8 h) that cover a fourth of its rotation periodt(is
indeed spin-orbit locked). Examples of the data for thetafbi
lightcurve component together with the synthetic lighteufor
the best-fit solution are presented in Fig.

with J; the Bessel function of the first kind of order one, and
B the length of the projected baseline on the plane of the sky.
However, a complexity has to be included in the derivation of
the visibility expression for the primary component thatage
sumed to be elliptic and not circular anymore. An ellipseloan

4.2. Interferometry analysis and size of the system i § ) _
T del and int t th tial inf i ded i seen as a disk that is compressed along one of its axis, thus be
0 modet and interpret the spatal information encode .'ncomingthe semi-minor axis, and then possibly rotated todefi
the correlated flux, we develop here an extension to the si

. . Mhe semi-major axis orientation. Therefore, the link betathe
ple model of binary aster0|ds.proposed[b§zlbp et aI.(_ZOOE), visibility of a circularly symmetric brightness distribon (uni-
where the system was described by two uniform disks. Her&;brm disk) and of its inclined and rotated version (ellipsepb-
tained by a proper change in the baseline reference franig. Th
2By definition of the ellipsoid Ay = By > C1, A1/Cy is thus larger or equal ~ Change takes into account a rotation followed by a comprassi
10 A¢/By.
3%I{htle elongation of the secondary is indicated by the ammitfcthe long-

period component of the lightcurves outside mutual evemtsch is zero or 4The normalized visiblity is the ratio between the corredafieix and the
very low here. total flux.
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Figure 4: The 3 confidence interval for the pole of the mutual orbit of Islzerg
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heliocentric orbit is marked with the black cross. ]
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factor along the proper bas_e"ne axis (8szger and Segra_nsan Figure 5. Selected data of the long-period lightcurve conepo of Isberga
2007 for more details). This leads to the conceptefiective  during the 2011 apparition, showing the long term evolutidhe observed

baseline data are marked as points. The solid curve represents thieesigrlightcurve
of the best-fit solution.

90’
Berr = \/ BZ, + BZ, cos(%), (3)

these definitions, we write the cross-section equivalarhéter
which is the length of projected baseline expressed in thaeq as:
torial reference frame rotated by the anglé¢he position angle,

counted from North\( coordinates) to Easti(coordinates), of Dc = [< 0,(085(1) > = V< 6,(1) > Cy, (6)

the binary separation vector, with
where< . > is the temporal mean over one rotation of the

Buy = By C_OS(Y) - BusinG) “) primary. Considering that 6,(t) >= +A;B;, we have:
B, = BysinG)+ Bcost) (5)
—0.2 [mg—ma]
Dc = ‘/Al . 1002 [(me-malC; = A; w_ @
In this rotated frame, the object recovers a circularly sygbm N\ Avc

ric shape and the visibility expression of the elliptic ltigess e . _

distribution is thus obtained by replacing, in Egthe projected Using %~ = 10704 [MO-m we find:

baseline lengtlB (as defined in the initial equatorial reference

frame) by the &ective baseline lengtBes, andé; by the longest 0,(t) = Dc . y/Ay/Cy . 1P [Memal 704 [MO-mal, ®)
axisé,.

Owing to the low level of the correlated flux of Isberga, we With the total flux from the primary1(4, 6., 65) evaluated
analyze the four epochs together rather than independgntly using the NEATM Harris 1998, the ratio between the compo-
ing all the parameters (4 for each epodh;, 6z, 62, andA) nent apparent diametefg, computed from their physical size
to the dfective, i.e., the cross-section equivalent, diameter ofatio of 0.29 (see abové, 1), and the angular separatidnpro-
IsbergaDc. We use the synthetic lightcurve(t) of the ro-  vided by the orbital solution, the free parameters are theze
tation component (se4.1 and Fig.1c) to express the appar- restricted to the ffective diameteDc and the oblatenegs/C;
ent major axes of th_e primary component at eac_:h ep@p{t]), of the primary (see Fig for a representation of the system con-
andég(t), as a function of the cross-section equivalent d'ameﬁguration at each epoch of observation). All other pararsete

ter Dc and the primary oblatene#g/C;. First, assuming that .
the system is seen equator-on, which is a minor approximaqre determined from these two free parameters.nlb@ame-

tion as the latitude of the sub-Earth point i3 @nly, gs(t) is ter is considered constant in our NEATM modeling (using the

constant and equals to the polar dimens@n Second, the Vvalue ofy=1.211+0.022 fromMasiero et al. 2011
lightcurve amplitude provides the ratio of equatorial dime  We search for the best-fit solution by comparing the corre-
sionsA;/B; = 10704 [m-me]l — 1 23 withmu andmg the mini-  lated flux of the modelRg ), at each epochand for each wave-

mum and maximum apparent magnitudes over a rotation. Wittength j, with the observationsH), for D¢ ranging from 5 to
6



20 km andAy/C; from 1.2 to 2. The goodness of fit indicator

zom .
S 15 F 15

we use is
Ne  N; Fei(1) - F/(A; 2
X2=ZZ(%1'(J)) 9)

i=1 j=1

Cross-section equivalent diametey @m)

whereNe is the number of epoch$, is the number of corre-
lated flux samples at the epochando j is the uncertainty on b " = = P T
the measured correlated flux. We computed a grid of models hrG crrsauare
by scanningDc be,tween 5 and 20km ant}/C, between 1.0 Figure 6: Goodness of fit for the determination of Isberffactive diameter
and 2.0 (see Sectichl). and oblatenessA¢/C1).

As visible in Fig.6, they? statistics is highly peaked around
12 km along théD¢ direction, while it is flatter along tha,/C;
direction. The best-fit to the data is thus obtained for a di@m
Dc=12.3+0.1km. Although we can not estimate accurately4 3. Physical properties of Isberga
the quantitative contribution of the model systematics, we
expect them to dominate the uncertainty budget and we adopt
a more conservative value @fc =12.3+1.2km, i.e., a 10%
relative accuracy for diameter determination. The low casit
of the y? statistics does not convincingly restricts the range o

1.2 t0 2.0 derived from lightcurves (Set.1), although high e iy the oblateness between 1.2 and 2.0 by steps of 0.1 and
oblateness seems to be favored by our modeling, with a formgls qetermine dierent density values ranging fron89+985 to

. _ 0.00 . . 1.00
best-fit value ofA;/Cy = 2.007 5 derived from a Bayesian 4.03+989 g.cnt® (3-0 confidence interval). Since the ellipsoidal
analysis of the/? statistics. '

_ . shape approximation tends to overestimate the volumeseof th
We present the best-fit model plotted together with the;,mponents, the derived bulk densities should be considere

correlated flux and the system geometry in F&. Our o yer limit estimates. Formally, the @+ange for the density is

best-fit solution is in best agreement with the fourth avedag iharefore 291f§j(7ﬁ g.cnt3. This level of accuracy corresponds

measurement. This is expected given the smaller error bag§ 5,6t 4095 relative accuracy awilevel. This crude preci-

and thus the stronger weight of this measurement in the fifj,, js however, better than that of 45% of all density deter
process. Nevertheless, the best-fit model agrees with He ot

o . minations (see Fig. 3 i€arry 2012. This highlights the yet
measurements within their error bars. We can however note

. . , [fnited knowledge on asteroid interiors.
slight discrepancy around 12-Lan for the first correlated flux This density of 2.91%%9.ch3 is very close to the typ-
measurement. '

e . ) ical density of S-type asteroids at 2¥D.54g.cm® (Carry
We use this diameter estimate and the absolute magnitude 9612)_ This density is lower than the grain density of the as-

12.18+0.27 we determine following the work travec etal.  (yisied H ordinary chondrite meteorites of 3:M212 g.cm?3

(20123 and using observations with Trappist (Tadlp to (Consolmagno et al. 20p8The porosity of Isberga is therefore

H 0.09 H H
determine an albedmf 0.147 s S-type asteroids have higher 2223%’ and its macroporosity can be estimated t@fi% (us-

albedo on average: 0.190.153 Pravec etal. 2013a Such o3 microporosity of 7.8 4.9% on H chondrites measured by
a value is, however, within the range of possible albedo OEonsoImagno et al. 2008

S-type_s. . The internal structure of Isberga thus encompasses ali-poss
Masiero etal. (201) reported ~a diameter of o from compact to highly porous. Although the presence of
Dw =10.994+ 0'067, km and an alpedo of 0'213',02_ based some macroporosity is likely, better constrains on Isbeajar
on a NEATM Q—|a_rr|s _1998 analysis of W!SE_mld-lnfrared oblateness are required to conclude. From the current sensu
radiometry. ~ Taking into account the binarity of Isberga, o¢ 5 tyne densities, and the linear trend of asteroids tgean
thl_s converts into a cross-section equwalen_t diametettter _ from large and dense to small and porous (see Fig. Gairry
primary of 10.5:0.1km, to be compared with our determi- 5019 jtis, however, unlikely that Isberga has a density above
nation. ~ Considering a 5-10% uncertainty on the dlameteg3 g.cnt3. We therefore favor solution with oblateness below
determined from WISE to encompass possible systematies (s§ 51 g
the comparison of diameter estimates from thermal modeling \ye finally use this density determination to estimate the
with other methods inMarchis etal. 2006 Carry 2012, 554 of Isberga and of its satellite: from the primary volume
both determinations converge to~d 1 km surface-equivalent . . L A\YE A\ -112
diameter for Isberga. The smaller albedo determined here £auivalent diameteby = (2) () " Dc (Tabled), we
due to the larger diameter determination. find My = 352399 x 10" kg andM, = 8.6072%3 x 10'%kg, re-
spectively. The size of the Hill sphere associated withe&hes

masses is of 232633 and 670333km. The system is therefore

SWe use the widely-used formula between the Sizehe visible absolute ~ €xtremely compact, the components being separated by only
magnitudeH, and the geometric visible albegip: D(km) = 13290, /210-H/5. 33km.

The results above restrict the primary oblaten&g€, be-
tween 1.2 and 2.0. Because the density determination from
the lightcurve analysis is strongly dependent on this patam




Table 4: Physical characteristics of the binary (939) IgaeiVe list the char- e_lpparent anQUIar. Slze)’ and more sensitive instrurfianties,
acteristic of the mutual orbit and for both the primary and #atellite their like the forthcomlng VLTIMATISSE, must be used to better
surface- and volume-equivalent diameter, density, andsmiger the primary, ~ characterize this population of binary systems.

we also report the axes ratios and rotation period. Unceigaiare 3. Values

of Ay/B, and Ay/C, are formal best-fit, but values 1.0 are consistent with the

data as well.
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Table 1: Date, duration?§), phase angleqaf), observatory, and observers of each lightcurve used iseptestudy. The observatory code are IAU codes (G98:
Calvin-Rehoboth Observatory, 493: Calar Alto 1.2 m telescd40: TRAPPIST at La Silla Observatory, J23: Centre Asimique de La Couyeére, 187: Borowiec
observatory, 634: Crolles observatory, 586: T60 and T1Miatd® Midi), except for Far, MBo, StB, and VFa that correspdondthe Farigourette, Michel
Bonnardeau’s (MBCAA), Saint Barthelemy, and Villefagndsservatories.

Date D a Obs. Observers Date D a Obs. Observers

(um h)y ) (um h)y )
2006-02-24—-09:36 5.3 11.7 G98Molnar et al. 2011-09-06—14:24 6.0 23.8 493 Mottola, Hellmich
2006-02-26—-14:24 6.8 125 G98Molnar etal. 2011-09-07-16:48 6.3 23.3 493 Mottola, Hellmich
2006-02-27-16:48 6.0 12.9 G98Molnar et al. 2011-09-19-21:36 0.4 18.0 140 Jehinetal.
2006-02-28—-19:12 7.0 13.3 G98Molnar et al. 2011-09-25-12:00 6.4 15.1 G98Molnar et al.
2006-03-03—-07:12 45 14.2 G98Molnaretal. 2011-09-26—-14:24 75 145 G98Molnaretal.
2006-03-04—-09:36 5.1 14.6 G98Molnar etal. 2011-09-27-16:48 6.2 13.9 G98Molnar et al.
2008-12-31-02:24 1.3 6.2 G98Molnar etal. 2011-09-28—-19:12 1.9 13.3 G98Molnar etal.
2009-01-01-02:24 1.3 6.7 G98Molnar etal. 2011-10-02-04:48 1.5 11.3 140 Jehinetal.
2010-03-25-12:00 5.2 3.6 G98Molnar etal. 2011-10-07-16:48 2.4 8.1 140 Jehinetal.
2010-03-28—-19:12 6.6 2.1 G98Molnar et al. 2011-10-08-19:12 3.7 7.4 140 Jehinetal.
2010-04-03-07:12 6.4 1.5 G98Molnar et al. 2011-10-09-21:36 4.2 6.8 140 Jehinetal.
2010-04-07-16:48 6.6 3.3 G98Molnar et al. 2011-10-19-21:36 4.7 2.3 J23 Montier
2010-04-08—-19:12 6.9 3.8 G98Molnar et al. 2011-10-20-00:00 8.5 2.3 VFa Barbotin, Behrend
2010-04-09-21:36 7.0 4.4 G98Molnar etal. 2011-10-20-00:00 8.3 2.3 VFa Barbotin, Behrend
2010-04-12—-04:48 7.0 5.4 G98Molnar etal. 2011-10-21-02:24 7.5 2.4  Far Morelle, Behrend
2010-04-13-07:12 5.7 6.0 G98Molnar et al. 2011-10-21-02:24 2.9 2.4 140 Jehinetal.
2010-04-14-09:36 6.0 6.5 G98Molnar et al. 2011-10-22—-04:48 9.3 2.6 VFa Barbotin, Behrend
2010-04-16—-14:24 4.6 7.5 G98Molnar etal. 2011-10-22-04:48 1.5 2.6 J23 Montier
2010-04-18—-19:12 5.9 8.5 G98Molnar etal. 2011-10-22-04:48 5.8 2.6 187 Marciniak et al.
2010-04-18—-19:12 2.4 8.5 G98Molnar etal. 2011-10-22-04:48 7.4 2.6 MBoO Bonnardeau
2010-04-23-07:12 5.0 10.5 G98Molnaretal. 2011-10-22-04:48 5.0 2.6 634 Farissier
2010-04-23-07:12 3.8 10.5 G98Molnar etal. 2011-10-25-12:00 1.3 4.1 493 Mottola, Hellmich
2010-05-04-09:36 5.0 15.0 G98Molnar etal. 2011-10-26-14:24 8.5 4.7 493 Mottola, Hellmich
2010-05-05—-12:00 4.8 15.4 G98Molnar etal. 2011-10-26-14:24 2.6 4.7 493 Mottola, Hellmich
2010-05-07—-16:48 2.2 16.2 G98Molnar etal. 2011-10-27-16:48 4.0 5.3 140 Jehinetal.
2010-05-08—-19:12 4.5 16.6 G98Molnar etal. 2011-10-28-19:12 4.4 5.9 StB carbognani
2010-05-09-21:36 4.8 17.0 G98Molnar et al. 2011-11-01-02:24 4.9 7.7 StB carbognani
2010-05-10—-00:00 4.3 17.0 G98Molnaretal. 2011-11-01-02:24 8.0 7.7 493 Mottola, Hellmich
2010-05-11-02:24 0.5 17.3 G98Molnar et al. 2011-11-15-12:00 5.7 15.1 StB carbognani
2010-05-15-12:00 3.1 18.7 G98Molnar et al. 2011-11-15-12:00 3.9 15.1 Far Morelle, Behrend
2010-05-16—-14:24 0.5 19.0 G98Molnar etal. 2011-11-16-14:24 5.8 15.6 StB carbognani
2010-05-17—-16:48 2.1 19.3 G98Molnaretal. 2011-11-16—-14:24 7.1 15.6 Far Morelle, Behrend
2010-05-19-21:36 3.7 19.9 G98Molnaretal. 2011-11-17-16:48 8.0 16.1 Far Morelle, Behrend
2010-05-20—-00:00 2.7 19.9 G98Molnar et al. 2011-11-18-19:12 6.1 16.6 StB carbognani
2010-05-21-02:24 0.4 20.2 G98Molnar et al. 2011-11-20-00:00 5.8 17.1 StB carbognani
2010-05-28—-19:12 2.7 21.9 G98Molnar et al. 2011-11-22-04:48 6.6 18.0 StB carbognani
2010-05-29-21:36 3.2 22.1 G98Molnar et al. 2011-11-26-14:24 8.7 19.6 586 Fauvaud et al.
2010-05-30—-00:00 1.4 22.1 G98Molnar etal. 2011-11-27-16:48 5.3 20.0 586 Fauvaud et al.
2010-05-31-02:24 1.8 22.4 G98Molnar etal. 2011-12-01-02:24 0.9 21.1 140 Jehinetal.
2010-06-01-02:24 2.6 225 G98Molnar etal. 2011-12-03-07:12 2.4 21.8 140 Jehinetal.
2010-06-02—-04:48 2.3 22.7 G98Molnar etal. 2011-12-04-09:36 1.2 22.1 140 Jehinetal.
2010-06-03—-07:12 2.6 22.9 G98Molnar etal. 2011-12-11-02:24 2.0 23.8 140 Jehinetal.
2010-06-04—-09:36 2.4 23.1 G98Molnaretal. 2011-12-18-19:12 5.0 25.3 493 Mottola, Hellmich
2010-06-08—-19:12 2.3 23.7 G98Molnaretal. 2011-12-19-21:36 5.7 25.4 493 Mottola, Hellmich
2011-08-29-21:36 4.6 26.4 493 Mottola, Hellmich | 2011-12-20—00:00 6.1 25.5 493 Mottola, Hellmich
2011-08-30—00:00 5.0 26.4 493Mottola, Hellmich | 2011-12-21—-02:24 5.7 25.6 493 Mottola, Hellmich
2011-08-31-02:24 5.7 26.0 493 Mottola, Hellmich | 2011-12-22—-04:48 6.0 25.8 493 Mottola, Hellmich
2011-09-03-07:12 4.6 25.0 493Mottola, Hellmich | 2011-12-23—-07:12 5.1 25.9 493 Mottola, Hellmich
2011-09-04—-09:36 3.1 24.6 493Mottola, Hellmich | 2012-01-18—-19:12 4.6 27.4 586 Vachier, Colas, Lecacheux
2011-09-05—-12:00 6.2 24.2 493Mottola, Hellmich | 2012-01-20—00:00 4.0 27.3 586 Vachier, Colas, Lecacheux
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Table 2: projected baseline (lengihand position anglé®A counted from North to East), seeing, and airmass for eachradition of Isberga and its calibrator
(labeled in the last column) using MIDI on the UT1-UT2 baselof the VLTI.

Object Date B PA Seeing Airmass Label
(Um) (m ) ()
(939) Isberga 2011-10-0703:09:43 37.4 140 0.53 1.60 1
HD 13596 2011-10-0703:34:14 37.2 13.0 0.70 1.63 Calib
(939) Isberga 2011-10-0703:51:45 39.7 216 0.76 1.43 2
HD 13596 2011-10-0704:10:16 39.0 19.8 1.09 1.47 Calib
(939) Isberga 2011-10-07 05:40:04 475 33.7 0.72 1.30 3

HD 13596  2011-10-0706:00:29 46.8 33.1 0.84 1.30 Calib
(939) Isberga 2011-10-1005:44:02 48.9 347 0.70 1.31 4
(939) Isberga 2011-10-1005:54:27 49.6 35.2  0.70 1.33 4
(939) Isberga 2011-10-1005:57:56 49.8 35.3  0.70 1.33 4
(939) Isberga 2011-10-1006:01:53 50.0 35.5 0.76 1.34 4
HD 13596  2011-10-1006:19:44 49.0 350 0.79 1.32 Calib
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