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Summary. Hidden Markov models (HMMs) are flexible time series models in which the distribution of the observations
depends on unobserved serially correlated states. The state-dependent distributions in HMMs are usually taken from some
class of parametrically specified distributions. The choice of this class can be difficult, and an unfortunate choice can have
serious consequences for example on state estimates, and more generally on the resulting model complexity and interpretation.
We demonstrate these practical issues in a real data application concerned with vertical speeds of a diving beaked whale,
where we demonstrate that parametric approaches can easily lead to overly complex state processes, impeding meaningful
biological inference. In contrast, for the dive data, HMMs with nonparametrically estimated state-dependent distributions
are much more parsimonious in terms of the number of states and easier to interpret, while fitting the data equally well. Our
nonparametric estimation approach is based on the idea of representing the densities of the state-dependent distributions as
linear combinations of a large number of standardized B-spline basis functions, imposing a penalty term on non-smoothness
in order to maintain a good balance between goodness-of-fit and smoothness.

Key words: Animal movement; B-splines; Forward algorithm; Maximum likelihood; Penalized smoothing.

1. Introduction

1.1. Hidden Markov Models and Nonparametric
Inference

Due to their versatility and mathematical tractability, hid-
den Markov models (HMMs) have become immensely pop-
ular tools for modeling time series. They have been applied
in a range of fields, and in particular in various biological
scenarios, including DNA sequence analysis (Durbin et al.,
1998), scoring of sleep stages (Langrock et al., 2013), mark-
recapture studies (Pradel, 2005), animal abundance estima-
tion (Borchers et al., 2013) and animal movement (Langrock
et al., 2012). A basic N-state HMM involves two components,
(1) an observed state-dependent process and (2) an unobserved
N-state Markov chain, with the observations of the former as-
sumed to be generated by one of N component distributions
as selected by the latter. A key property of HMMs is that dy-
namic programming algorithms can be used to evaluate the
likelihood and to decode the state sequence underlying the
observations.

It is usually assumed that each of the N state-dependent
distributions is from a parametric family. However, choos-
ing an adequate family can be difficult, for example if the
unknown true state-dependent distributions are heavy-tailed,
skewed or multi-modal. An unfortunate choice of the paramet-
ric family can lead, inter alia, to a poor fit, to biased estimates
of the state transition probabilities, to poor predictive capac-
ity and to wrong conclusions regarding the underlying system
to be modeled. More specifically, parametric HMM formula-
tions can lead to higher than adequate numbers of states being

selected, for example by information criteria, simply because
of the lack of flexibility of the considered state-dependent dis-
tributions in capturing the marginal distribution of the ob-
servations.

In a recent article, Yau et al. (2011) suggested a nonpara-
metric specification of the state-dependent distributions of an
HMM for continuous-valued observations. Their technically
challenging approach relies on Dirichlet process mixture
priors that allow to specify a hyperprior on the space of
potential probability distributions for the state-dependent
distribution. Dannemann (2012) developed an alternative
frequentist approach based on the expectation–maximization
(EM) algorithm, using log-concave densities or smoothing
splines in the M-step in order to flexibly estimate the state-
dependent distributions. He focused on the special case of
two states, with one of the two state-dependent distributions
modeled parametrically, arguing that this type of model is
most relevant for applications, and that computational and
identifiability issues may arise in more difficult scenarios.
However, it has recently been shown by Gassiat, Cleynen,
and Robin (2013) and Alexandrovich and Holzmann (2014)
that identifiability in nonparametric HMMs holds under
fairly weak conditions, which in practice will usually be
satisfied, namely that the transition probability matrix of
the unobserved Markov chain has full rank and that the
state-dependent distributions are distinct.

The focus of this work lies in the investigation of practical
issues involved when modeling the state-dependent distribu-
tions nonparametrically. By means of both simulations and a
real data case study, we illustrate that flexible nonparametric
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modeling of the state-dependent distributions of an HMM can
have substantial advantages, in particular in terms of the re-
sulting complexity of the state process. Notably, we develop a
novel nonparametric estimation approach involving an easy-
to-implement and computationally feasible estimation algo-
rithm. The main idea is to represent the densities of the
state-dependent distributions as linear combinations of a large
number of standardized B-spline basis functions, imposing a
penalty term in order to arrive at an appropriate balance be-
tween goodness-of-fit and smoothness for the fitted densities.
The nonparametric approach avoids assumptions regarding
the form of the state-dependent distributions and hence is ex-
pected to be most useful, if only as an exploratory tool, in sce-
narios where it is hard to identify a suitable parametric family.

1.2. Motivating Example: Modeling Vertical Speeds of a
Diving Whale

Blainville’s beaked whales have been the focus of a consider-
able amount of research, motivated by mass strandings that
were associated with naval sonar operations (Cox et al., 2006).
They seem to be sensitive to acoustic disturbance, altering
their diving and foraging behavior in response to military
sonar (Tyack et al., 2011). Accurate quantitative description
and comparison of undisturbed and disturbed behavior are
crucial to measuring the impact of anthropogenic noise, but
are challenging given the diverse, sometimes subjective meth-
ods commonly used to describe dive behavior (Hooker and
Baird, 2001).

We consider a 48-hour time series of depth displacements
by a single adult female beaked whale in Hawaii, tagged with
a Mk9 time-depth recorder (Wildlife Computers, Redmond,
WA, USA) and previously described by Baird et al. (2008).
This species performs deep foraging dives and shallow non-
foraging dives, with higher vertical speeds during deep dives,
especially during descents (Baird et al., 2008). We consider
absolute values of depth displacements per minute, hence
focusing on speed and ignoring the direction. For modeling
purposes, we take the logarithms of those values. Every
observation thus gives the logarithm of the absolute vertical
displacement of the whale over the previous minute, which is
an indicator for the whale’s vertical speed in that time period.
The resulting time series to be modeled, comprising 2880 ob-
servations, is illustrated in the top panel in Figure 1, alongside
a histogram of the observations and the sample autocorre-
lation function (ACF) (bottom left and bottom right panel,
respectively). The multimodality depicted in the histogram
is a consequence of the whale occupying different behavioral
states at different times, and this pattern, together with the
strong autocorrelation, motivates the use of HMMs for these
data.

However, based on a visual inspection of the histogram, it
is anything but clear what family of parametric distributions
will be adequate for the state-dependent process. In the liter-
ature on animal movement modeling, little attention is given
to this issue, with usually only one, often arbitrarily chosen
family of distributions being considered. We will demonstrate
that this can be problematic, as insufficient flexibility of the
state-dependent distributions can lead to unnecessarily high
numbers of states being selected. This can have serious conse-
quences on the interpretation, and also makes the correspond-

ing models more difficult to work with in practice, for exam-
ple if covariates are to be incorporated in the state process. In
this regard, a nonparametric approach can have substantial
advantages, as the essentially unlimited flexibility obtained
for the state-dependent distributions means that inference on
the states is driven solely by the correlation structure.

Before we provide details on the models we fitted to the
beaked whale data, we introduce our nonparametric estima-
tion approach and demonstrate its feasibility and potential
practical advantages in a simulation study.

2. Nonparametric Hidden Markov Models

2.1. Model Formulation and Penalized Likelihood

Let the observed state-dependent stochastic process be de-
noted by {Xt}T

t=1, and the underlying N-state Markov chain
by {St}T

t=1. We assume a basic dependence structure where
given the current state of St , Xt is conditionally indepen-
dent from previous and future observations and states, and
where the Markov chain is of first order and homogeneous.
We summarize the probabilities of transitions between the
different states in the transition probability matrix (t.p.m.)
� = (γij), where γij = Pr

(
St = j|St−1 = i

)
, i, j = 1, . . . , N. The

initial state probabilities are summarized in the row vector δ,
where δi = Pr(S1 = i), i = 1, . . . , N. For such an HMM, with
parameter vector θ, the likelihood is given by

LHMM(θ) =
N∑

s1=1

. . .

N∑
sT =1

δs1

T∏
t=1

f (xt |st)

T∏
t=2

γst−1,st .

In this form, the likelihood involves NT summands, render-
ing its evaluation infeasible even for a small number of states,
N, and a moderate number of observations, T . However, the
application of the recursive scheme called the forward algo-
rithm leads to a much more efficient way of calculating the
likelihood, via the matrix product expression

LHMM(θ) = δQ(x1)�Q(x2), . . . ,�Q(xT )1 , (1)

where Q(xt) = diag
(
f1(xt), . . . , fN(xt)

)
, with fi(xt) =

f (xt |St = i) denoting the density of the ith state-dependent
distribution, and where 1 ∈ IRN is a column vector of ones.
The computational cost of evaluating (1) is linear in the num-
ber of observations, T , such that a numerical maximization
of the likelihood is usually feasible. The similarly popular
alternative route to maximum likelihood estimates, via the
use of the EM algorithm, is not considered in this work, since
we agree with MacDonald (2014) in there being no apparent
reasons to prefer it over direct likelihood maximization.
In our view, the direct maximization approach is more
convenient to work with and more attractive to users, in
particular since it has the crucial practical advantage that
modifications in the model formulation usually require only
very minor alterations in the code used to fit an HMM.

Here, we are concerned with the nonparametric estimation
of the densities f1, . . . , fN , which we conduct following ideas
from Schellhase and Kauermann (2012). More specifically, we
suggest to represent each of these densities as a finite linear
combination of basis functions φ−K, . . . , φK, which are (fixed)
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Figure 1. The top plot shows the time series that is modeled. The plot in the middle shows the nonparametrically estimated
state-dependent distributions (weighted with their proportion in the mixture according to the stationary distribution of the
Markov chain, and together with 95% simultaneous confidence bands). The bottom left plot shows the corresponding marginal
distribution (solid line), together with a histogram of the observations (gray bars). The bottom right plot gives the sample
autocorrelation function (ACF, vertical bars) and the model-derived ACF (black circles) based on the 3-state nonparametric
HMM.

probability density functions, as follows:

fi(x) =
K∑

k=−K

ai,kφk(x), i = 1, . . . , N. (2)

Throughout this work, we use the same set of basis functions
for each state-dependent distribution. Clearly, fi(x) is a

probability density function if
∑K

k=−K
ai,k = 1 and ai,k ≥ 0 for

all k = −K, . . . , K. To enforce these constraints, the coeffi-

cients to be estimated, ai,−K, . . . , ai,K, are transformed using

the multinomial logit link ai,k = exp(βi,k)/{
∑K

j=−K
exp(βi,j)},

where we set βi,0 = 0 for identifiability. In principle, any set
of densities φ−K, . . . , φK can be used to approximate fi(x)
as in (2). We follow Schellhase and Kauermann (2012) and
use (cubic) B-splines, in ascending order in the basis used
in (2), with equally spaced knots and standardized such that
they integrate to one. B-splines form a numerically stable,
convenient basis for the space of polynomial splines, that is,
piecewise polynomials that are fused together smoothly at the
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interval boundaries; see de Boor (1978) and Eilers and Marx
(1996) for more details. In most cases, cubic B-splines are
a suitable default since they are twice continuously differen-
tiable and therefore yield visually smooth density estimates.
Each B-spline basis function is still associated with a sepa-
rate parameter, leading to a model with finite-dimensional
parameter space. However, the dimensionality is high and the
separate parameters are not of interest. We therefore call our
approach nonparametric, which is in line with the standard
terminology in the statistical literature on (penalized) spline
approaches (see, e.g., Ruppert, Wand, and Carroll, 2003).

To overcome the problem of selecting an optimal number
of basis elements, we follow the penalized spline approach
by Eilers and Marx (1996) and modify the log-likelihood by
including a penalty on the sums of squared (mth order) differ-
ences between coefficients associated with adjacent B-splines.
Crucially, the characteristic HMM likelihood structure given
in (1) remains valid, with the expression given in (2) ap-
plying to f1(xt), . . . , fN(xt) in the diagonal matrices Q(xt),
t = 1, . . . , T . For independent realizations x1, . . . , xT , the cor-
responding penalized log-likelihood is given by

lHMM
p (θ, λ) = log

(
LHMM(θ)

) −
[

N∑
i=1

λi

2

K∑
k=−K+m

(
�mai,k

)2

]
,

(3)

where �ak = ak − ak−1 and �mak = �(�m−1ak) are difference
operators, the parameter vector θ comprises the state transi-
tion probabilities and the parameters βi,k (i = 1, . . . , N, −K ≤
k ≤ K, k �= 0), and λ = (λ1, . . . , λN) is a vector of smoothing
parameters. The penalty term penalizes roughness of the es-
timator, and the choice of λ determines how much emphasis
is put on goodness-of-fit and on smoothness, respectively. In
particular, choosing λ = (0, . . . , 0) leads to an unpenalized es-
timation, whereas for λi → ∞, i = 1, . . . , N, the penalty will
dominate the likelihood and for each i we will obtain a se-
quence of weights ai,k that follow a polynomial of order m − 1
in k. We will use m = 2 in the remainder, since this provides
an approximation to the integrated squared second derivative
penalty that is popular in the context of smoothing splines.

The penalty term allows us to circumvent the problem of
selecting an optimal number of basis elements, since it ef-
fectively reduces the number of free parameters and yields
an adaptive fit to the data, provided that the smoothing pa-
rameters are chosen in a data-driven way. We only have to
ensure that the number of basis elements is large enough to
provide enough flexibility for reflecting the structure of the
state-dependent distributions. Once this threshold is passed,
a further increase in the number of basis elements does no
longer change the fit to the data much due to the impact
of the penalty. Allowing for different smoothing parameters
across states will be important in some circumstances, for
example if the (true) densities for some state-dependent dis-
tributions are much more wiggly than for others, or if some
states of the Markov chain are visited much less frequently
than others, potentially requiring higher penalties on rough-
ness due to less information being available.

2.2. Model Fitting and Inference

2.2.1. Parameter estimation. The penalized log-
likelihood (3) can be maximized numerically, corresponding
to a simultaneous estimation of the Markov chain parameters
and the coefficients that determine the state-dependent dis-
tributions according to (2). Of the technical issues arising in
the numerical maximization, discussed in detail in Zucchini
and MacDonald (2009), the most important one is that
of local maxima. Particularly for complicated models, for
example, such with a relatively high number of states, it
will sometimes happen that the numerical search fails to
find the maximum penalized likelihood estimate, and returns
a local maximum instead. The best way to address this
issue seems to be to use a number of different sets of initial
values, in order to maximize the chances of finding the global
maximum.

2.2.2. Choice of the smoothing parameter vector. Cross-
validation techniques can be used for choosing the smoothing
parameters. For a given time series, we suggest to generate C

random partitions such that in each partition a high percent-
age of the observations, for example, 90%, form the calibration
sample, while the remaining observations constitute the vali-
dation sample. For each of the partitions and any given λ, the
model is then fitted (i.e., calibrated) using only the observa-
tions from the calibration sample (in a times series of exactly
the same length as the original one, treating the data points
from the validation sample as missing data). Subsequently,
scoring rules can be used on the validation sample to assess
the model for the given λ and the corresponding calibrated
model. We consider the log-likelihood of the validation sam-
ple, under the model fitted in the calibration stage, as the
score of interest (now treating the data points from the cali-
bration sample as missing data in the time series). From some
pre-specified grid � ⊂ IRN

≥0, we then select the λ that yields
the highest mean score over the C cross-validation samples.
The number of samples C needs to be high enough to give
meaningful scores (i.e., such that the scores give a clear pat-
tern rather than noise only), but must not be too high to allow
for the approach to be computationally feasible. Furthermore,
in scenarios where a full grid search over � is computationally
infeasible, we suggest the following pragmatic algorithm for
finding an appropriate λ:

1. choose an initial point λ∗
0 from the grid � (and set k = 0);

2. calculate the mean score for λ∗
k and each direct neighbor of

λ∗
k on the grid;

3. from these values choose λ∗
k+1 as the one that yielded the

highest mean score;
4. repeat 2. and 3. Until λ∗

k+1 = λ∗
k .

2.2.3. Uncertainty quantification. Uncertainty quantifi-
cation, on both the estimates of the transition probabilities
and on the estimates of the densities of the state-dependent
distributions, can be performed using a parametric bootstrap.
In particular, from the bootstrap replications one can obtain
pointwise confidence intervals for the estimated densities as
the corresponding quantiles at a specific point in the sup-
port. These pointwise confidence intervals can also be used to
obtain simultaneous confidence bands for the complete den-
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Figure 2. Simulation study: true and estimated densities of the state-dependent distributions estimated in the first 100
simulation runs (left plot, with true densities indicated by thick black lines), corresponding true and estimated densities of
the marginal distribution (top right plot, with true density indicated by thick black line), and box plots of Kullback–Leibler
divergences (KLDs) for unimodal state 1 (middle right plot) and for bimodal state 2 (bottom right plot).

sity following Krivobokova, Kneib, and Claeskens (2010). The
idea is to rescale the pointwise confidence bands with a con-
stant factor until a certain fraction of complete densities from
the set of bootstrap replications is contained in the confi-
dence band. By construction, these simultaneous bands use
the pointwise intervals to assess local uncertainty about the
estimated density and inflate this local uncertainty such that
simultaneous coverage statements are possible.

3. Simulation Study

To demonstrate the practicality of the suggested approach, we
first present a simulation experiment. We consider a two-state
HMM where the state-dependent distributions substantially
overlap, with a unimodal conditional distribution in state 1
and a bimodal conditional distribution in state 2; see Figure
2 for an illustration. The states of the Markov chain were
generated using the 2 × 2–t.p.m. with both diagonal entries
equal to 0.9. In practice, the chosen configuration would make
it difficult to specify an adequate parametric HMM, since the
marginal distribution gives no indication for the bimodality
of state 2 (cf. the top right panel of Figure 2). It is also not
clear a priori if a nonparametric approach can exploit the
correlation over time in order to identify the smaller peak of
the conditional bimodal distribution in state 2 (at x = −5),
or if it fails to do so and wrongly allocates the corresponding
observations to state 1.

For this model, we conducted 500 simulation runs, with
T = 800 observations being generated in each run. In each
run, the nonparametric approach was applied, maximizing (3)

using the optimizer nlm in R; corresponding code is given in
Web Appendix B. For the cross-validation, we selected the
grid of potential smoothing parameter vectors, �, such that as
possible values for each of the state-specific smoothing param-
eters the values 256, 512, 1024, 2048, 4096, 8192, and 16,384
were considered. We used C = 10 cross-validation partitions
in each simulation run to select the smoothing parameter vec-
tor from �. We further set K = 15, hence using 31 B-spline
basis densities in the estimation.

The sample mean estimates of the transition probabilities
γ11 and γ22 were 0.907 (Monte Carlo standard deviation of
estimates: 0.018; average of standard errors obtained in each
run via parametric bootstrap: 0.018; coverage of bootstrap
95% confidence intervals obtained in each run: 92.6%) and
0.907 (0.018, 0.019, 95.0%), respectively. The estimated
state-dependent distributions from the first 100 simulation
runs are visualized in the left panel of Figure 2. All fits are
fairly reasonable, although as expected the peaks are slightly
underestimated, on average, while the troughs are slightly
overestimated. The same pattern can be seen for the marginal
distribution, displayed in the top right panel in Figure 2.

We further calculated the Kullback–Leibler divergence
(KLD) of the estimated densities from those of the true
model, for both state-dependent distributions and in each
simulation run. To have a benchmark, we also calculated the
corresponding KLDs of densities estimated using either of two
parametric HMMs: (1) an incorrect parametric model, as-
suming normal state-dependent distributions (which one may
visually deduce from a histogram of the observations to be
appropriate), and (2) the correct parametric model, involving
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a normal distribution for state 1 and a mixture of two
normal distributions in state 2. Unsurprisingly, the correct
parametric model performed best in terms of the KLD. The
nonparametric approach yielded the highest average KLD for
the conditional distribution in state 1, due to the oversmooth-
ing close to the peak. For the state-dependent distribution in
state 2, our nonparametric approach yielded an average KLD
of 0.016, which is slightly higher than the corresponding
average KLD obtained using the correct parametric specifica-
tion (0.010), whereas for the incorrectly specified parametric
model the corresponding average KLD was obtained as 0.290,
indicating the expected much poorer fit. For the correctly
specified parametric model, the sample mean estimates of the
transition probabilities γ11 and γ22 were obtained as 0.898
(Monte Carlo standard deviation of estimates: 0.018; average
of standard errors obtained in each run via parametric boot-
strap: 0.019; coverage of bootstrap 95% confidence intervals
obtained in each run: 95.6%) and 0.899 (0.020; 0.021; 94.2%),
respectively, while for the incorrectly specified parametric
model the corresponding mean estimates were obtained as
0.866 (0.019; 0.040; 63.6%) and 0.821 (0.024; 0.093; 45.6%),
respectively. The incorrectly specified model thus led to er-
roneous inference on the state process, in particular substan-
tially underestimating the persistence in state 2. Furthermore,
with the incorrectly specified parametric model, inference on
the state process was erroneous also regarding the choice of
the number of states: the Akaike information criterion (AIC)
selected 3- or 4-state models in all 500 simulation runs, while
the Bayesian information criterion (BIC) selected a 3-state
model in all runs. Overall, in this simulation study the non-
parametric approach performed only slightly worse than the
correct parametric specification—unlike the latter leading to a
small bias in the estimates of the transition probabilities, and
resulting in slightly less accurately estimated state-dependent
distributions—and much better than the incorrect paramet-
ric specification which one may naively choose based on a
histogram of the data or another form of visual inspection.

In each simulation run, we additionally fitted one- and
three-state HMMs with nonparametrically modeled state-
dependent distributions, in order to illustrate that the cross-
validation technique can also be used to select the number
of states. In each run, the model selection was based on a
comparison of the out-of-sample log-likelihood scores on 10
random validation samples, obtained for the different models
fitted to the corresponding 10 calibration samples. This is es-
sentially the multifold cross-validation procedure considered
in Celeux and Durand (2008), only that here we obtain esti-
mates via direct maximization of the likelihood rather than
using the EM algorithm. In our simulations, this model se-
lection exercise led to a correct identification of the two-state
model in 459 out of 500 cases (91.8%), with the three-state
model being selected in the other 41 cases. Comparing this
to the results presented in Celeux and Durand (2008) for the
parametric case, we consider this to be a good performance.

To investigate the estimation performance under different
conditions, we experimented with several further model for-
mulations. In particular, we considered (a) different levels of
correlation as induced by the 2-state Markov chain (by vary-
ing the diagonal entries in the t.p.m.) and (b) different levels
of overlap of the two state-dependent distributions (by shift-

Table 1
Results of fitting HMMs with normal state-dependent

distributions to the beaked whale data

N p logL AIC BIC JB p-value

3 12 −4880.00 9784.00 9855.59 0.000
4 20 −4729.08 9498.16 9617.47 0.000
5 30 −4670.15 9400.30 9579.27 0.002
6 42 −4605.44 9294.88 9545.43 0.016
7 56 −4548.02 9208.04 9542.11 0.261
8 72 −4492.57 9129.15 9558.67 0.310
9 90 −4455.48 9090.98 9627.87 0.475
10 110 −4422.26 9064.53 9720.74 0.429

N, number of states; p, number of model parameters; logL,
maximum of the log-likelihood; AIC, Akaike information cri-
terion; BIC, Bayesian information criterion; JB p-value, p-
value of the Jarque–Bera test for normality applied to the
pseudo-residuals.

ing one of the two). In all those scenarios where there was a
reasonable level of correlation induced by the Markov chain
(roughly, for both diagonal entries either > 0.75 or < 0.25),
the estimation worked well. The estimation performance im-
proved with diagonal entries in the t.p.m. approaching either 1
or 0 (which leads to an increased correlation). This intuitively
makes sense, since the stronger the correlation, the clearer
becomes the pattern and hence the easier it is for the model
to allocate observations to states. Similarly, the estimation
performance improved as the overlap of the state-dependent
distributions was reduced.

4. Results of Fitting HMMs to the Beaked
Whale Dive Data

4.1. Analysis Using Conventional Parametric HMMs

We begin our analysis of the beaked whale dive data, de-
scribed in Section 1.2, by fitting conventional parametric
HMMs. For the given time series, HMMs with normal state-
dependent distributions constitute an obvious and plausible
choice of a parametric family of models. We present the re-
sults of fitting such models to the data, acknowledging that
this is only one of dozens of plausible parametric HMM formu-
lations that could be considered—a flexibility which is both a
blessing and a curse when dealing with HMMs, as the model
formulation is in general by no means straightforward.

Table 1 summarizes the results of fitting HMMs with nor-
mal state-dependent distributions and 3–10 states to the dive
data, including the log-likelihood values, the AIC values, the
BIC values and the p-values of Jarque–Bera (JB) tests for nor-
mality applied to the models’ pseudo-residuals. The latter are
distributed standard normal if the model is correct (cf. Section
1 of the Web Appendix, and Zucchini and MacDonald, 2009).
Some graphic illustrations of the fitted models are provided
in Section 2 of the Web Appendix. The AIC and the BIC se-
lect models with 10 and 7 states, respectively. The need for
these high numbers of states is confirmed by goodness-of-fit
analyses of the fitted models, where at the 5% level normality
of the pseudo-residuals is rejected by a JB test for all models
with less than 7 states.
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Figures A1 and A3 in the Web Appendix illustrate that a
crucial problem with the considered parametric formulation
is the lack of flexibility of the state-dependent distributions,
with the consequence that the marginal distribution cannot
be captured adequately with small numbers of states, whereas
the correlation structure in the time series is captured well al-
ready by a 3-state model (cf. Figure A3 in the Web Appendix).
For the 7-state model—which based on the information cri-
teria and the goodness-of-fit test seems to be a plausible
model—it is difficult to come up with biologically meaningful
interpretations of the states, with the results indicating that
some of the HMM states may in fact be lumped together
to form a single behavioral state (cf. Figure A5, states 3
and 5).

4.2. Analysis Using Nonparametric HMMs

We now turn to the results of applying our nonparametric ap-
proach to the dive data. The characteristics of the behavioral
states of the whale, most notably “close to the surface,” “on
the ascent/descent,” and “at the bottom of a dive,” motivate
the use of three states in an HMM for this time series, and
here we restrict ourselves to the consideration of such a model.
The results of fitting models with 2 and 4 states, respectively,
are provided and discussed in Section 3 of the Web Appendix,
where we demonstrate that the 2-state model fails to capture
important structure, while the 4-state model provides little
extra biologically meaningful information.

The (stationary) 3-state nonparametric HMM was fit-
ted via a numerical maximum of the penalized likelihood
given in (3). As smoothing parameter vector we selected
λ = (65536, 8192, 32) via cross-validation as described in Sec-
tion 2.2.2 (see the Web Appendix for more details). We used
51 standardized B-splines in the estimation, that is, K = 25
in (2). On an i7 CPU, at 2.7 GHz and with 4 GB RAM, the
parameter estimation took about 20 minutes using R, which
we were able to reduce to about 2 minutes by writing the for-
ward algorithm in C++. To minimize the risk of missing the
global maximum of the likelihood, 500 randomly chosen sets
of initial values were tried. The t.p.m. was estimated as

�̂ =

⎛⎝ 0.975 (0.965, 0.983) 0.007 (0.001, 0.015) 0.018 (0.010, 0.027)

0.017 (0.005, 0.033) 0.893 (0.871, 0.926) 0.090 (0.059, 0.113)

0.038 (0.020, 0.056) 0.111 (0.074, 0.138) 0.851 (0.821, 0.890)

⎞⎠

with the 95% confidence intervals (in brackets) obtained using
a parametric bootstrap (500 samples). Figure 1 displays (1)
the time series that was modeled, (2) the state-dependent dis-
tributions of the fitted model, together with 95% simultaneous
confidence bands (cf. Section 2.2.3), (3) the marginal distri-
bution of Xt according to the fitted model, together with a
histogram of the observations, and (4) the sample ACF along-
side the model-derived ACF. An illustration of how the fitted
state-dependent distributions are built from the B-spline basis
densities is given in the Web Appendix (Figure A7).

A quantile–quantile plot of the pseudo-residuals against the
standard normal, and the sample ACF of the series of resid-
uals, are given in the Web Appendix (Figure A9). The plots

indicate a very good fit and only a minor correlation in the
residuals over time, with the goodness of fit being similar to
that of the 7-state parametric HMM. Applying a JB test to
the pseudo-residuals yields a p-value of 0.3, such that the null
hypothesis of normality cannot be rejected at the 5% level.
Thus, the model fits the data well.

To facilitate interpretation of the fitted model, we com-
pared the Viterbi-decoded states to the actual positions of
the whale in the water column (which were recorded, but not
modeled here); an illustration is given in the Web Appendix
(Figure A8). We find that state 1 of the fitted HMM, which
is associated with the smallest absolute depth displacements,
captures the whale’s vertical speeds close to the surface and
on very shallow dives (to depths ∼100 m), with the shallow
dives causing the second mode in the fitted density (at values
slightly higher than 2). This state is occupied about 52% of
the time according to the stationary distribution of the fit-
ted Markov chain. State 2, which involves moderate absolute
depth displacements, is occupied about 26% of the time and
is associated with likely foraging periods at the bottoms of
deep dives. State 3 implies the highest absolute depth dis-
placements, is occupied about 22% of the time and only on
deep dives, and is occasionally interspersed with state 2 at
the bottoms of those dives due to slower movement related to
foraging activity.

We note that, just as for parametric HMMs, any biological
interpretations of this model have to be made cautiously. In
particular, the HMM states are not to be confounded with
behavioral states of the animal, as they merely summarize
vertical diving speeds into three categories, and the speeds
can be similar for distinct behaviors. However, it can never-
theless be stated that the features implied by the fitted non-
parametric HMM are consistent with previous research on the
species (Baird et al., 2008). Moreover, this exploratory anal-
ysis demonstrates the potential of these models as tools for
example for objective identification and characterization of
foraging periods, which is notoriously challenging with time-
depth recorder data (Hooker and Baird, 2001).

5. Discussion

In our case study, applying nonparametric HMMs led to a
coherent, succinct summary of the dive data using a small
number of states, sensibly partitioning the data into few ve-
locity regimes that are easy to relate to broader behavior cat-
egories. The ability to summarize the data accurately without
using a large number of states facilitates interpretation, with
the nonparametric approach resulting in greater persistence
within states, so that intuitive association of the states with
broader behavior is more straightforward. In the context of
measuring the effects of acoustic disturbance, a parsimonious
model that accurately summarizes the data is ideally suited
for the purpose of quantifying potential behavioral changes,
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as high numbers of parameters in the t.p.m. render it imprac-
tical to incorporate covariates, or random effects or both, in
the state process.

In general, a nonparametric approach essentially offers un-
limited flexibility to capture the marginal distribution, irre-
spective of the number of states considered, which means that
inference on the number of states is based solely on the cor-
relation structure of a given time series. In contrast, both in
our simulation experiments and in our case study we have
seen that conventional parametric HMMs can lead to high
numbers of states being selected due to limited flexibility of
the state-dependent distributions considered, leading to state
processes that are unnecessarily complex relative to the actual
correlation structure, complicating the interpretation. This
reveals a potentially substantial benefit of the nonparametric
approach, as the disentanglement of the two main reasons for
a poor fit of an HMM—failure to capture the marginal dis-
tribution and failure to capture the correlation structure–can
be quite challenging using conventional methods.

Our likelihood-based estimation approach, which exploits
the strengths of the HMM machinery and of penalized
B-splines, is relatively simple yet powerful, allowing for com-
prehensive inferential analyses, including uncertainty quan-
tification, model checking, and state decoding. The choice
of the smoothing parameter, local maxima of the likelihood
and uncertainty quantification constitute the most challeng-
ing issues with the approach. For smoothing parameter selec-
tion, as an alternative to cross-validation, one could consider
a leverage-based, approximate leave-one-out cross-validation
which yields an AIC-type criterion. Regarding local max-
ima, estimation via the EM algorithm could potentially be
more robust (Bulla and Berzel, 2008), but is technically
more challenging and likely to be slower. Uncertainty quan-
tification is routinely achieved in the Bayesian approach of
Yau et al. (2011) by studying the variability of the poste-
rior samples, whereas we employed computationally expen-
sive bootstrap techniques. The approach is inferior to para-
metric models in cases where those are adequate, and, in
view of the computational challenges, especially local max-
ima, is practical only for models with small numbers of states
(N ≤ 4 in our case study). If larger number of states and
high flexibility are required, then we anticipate that flex-
ible parametric approaches such as the one considered in
Holzmann and Schwaiger (in press), where the state-
dependent distributions are mixtures of normal distributions,
will be preferable. Furthermore, it is clear that the nonpara-
metric approach will work best if the serial correlation in the
data is relatively high, since otherwise it is difficult for a flexi-
ble nonparametric model to pick up a meaningful pattern. Fi-
nally, we note that insufficient flexibility of parametric models
can be unproblematic if parsimony and interpretability of the
state process are not of major importance.

In general, it will often be the case that multiple time
series, for example associated with multiple individuals, are
collected. In the given type of application, this will in fact
often be necessary in order to adequately address biological
questions of interest, for example, regarding the effect of
sonar exposure. Models for such longitudinal data need
to account for potential variability between the different
component series. Zucchini, Raubenheimer, and MacDonald

(2008) give a useful overview of the different strategies for
modeling heterogeneity in HMM component series. Regard-
ing the state process of an HMM, the techniques provided
by Altman (2007) in her framework of mixed HMMs—which
allows for random effects, but also covariates that are specific
to the component series—and the discrete random effects
approach suggested by Maruotti and Rydén (2009) are di-
rectly applicable in our nonparametric estimation framework.
However, accounting for heterogeneity, as well as the possible
incorporation of covariates, in the state-dependent process is
anything but straightforward when using the nonparametric
approach, and requires further research.

6. Supplementary Material

Web Appendices and Figures referenced in Section 4, and R
code to generate data as in the simulation study and to fit,
to the generated data, a 2-state nonparametric HMM, are
available with this paper at the Biometrics website on Wiley
Online Library.
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