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Saccharedens versatilis gen. nov., sp. nov., a sugar-degrading
member of the Burkholderiales isolated from Cephalotes rohweri
ant guts

Jonathan Y. Lin, William J. Hobson and John T. Wertz*

Abstract

Cephalotes ‘turtle’ ants host a core group of gut–associated symbionts, but their potential contributions to ant nutrition and

disease resistance remain uncharacterized in vitro. To gain a better understanding of the metabolic capability of core

symbionts belonging to the Burkholderiales, we cultivated and characterized strain CAG32T from the guts of Cephalotes

rohweri ants. Strain CAG32T was rod-shaped, Gram-stain-negative, motile and formed pale-white colonies on trypticase soy

agar. Optimum growth occurred under an atmosphere of 20% O2 supplemented with 1% CO2. Strain CAG32T grew under

NaCl concentrations of 0–2.0%, temperatures of 23–47
�
C and pH values of 4.0–8.0, and was capable of producing n-butyric

acid and degrading carbohydrates for growth. The G+C content of the genomic DNA was 59.2±0.6mol% and the major fatty

acids were C16 : 0, C16 : 1!7c/C16 : 1!6c, C17 : 0 cylcopropane, C12 : 0 and C14 : 0 3-OH/C16 : 1 iso I. The only respiratory quinone

detected was ubiquinone-8 (Q-8) and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and

diphosphatidylglycerol. Based on phylogenetic analysis of the 16S rRNA gene sequence, strain CAG32T shared 96.9%

nucleotide similarity with its closest cultivated neighbours Bordetella petrii Se-1111RT and Bordetella bronchiseptica ATCC

19395T. This, combined with differences in the phenotypic and biochemical profile from neighbouring strains, warrants the

classification of strain CAG32T as representing a novel species of a new genus within the Burkholderiales family

Alcaligenaceae. The name Saccharedens versatilis gen. nov., sp. nov. is proposed. The type strain of Saccharedens versatilis is

CAG32T (=NCIMB 15010T=DSM 100909T).

Insects often harbour communities of gut-associated bacterial
symbionts, many of which play crucial roles in host nutrition
and disease resistance [1, 2]. Mutualistic relationships with
gut microbiota are frequently the key drivers behind the radi-
ation and ecological success of insects [2, 3]. Arboreal turtle
ants (genus Cephalotes), for example, are a highly diverse and
species-rich neotropical clade [4] that have clearly benefited
from their gut symbionts [5]. Treatment with antibiotics is
detrimental to the ants, indicating symbiosis with the gut
community [6], and studies using PCR amplification and
sequencing of the 16S rRNA gene have revealed that Cepha-
lotes ants harbour a core, conserved gut microbiota [5, 7–9].
Bacteria in this core microbiota consistently include repre-
sentatives from the Burkholderiales, Rhizobiales, Xanthomo-
nadales, Opitutales and Pseudomonadales phylotypes [5].
These symbionts are stable, protected by a proventricular fil-
ter [10], and probably coevolved with their hosts [11], signi-
fying their importance as autochthonous members of the gut
community [8, 11].

Previous studies of the Cephalotes gut microbiota have been

limited to culture-independent 16S rRNA gene surveys. As

part of our ongoing efforts to determine the in situ physiology

of these bacteria, we previously characterized representatives

belonging to two of the five core clades from Cephalotes ant

guts [12, 13]. However, more cultivated representatives of

these core symbionts are needed for full investigation into

their functional contributions to ant fitness. In this study, we

report the cultivation and characterization of strain CAG32T,

a novel, sugar-degrading betaproteobacterium representing a

novel species of a new genus within the Burkholderiales family

Alcaligenaceae. We propose the name Saccharedens versatilis

gen. nov., sp. nov. to accommodate strain CAG32T.

Strain CAG32T was isolated from the guts of Cephalotes roh-
weri ants on trypticase soy agar (TSA; Difco BD). C. rohweri
ants were collected from Tucson Mountain Park, Tucson, AZ,
USA (32.23

�
N 111.12

�
W) in 2010 and lab-reared as previ-

ously described [7] until degutting. The gasters (terminal
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abdominal segments containing most internal organs) of 12–
15 ants were removed using sterile forceps and homogenized
in a glass tissue homogenizer in sterile trypticase soy broth
(TSB; Difco BD). Afterwards, the homogenate was serially
diluted and spread onto TSA plates. The plates were incubated
in air or in atmosphere-controlled glove boxes (Coy Labs)
under hypoxic (2% O2, 5% CO2, 93%N2) or anoxic (5%H2,
5% CO2, 90%N2) conditions at room temperature for
approximately 1 month. Resulting colonies were isolated, puri-
fied and then identified by 16S rRNA gene sequencing using
the universal primers 63F (5¢-CAGGCCTAACACATG-
CAAGTC-3¢) and 1389R (5¢-ACGGGCGGTGTGTACAAG-
3¢) [14]. Strain CAG32T was isolated from plates maintained
under hypoxia but was routinely grown on TSA plates or TSB
shaken at ~200 r.p.m. at 28–30

�
C under atmospheric air (20%

O2) supplemented with 1% CO2. Additional testing showed
growth on brain heart infusion agar (Difco BD), non-haemo-
lytic growth on blood agar [TSA containing 5% (v/v) sheep
blood], but no growth on nutrient agar (Difco BD) or R2A
agar (EMD Millipore). Frozen stocks were prepared by sus-
pending bacterial cultures in TSB supplemented with 20% (v/
v) glycerol and storing them in cryovials (Simport) at –80

�
C.

A number of growth experiments and biochemical analyses
were performed to characterize strain CAG32T and its met-
abolic capabilities. Unless noted otherwise, all experiments
were performed with 3–5 replicates under 1% CO2-
supplemented air. To determine the optimum O2 and CO2

conditions for growth, cultures of strain CAG32T were incu-
bated in stoppered anaerobic culture tubes (Chemglass)
containing 5ml TSB and growth was monitored by spectro-
photometry at a wavelength of 600 nm [15]. The TSB
medium was deoxygenated by sparging the liquid with
100%N2. Under a starting headspace of 100%N2, culture
tubes were injected with 100% CO2 or atmospheric air
(20% O2). After injection, the overpressure was released to
obtain final headspace concentrations of 0 or 1% CO2 with
0–20% O2. To test if the strain could grow under anoxic
conditions by fermentation or anaerobic respiration, tubes
containing 0% O2 with 0 or 1% CO2 were injected with a
reducing solution of 0.05% (final concentration) cystei-
ne�HCl [16]. Several of these tubes were also supplemented
with 10mM (final concentration) sodium nitrate, sodium
nitrite or sodium fumarate to test for the usage of alternative
electron acceptors [17]. An increase in turbidity by at least
50% of the optical density (OD600) measured at the time of
inoculation was considered evidence for growth.

Strain CAG32T grew under atmospheres containing 1–20%
O2 and did not require supplemental CO2 for growth
(Table 1). The generation time decreased as the O2 concen-
tration increased (Table 1), and growth for strain CAG32T

at 20% O2 and 1% CO2 was significantly faster compared
to growth under all other conditions (P<0.05 by Student’s t-
test). Thus, optimum growth for strain CAG32T occurred
under an atmosphere of 20% O2 with 1% CO2. Strain
CAG32T did not grow in the absence of O2 in any of the
conditions tested (Table 1), suggesting an inability to grow

by fermentation or anaerobic respiration under reducing
conditions using any endogenous or alternative electron
acceptors (nitrate, nitrite, fumarate) added to the medium.
This, along with the positive correlation between the final
cell yield (OD600) and O2 concentration (Table 1), strongly
suggests that strain CAG32T is an obligate aerobe. However,
our in vitro tests for its ability to grow by anaerobic respira-
tion were not exhaustive.

The NaCl concentration for growth was determined by incu-
bating the bacteria in TSB media containing 0.5, 1, 1.5, 2, 2.5,
3, 4, 5, 6, 8 or 10% (w/v) NaCl. Growth in 0% NaCl was
tested by incubating the bacteria on media containing all the
components of TSA [1.5% (w/v) peptone, 0.5% (w/v) tryp-
tone and 1.5% (w/v) agar] but without NaCl. Optimum
growth occurred at 0.5% (w/v) NaCl, although growth was
possible for strain CAG32T from 0 to 2.0%NaCl and
was inhibited above 2.0% NaCl. The pH tolerance was
assessed by incubating the bacteria in stoppered anaerobic cul-
ture tubes with 5ml TSB ranging in pH from 4.0 to 9.0 in
0.5 pH unit increments. The pH was buffered using 0.1 M cit-
ric acid (pH 4.0–4.5), 0.1 M succinate (pH 5.0–5.5), 0.1 M
MOPS (pH 6.0–7.5) or 0.1 M Tris-HCl (pH 8.0–9.0). Growth
was measured by spectrophotometry as before. Growth was
possible within a pH range of 4.0–8.0, while optimum growth
occurred between pH 7.0 and 7.5.

The temperature range for growth was determined by incu-

bating the bacteria in stoppered 5 ml anaerobic culture

tubes in temperature-controlled shakers (Benchmark) set at

23, 37, 40, 45 or 47
�
C. Growth was measured by spectro-

photometry as before. Strain CAG32T was able to grow at

23–47
�
C with optimum growth at 40

�
C.

Substrate usage was determined by using GN2 microplates
(Biolog) and API 20NE test strips (bioM�erieux). GEN III
microplates (Biolog) were used to characterize antibiotic
susceptibility and the usage of additional carbon sources.

Table 1. Effect of headspace O2 and CO2 concentrations on the

generation time and final optical density (OD600) of Saccharedens

versatilis CAG32T

Growth was measured by spectrophotometry at a wavelength of

600 nm in stoppered anaerobic culture tubes without replacement of

the atmosphere. Values are expressed as mean±SD generation times

and OD600 and were obtained from 3–4 replicates. NG, No growth.

O2 (%) CO2 (%) Generation time (h) Final OD600

0 0 NG –

0 1 NG –

1 1 26.8±8.3 0.10±0.01

2 1 15.7±1.4 0.10±0.01

4 1 10.1±1.3 0.17±0.02

8 1 7.2±0.4 0.43±0.01

12 1 7.0±0.2 0.71±0.01

16 1 7.0±0.6 0.93±0.01

20 1 6.5±0.2 1.06±0.03

20 0 7.9±0.1 1.02±0.03
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Enzyme activity was characterized by using the API ZYM
system (bioM�erieux). All substrate and enzyme assays were
performed in duplicate according to the manufacturers’
instructions. From GN2 microplates, strain CAG32T was
able to use adonitol, D-arabitol, D-fructose, D-galactose, D-
glucose, myo-inositol, D-mannose, D-gluconic acid, DL-lactic
acid, L-glutamic acid, proline, a-D-glucose 1-phosphate and
D-glucose 6-phosphate. From GEN III microplates, strain
CAG32T was able to use 3-methyl glucose, D-fucose, glyc-
erol, D-fructose 6-phosphate, glucuronamide, citric acid and
D-serine. Strain CAG32T grew in the presence of the antibi-
otics rifamycin SV, lincomycin, vancomycin, nalidixic acid
and aztreonam. Examples of substrates that strain CAG32T

could not use included sucrose, cellobiose, raffinose, meli-
biose, L-fucose, a-D-lactose, lactulose, xylitol, pectin, formic
acid, propionic acid, L-alanine, L-asparagine, L-aspartic acid,
L-histidine, L-leucine and DL-carnitine.

Using the API ZYM system, strain CAG32T tested positive for
the enzymes alkaline phosphatase, esterase lipase (C8), leucine
arylamidase, acid phosphatase and naphthol-AS-BI-phospho-
hydrolase. Strain CAG32T was negative for esterase (C4),
lipase (C14), valine arylamidase, cysteine arylamidase, trypsin,
a-chymotrypsin, a-galactosidase, b-galactosidase, b-glucu-
ronidase, a-glucosidase, b-glucosidase, N-acetyl-b-glucosami-
nidase, a-mannosidase and a-fucosidase. Using the API 20
NE system, strain CAG32T tested positive for the assimilation
of D-glucose, D-mannose and potassium gluconate.

Many symbionts of insects are known to have beneficial
functions, such as the ability to produce short-chain fatty
acids (SCFAs) by incomplete oxidation of polysaccharides
and organic acids [18]. To test for the ability of strain
CAG32T to produce SCFAs from the oxidation of glucose
or lactate, the bacteria was incubated in 5ml of (a) TSB or
(b) phenol red broth base (Hardy Diagnostics) containing
either 0.05% (w/v) D-glucose or 10mM sodium L-lactate.
Cultures were shaken at ~200 r.p.m. at 28–30

�
C for 4, 8, 24

or 48 h. After incubation, 1ml of the culture fluid was
removed and centrifuged at 10 000 g for 1min. The super-
natant was removed and filtered through a 0.22 µm filter,
adjusted to pH 2–3 using 1.0M HCl and stored at –20

�
C

until analysis. SCFAs in the supernatant were detected and
quantified by GC as described in Zhao et al. [19] using a
J&W fused silica column with a free fatty acid phase (DB-
FFAP 125-3237; Agilent). Uninoculated media incubated
under the same conditions were used as controls. No SCFAs
were detected in the supernatant of strain CAG32T grown
in phenol red broth containing D-glucose or sodium
L-lactate at all tested time periods, suggesting that the sub-
strates were completely oxidized by the bacteria during
growth. However, n-butyric acid was found in low concen-
trations (0.39±0.18mM) in the culture fluid when strain
CAG32T was incubated in TSB media for 48 h. These con-
centrations were significantly higher than the concentra-
tions detected in the uninoculated media (P<0.005 by
Student’s t-test, Fig. S1, available in the online Supplemen-
tary Material). Surprisingly, acetic acid was detected in the

uninoculated TSB media (1.0±0.05mM) but was absent in
the culture fluid of the bacteria incubated in TSB under the
same conditions (P<0.0001 by Student’s t-test, Fig. S1), indi-
cating that strain CAG32T can consume acetic acid. To con-
firm this finding, the strain was incubated in phenol red
broth base containing 10mM sodium acetate under the
same conditions above for 48 h and the culture fluid was
analysed by GC. We found a significant decrease in acetic
acid in the bacterial culture supernatant compared to the
uninoculated broth (P<0.001 by Student’s t-test, Fig. S2),
providing evidence that strain CAG32T uses acetic acid.

Catalase activity was determined by placing cells on a
microscope slide and monitoring gas accumulation beneath
a coverslip after the addition of 3% H2O2. The presence of
cytochrome c oxidase was indicated by a blue colour change
of cells after the addition of oxidase diagnostic reagent (Bec-
ton Dickinson). Urease activity was tested by monitoring
cells for growth and media colour change in urea broth
(Difco BD) supplemented with TSB and trace mineral sup-
plement (ATCC). Motility was tested by inoculating the
bacteria in sulfide-indole-motility (SIM) medium (EMD
Millipore). Strain CAG32T was motile, positive for oxidase,
and negative for catalase and urease.

For transmission electron microscopy, the bacteria were
fixed with 2.5% glutaraldehyde in 0.1 M cacodylate solution
and sent to the Michigan State University Center for
Advanced Microscopy (East Lansing, MI, USA). Cells were
post-fixed in 1% osmium tetroxide in 0.1 M phosphate
buffer for 1 h, dehydrated using a 30–95% acetone graded
series, embedded in Poly/Bed 812 (Polysciences) and cut
into 70 nm ultrathin sections. The sections were then
stained with uranyl acetate, lead citrate and examined under
a Jeol 100 CXII transmission electron microscope. Strain
CAG32T was rod-shaped and ranged from 0.8 to 1.6 µm in
length and 0.3 to 0.4 µm in width (Fig. 1). Strain CAG32T

appeared to have a Gram-negative type outer membrane
and thin cell wall. Its Gram-negative status was determined
by Gram staining followed by light microscopy.

To determine the cellular fatty acid composition, cultures
were grown on TSA plates at 28–30

�
C for 7 days and cells

were pelleted in TSB containing 20% (v/v) glycerol and fro-
zen in rubber-sealed cryovials at –80

�
C. Frozen cells were

sent on dry ice to MIDI labs (Newark, DE, USA) for analysis
using the Sherlock Microbial ID system (MIS). The analysis
of cellular respiratory quinones and polar lipid composition
from frozen cells was carried out by the identification ser-
vice of the DSMZ (Braunschweig, Germany), according to
Tindall et al. [20]. As shown in Table 2, the major fatty acids
were C16 : 0 (29.3 %), C16 : 1!7c/C16 : 1!6c (21.1 %), C17 : 0

cyclopropane (14.2%), C15 : 0 (8.0%), C12 : 0 (7.6%) and
C14 : 0 3-OH/C16 : 1 iso I (5.3%). The only respiratory qui-
none detected was ubiquinone-8 (Q-8) and the major polar
lipids identified were phosphatidylethanolamine (PE), phos-
phatidylglycerol (PG) and diphosphatidylglycerol (DPG).
An unidentified lipid, aminolipid and phospholipid were
also detected (Fig. S3).
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To determine the genomic G+C content for strain CAG32T,
DNA was first extracted by using a Power Soil DNA extrac-
tion kit (MO BIO Laboratories) according to the manufac-
turer’s instructions. The resulting DNA was digested by P1
nuclease and alkaline phosphatase and analysed by HPLC
as described by Mesbah et al. [21] using a Zorbax normal-
phase C18 column (880952-705; Agilent). The G+C content
of the genomic DNA of strain CAG32T was 59.2±0.6mol%.

A cell lysate was made by mixing 2–3 loopfuls of bacteria
grown on TSA plates for 7 days in 500 µl of sterile nanopure
water. The mixture was vortexed, heated at 80

�
C for 15–

20min and then incubated at –80
�
C for 1 h. After thawing,

the lysate was used for PCR amplification of the 16S rRNA
gene using the general bacterial primers 63F, 334F, 786F,
519R, 939R and 1389R [14]. Amplification reactions were
performed in a 25 µl mixture containing 2 µl cell lysate,
0.2 µM each primer, and a master mix containing 200 µM
dNTPs, 1� Taq buffer, 1.5mM MgCl2 and 0.625 U Taq
DNA polymerase (Empirical Bioscience). PCR was initiated
with a 3min denaturation step at 93

�
C, followed by 30

cycles of denaturation at 93
�
C for 30 s, primer annealing at

56
�
C for 30 s, extension at 72

�
C for 1min and a final exten-

sion for 5min. After the reaction, PCR products were puri-
fied using ExoSAP-IT (USB Corporation) and sent to the
Michigan State University genomics core facility (East Lans-
ing, MI, USA) for Sanger sequencing using an ABI 3730xl
platform (Applied Biosystems). The sequences were
trimmed and aligned with Sequencher v.5.4 (Gene Codes
Corporation) and checked using the BLAST tool [22]. The
resulting 16S rRNA gene sequence was used for phyloge-
netic analysis.

The 16S rRNA gene sequences were aligned using SINA [23].
Evolutionary distances between closely related strains were
determined and phylogenetic analyses were performed in
MEGA6 [24] using the maximum-likelihood, neighbour-
joining and maximum-parsimony algorithms. Consistently
across all three phylogenetic analyses, strain CAG32T

formed a monophyletic group within the Burkholderiales
family Alcaligenaceae with 16S rRNA gene clones obtained
from Cephalotes varians ants [8]. The placement of strain
CAG32T outside of the neighbouring genus Bordetella was
robustly supported in all phylogenies with strong bootstrap
values (Fig. 2). However, we found that the recently reclassi-
fied species Verticiella sediminum [25] occupied a unique
phylogenetic position depending on the type of phyloge-
netic analysis used, as reported in Vandamme et al. [26].
Based on the 16S rRNA gene sequence, strain CAG32T

shared 96.9% similarity with its closest cultivated neigh-
bours Bordetella petrii Se-1111RT [27] and Bordetella bron-
chiseptica ATCC 19395T [28].

To compare the phenotypic characteristics of strain CAG32T

to its cultivated neighbours, the reference strain Bordetella
bronchiseptica ATCC 10580 was grown on TSA under the
same conditions and analysed for biochemical and cellular
fatty acid properties as mentioned before. The phenotypic fea-
tures of strain CAG32T compared to other cultured relatives
are summarized in Table 3. The results showed that strain
CAG32T has fatty acid (C16 : 0 and C17 : 0), respiratory quinone
(Q-8) and polar lipid (PE, PG, DPG) profiles that are consis-
tent with other members of the family Alcaligenaceae [29].
However, strain CAG32T showed distinct characteristics from
the members of its next closest clade, the genus Bordetella.
First, strain CAG32T was capable of degrading a number of
sugar and sugar alcohol compounds (e.g. D-glucose and

500 nm

Fig. 1. Transmission electron micrograph of cells of Saccharedens

versatilis CAG32T. Bar, 0.5 µm.

Table 2. Cellular fatty acid composition of Saccharedens versatilis

CAG32T compared to cultivated neighbours from the family

Alcaligenaceae

Strains: 1, Saccharedens versatilis CAG32T; 2, Bordetella bronchiseptica

ATCC 10580; 3, Bordetella bronchialis LMG 28640T (data from Van-

damme et al. [26]); 4, Pusillimonas harenae B201T (data from Park

et al. [32]). Results are presented as percentages of total fatty acids.

Major fatty acids (�5.0%) are highlighted in bold. –, Not detected; NR,

not reported.

Fatty acid 1 2 3 4

C12 : 0 7.6 0.7 1.0 7.9

C12 : 0 2-OH – 2.3 5.5 –

C14 : 0 3.3 4.8 2.0 1.7

C14 : 0 2-OH – – 5.0 NR

C14 : 0 3-OH/C16 : 1 iso I 5.3 5.7 15.8 8.8

C15 : 0 8.0 0.7 NR 0.7

C15 : 0 2-OH iso/C16 : 1!7c – – 8.5 1.8

C15 : 1!6c 4.3 – NR NR

C16 : 0 29.3 29.4 29.6 32.1

C16 : 1!7c/C16 : 1!6c 21.1 6.7 NR NR

C17 : 0 2.4 1.8 NR 0.4

C17 : 0 cyclopropane 14.2 31.0 26.1 35.7

C18 : 0 0.7 5.0 3.3 0.6

C18 : 1!7c – 6.5 2.3 2.2

C19 : 0 cyclopropane !8c – 2.5 – 6.0
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D-arabitol). While members of the genus Bordetella can use

organic and amino acids as carbon sources, they fail to use

carbohydrates for growth [27, 30]. Second, strain CAG32T

had significantly different percentages of fatty acids in its cel-

lular composition compared to strains from the

genus Bordetella and its sister genus Pusillimonas (e.g. C17 : 0

cyclopropane, Table 2). Third, the G+C content of the geno-

mic DNA of strain CAG32T was 59.2±0.6mol%, which falls

below the high range of 60–69mol% that is characteristic for

the genus Bordetella [27, 29]. Finally, strain CAG32T shared

96.9% 16S rRNA gene sequence similarity with its closest

cultivated neighbours, which is below the 98.65% cutoff
recently proposed for species demarcation [31]. We believe
that these biochemical and phylogenetic differences indicate
that strain CAG32T represents a novel species of a new genus
within the family Alcaligenaceae. Accordingly, we propose the
name Saccharedens versatilis gen. nov., sp. nov. to
accommodate strain CAG32T.

Interestingly, our analyses placed strain CAG32T in a new
sister genus to the genus Bordetella, a group that mainly
consists of pathogenic or commensal host-associated strains
that occasionally cause disease [30]. This close grouping of
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Fig. 2. Maximum-likelihood-based 16S rRNA gene phylogeny of strain CAG32T. The alignment was generated using SINA v1.2.11. Phy-

logenetic analysis, including bootstrapping and tree visualization, was performed in MEGA6 [24] using the Tamura–Nei model and near-

est neighbour interchange. Positions with less than 95% coverage were eliminated, resulting in a total of 1363 shared nucleotide

positions. The numbers at branch nodes indicate bootstrap support (1000 replicates) above 50%. Closed circles at branch nodes repre-

sent conserved topologies across the three phylogenetic algorithms (maximum-likelihood, maximum-parsimony, neighbour-joining),

partially closed circles represent conserved topologies across the maximum-parsimony and neighbour-joining algorithms, open circles

represent conserved topologies across the neighbour-joining and maximum-likelihood algorithms, and the absence of circles at nodes

indicates no conservation. Other members of the family Alcaligenaceae are given as reference species. GenBank accession numbers

are shown in parentheses. #16S rRNA gene clones from C. varians guts. Bar, 0.02 changes per nucleotide.
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strain CAG32T next to the genus Bordetella raises questions
regarding its role in the ant gut and whether the isolate pos-
sesses characteristics that are detrimental to Cephalotes ants.
However, previous studies have positioned Burkholderiales
strains in monophyletic, Cephalotes-specific clusters, which
is evidence that the bacteria share a stable and symbiotic
association with Cephalotes ants [5, 7, 8]. Consistent with
these findings, our phylogenetic analysis revealed that strain
CAG32T is most closely related to 16S rRNA gene clones
obtained from Cephalotes varians ants (�97.5% similarity,
Fig. 2) and forms a monophyletic cluster distinct from culti-
vated neighbours, signifying a long history of symbiotic
coevolution with its host.

DESCRIPTION OF SACCHAREDENS GEN. NOV.

Saccharedens (Sac.char.e¢dens. G. n. saccharon sugar; L.
pres. part. edens eating; N.L. masc. n. Saccharedens a sugar-
eating organism).

Cells are Gram-stain-negative and rod-shaped, and colonies
on TSA are pale white. Metabolism is probably obligate aer-
obic. The major fatty acids are C16 : 0, C16 : 1!7c/C16 : 1!6c,
C17 : 0 cylcopropane, C12 : 0 and C14 : 0 3-OH/C16 : 1 iso I and
the major polar lipids are PE, PG and DPG.

DESCRIPTION OF SACCHAREDENS

VERSATILIS SP. NOV.

Saccharedens versatilis (ver.sa¢ti.lis. L. masc. adj. versatilis
versatile).

Has the following characteristics in addition to those
given for the genus. Cells are 0.8–1.6 µm in length and
0.3–0.4 µm in width. Growth is possible on brain heart

infusion agar, blood agar (non-haemolytic), and on solid
and in liquid trypticase soy medium at pH 4.0–8.0, with
0–2.0% (w/v) NaCl, at 23–47

�
C, and under atmospheres

of 0–20% O2 with 0 or 1% CO2. Optimum growth
occurs at pH 7.0–7.5, with 0.5% (w/v) NaCl, at 40

�
C,

and under atmospheric conditions of 20% O2 with 1%
CO2. The only respiratory quinone detected is Q-8. Cells
are negative for catalase and urease and positive for oxi-
dase, alkaline phosphatase, esterase lipase (C8), leucine
arylamidase, acid phosphatase and naphthol-AS-BI-phos-
phohydrolase. Substrates used include adonitol, D-arabitol,
D-glucose, D-fructose, D-galactose, D-glucose, 3-methyl glu-
cose, D-fucose, myo-inositol, D-mannose, glycerol, acetic
acid, citric acid, D-gluconic acid, DL-lactic acid, L-glutamic
acid, glucuronamide, potassium gluconate, proline, D-ser-
ine, a-D-glucose 1-phosphate, D-glucose 6-phosphate and
D-fructose 6-phosphate. Substrates not used include
sucrose, cellobiose, raffinose, melibiose, L-fucose, a-D-lac-
tose, lactulose, xylitol, pectin, acetic acid, formic acid,
propionic acid, L-alanine, L-asparagine, L-aspartic acid, L-
histidine, L-leucine and DL-carnitine. Produces n-butyric
acid in TSB. Cells are resistant to rifamycin SV, lincomy-
cin, vancomycin, nalidixic acid and aztreonam.

The type strain, CAG32T (=NCIMB 15010T=DSM
100909T), was isolated from the gut of the arboreal ant
Cephalotes rohweri, collected from Tucson, AZ, USA. The
G+C content of the genomic DNA of the type strain is
59.2±0.6mol%.
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Table 3. Differential characteristics between Saccharedens versatilis CAG32T and other cultivated strains from the family Alcaligenaceae

Strains: 1, Saccharedens versatilis CAG32T; 2, Bordetella bronchiseptica ATCC 10580 (G+C content from Daligault et al. [33]); 3, Bordetella petrii Se-

1111RT (data from von Wintzingerode et al. [27]); 4, Bordetella bronchialis LMG 28640T (data from Vandamme et al. [26]); 5, Pusillimonas harenae

B201T (data from Park et al. [32]). Substrate usage and enzyme activity were determined using GN2 and GEN III microplates and API 20 NE test

strips. +, Positive result; –, negative result; NR, not reported.

Characteristic 1 2 3 4 5

Isolation source Ant gut Dog lung River sediment Human lung Beach sand

Cell shape Rods Rods Rods Rods Rods

Cell width (µm) 0.3–0.4 0.2–0.5 0.4–0.7 0.2 0.5–0.7

Cell length (µm) 0.8–1.6 0.5–2.0 1.0–2.8 1.2 0.6–0.9

Colony colour Pale white Pale white Cream white Translucent Ivory

Metabolism Obligate aerobe Obligate aerobe Facultative Facultative Obligate aerobe

DNA G+C content (mol%) 59.2±0.6 68.2 63.8 67.5 53.1

Motility + + – + +

Catalase – + + + +

Urease – + – – +

Temperature range (oC) 23–47 23–45 NR 28–47 15–45

pH range 4.0–8.0 5.0–9.0 NR NR 5.0–9.0

NaCl range (%) 0–2.0 0–5.0 NR 0.5–3.0 0–6.0

D-Glucose + – – + (weak) –

D-Mannose + – – – –
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