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Abstract—Previous studies have shown inexplicable declines in breeding waterbirds within western New York/New Jersey Harbor
between 1996 and 2002 and elevated polychlorinated dibenzo-p-dioxins and polychlorinated biphenyls (PCBs) in double-crested
cormorant (Phalacrocorax auritus) eggs. The present study assessed associations between immune function, prefledgling survival, and
selected organochlorine compounds and metals in herring gulls (Larus argentatus) and black-crowned night herons (Nycticorax
nycticorax) in lower New York Harbor during 2003. In pipping gull embryos, lymphoid cells were counted in the thymus and bursa of
Fabricius (sites of T and B lymphocyte maturation, respectively). The phytohemagglutinin (PHA) skin response assessed T cell function
in gull and heron chicks. Lymphocyte proliferation was measured in vitro in adult and prefledgling gulls. Reference data came from the
Great Lakes and Bay of Fundy. Survival of prefledgling gulls was poor, with only 0.68 and 0.5 chicks per nest surviving to three and four
weeks after hatch, respectively. Developing lymphoid cells were reduced 51% in the thymus and 42% in the bursa of gull embryos from
New York Harbor. In vitro lymphocyte assays demonstrated reduced spontaneous proliferation, reduced T cell mitogen-induced
proliferation, and increased B cell mitogen-induced proliferation in gull chicks from New York Harbor. The PHA skin response was
suppressed 70 to 80% in gull and heron chicks. Strong negative correlations (r =-0.95 to —0.98) between the PHA response and dioxins
and PCBs in gull livers was strong evidence suggesting that these chemicals contribute significantly to immunosuppression in New York

Harbor waterbirds. Environ. Toxicol. Chem. 2013;32:548-561. © 2012 SETAC

Keywords—New York Harbor Fish-eating birds

INTRODUCTION

The numbers of breeding colonial waterbirds declined sig-
nificantly within western New York/New Jersey Harbor from
1996 to 2002, despite apparently abundant food and nesting
habitat [1]. Specifically, breeding herring gulls (Larus argen-
tatus), black-crowned night herons (Nycticorax nycticorax),
great and snowy egrets (Casmerodius albus and Egretta thula),
and glossy ibis (Plegadis falcinellus) essentially have disap-
peared from Shooters, Pralls, and Isle of Meadows Islands,
except for approximately a dozen heron nests on Pralls. Double-
crested cormorant nests decreased by approximately 25% on
Shooters Island and nearby navigational aid structures. The
eggs of double-crested cormorants nesting in the Hudson
Raritan Estuary contain significant concentrations of poly-
chlorinated dibenzo-p-dioxins (PCDDs), polychlorinated
dibenzofurans (PCDFs), and planar polychlorinated biphenyls
(PCBs) [2,3]. Multiple sources of contaminants in the Hudson
Raritan Estuary might affect the health, reproduction, and
populations of aquatic wildlife, including historic releases of
a 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD) from a
former 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) manufactur-
ing facility along the Passaic River in New Jersey [4,5]. To date,
however, no published studies have investigated the potential
links between exposure to these chemicals and ecological health
metrics in birds such as immunological status or the possible
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geographic extent of these effects. In other ecosystems, fish-
eating birds such as gulls, terns, herons, and cormorants have
been shown to be excellent sentinel species to assess and
monitor the impacts of persistent contaminants. Detailed repro-
ductive and health effect studies of contaminants have been
conducted in these species, especially the herring gull, for more
than three decades in the Great Lakes [6-9].

The present study emphasized immune function, because
PCDDs, PCBs, and other organochlorines have been shown to
be associated with immunological effects in many laboratory
experiments [10,11] and in wild birds, including colonial water-
birds [11-16]. Immunological effects of these organochlorines,
particularly the dioxin-like chemicals, include atrophy of the
primary lymphoid organs (thymus and, in birds, bursa of
Fabricius), suppressed T cell function, suppressed antibody
production, and increased susceptibility to infectious diseases.
Immunological assays (cellularity and masses of lymphoid
organs, the phytohemagglutinin [PHA] skin response, and
lymphoproliferation assays) were chosen for the present study
based on their general utility as indicators of immune status in
birds [11,17] or previously demonstrated associations with
organochlorines. Embryonic exposure to PCBs or dioxins is
associated with decreases in the number of developing lym-
phocytes in the thymus and bursa of Fabricius in chickens [18—
20] and herring gulls (C.J. Kelly, 2003, Master’s thesis, Wright
State University, Dayton, OH, USA). The PHA skin response
for T cell-mediated immunity is one of the most common
immune function assays in ecological and toxicological studies
in birds [11,17]. Several studies have shown associations
between exposure to PCBs and PCDDs and suppression of
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the PHA response in fish-eating birds [12-14]. Phytohemag-
glutinin injected intradermally in a chick’s wing stimulated
T cells to release chemical messengers (cytokines), causing a
localized inflammatory influx of white blood cells and fluid.
These studies found that the greater the stimulation index
(change in skin thickness 24 h after injection), the stronger
the immune response. Lymphoproliferation assays, especially
for T cells, are good indicators of immunotoxicity in laboratory
rodents [21-23], and methods have been developed to employ
these laboratory tests following cryopreservation of avian
lymphocytes in the field [24].

The present study assessed reproduction, immune function,
and contaminant exposure in waterbirds on breeding colonies
on Swinburne and Hoffman Islands in lower New York Harbor
during 2003 in parallel to similar studies in the Great Lakes
[12,13]. The present study’s specific objectives were to assess
the immune function of herring gulls and black-crowned night
herons in lower New York Harbor; to investigate the prefledg-
ling survival of herring gulls in lower New York Harbor; and to
explore the potential associations between environmental con-
taminants and impaired immune function or reproduction.

MATERIALS AND METHODS
Study design

Biological assessment by researchers at Wright State Uni-
versity and chemical assessment by staff at the Columbia
Environmental Research Center of the U.S. Geological Survey
were performed independently; that is, each laboratory was
blind to the data generated by the other group until the statistical
analysis was conducted.

The only herring gull and black-crowned night heron col-
onies in the Hudson Raritan Estuary suitable for study (based on
colony size and accessibility and proximity to the Passaic River,
Newark Bay, Kill van Kull, and Arthur Kill) were in lower New
York Harbor east of Staten Island. Herring gulls were studied on
Swinburne Island and black-crowned night herons on nearby
Hoffman Island from May 28 to July 9, 2003. Adult herring
gulls were trapped over their nests at mid-incubation for blood
sampling using a walk-in automatic drop trap (May 30). Pipping
herring gull embryos were collected around the median hatch
date for the colony (June 3-5). Enclosures (~80 cm high with
1.7 x 2.5cm plastic mesh supported by metal poles) were
erected around individual or groups of herring gull nests (which
were otherwise unmanipulated by egg and embryo sampling) at
mid-incubation to contain chicks for immune function assays
and to calculate prefledgling survival. Enclosures could not
exclude avian or mammalian predators, although no such
predation was observed. Immune function tests were conducted
on three- to four-week old herring gull chicks (July 1, 2, and 7).
Age was determined by observed hatch dates and body size
measurements [12]. Chicks were weighed using a spring scale.
Body size was assessed by measuring the wing chord with a
ruler, and the head-to-bill, tarsus, and keel lengths were meas-
ured with calipers. The numbers of surviving chicks in the
enclosures were counted at median ages of three and four weeks
posthatch and divided by the number of nests to determine chick
productivity. Four-week-old herring gull chicks (July 8-9) were
re-measured, euthanized by decapitation, and necropsied. Var-
ious organs (including the spleens) were removed, weighed, and
frozen for chemical and biochemical analyses [6,25]. Immune
function tests were conducted on black-crowned night heron
chicks in tree nests at median ages of approximately two weeks
posthatch. For both gulls and herons, nest mates of appropriate
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age were sampled to maximize sample sizes. All collections
were carried out under federal and state migratory bird permits
and with the approval of the Laboratory Animal Care and Use
Committee at Wright State University.

No suitable reference sites with clearly documented low
contamination were identified within or near the Hudson-
Raritan Estuary. As such, reference sites outside this ecosystem
were chosen based on previous studies and included Chantry
Island in northeastern Lake Huron and Kent Island in the Bay of
Fundy, Atlantic Ocean [7,8,12,25]. Chantry Island (2001-2002)
was a reference site for both herring gulls and black-crowned
night herons, and Kent Island in the Bay of Fundy, Atlantic
Ocean (2001), was an additional reference site for herring gulls.

Lymphoid organ development in herring gull embryos

Pipping herring gull embryos (one per nest) were collected
from Swinburne Island in lower New York Harbor during early
June 2003 and from Chantry Island in Lake Huron during 2002
(CJ. Kelly, 2003, Master’s thesis, Wright State University,
Dayton, OH, USA). Embryos were kept alive in a cooler with
hot water bottles until necropsy in a portable laboratory, which
occurred later during the collection day. The thymus gland and
bursa of Fabricius were removed, weighed, and homogenized,
and lymphoid cells numbers and viability were counted at 400 x
on a hemacytometer using Trypan blue dye [18,19; C.J. Kelly,
2003, Master’s thesis, Wright State University, Dayton, OH,
USA]. Thymus, bursa, and spleen mass indices were calculated
as percent of body mass.

T cell-mediated immune response in herring gulls
and black-crowned night herons

Herring gull and black-crowned night heron chicks were
assessed for immunosuppression using an in vivo PHA skin test
[12]. At approximately three weeks of age for the gulls and two
weeks of age for the herons, the skin thickness in each patagial
wing web was measured to the nearest 0.05mm using low
tension, pressure-sensitive calipers (Dyer Company). One
wing web was injected with 0.1ml of 1mg PHA-P/ml
(Sigma-Aldrich) in sterile phosphate buffered saline (PBS)
without calcium or magnesium (Sigma-Aldrich), whereas the
other received 0.1 ml of PBS. Wing webs were re-measured
24 + 3 h later. A stimulation index was calculated as the change
in thickness of the PHA-injected wing web minus the change in
thickness of the PBS-injected wing web. The same source and
formulation of PHA were used for all birds, including those
from the Chantry and Kent Island reference sites.

Lymphoproliferation responses in herring gulls

Approximately 4 to 7 ml of blood was collected into hepari-
nized vacutainer tubes (Becton Dickinson) from the brachial
vein of adult, three-week old (on the second day of the PHA
test) and four-week old herring gulls and stored on ice for less
than 6 h. Lymphocytes were isolated by slow spin centrifuga-
tion at 120 g for 20 to 25 min and then another 5 min [24].
Following each centrifugation period, the buffy coat was
removed with approximately half of the plasma by swirling a
sterile, fine-tipped, disposable pipette to create a vortex that
lifted the lymphocytes into the plasma. Both aliquots of lym-
phocytes and plasma were combined. Lymphocytes were then
separated from plasma by centrifugation at 600 g for 10 min,
resuspended in Origen freezing medium (10% dimethyl sulf-
oxide [DMSO], Fisher Scientific), cryopreserved by rate-
controlled freezing in a Nalgene freezing container on dry
ice, and stored long-term in liquid nitrogen.
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In the laboratory, cells were thawed, washed with RPMI-
BSA, and incubated for 2 to 3h at 37°C [24]. Following
resuspension in Weber medium, cells were counted for viability
using Trypan Blue exclusion and cell type by Natt and Herrick
solution. Cells (3 x 10°) in Weber medium were added to each
well of a 96-well plate. Mitogen treatments included concana-
valin A (1 pg Con A) and phytohemagglutinin + phorbol myr-
istate acetate (2ng PHA-P+4pg PMA) for T cells and
lipopolysaccharide (2 g LPS) for B cells. If cell numbers were
sufficient, additional wells were treated with 0.5 pg Con A.
Lymphocytes were cultured at 40°C and 5% CO, for 48 h, after
which 20 w1 of bromodeoxyuridine (BrdU) labeling reagent was
added for another 18 h. Cells were then fixed and treated with
nucleases and an anti-BrdU monoclonal antibody conjugated
with peroxidase. After the peroxidase substrate was added,
plates were read using an ELISA reader at 405 nm. Stimulation
indices (SI) were calculated as mean optical density in mitogen-
stimulated wells divided by mean optical density in nonstimu-
lated wells.

Contaminant concentrations in avian liver tissues

Livers were removed and weighed immediately after gull
chicks were decapitated and allowed to bleed out. The left lobe
of each liver was placed in an acetone-hexane rinsed amber jar
and stored on wet ice for transport to Wright State University by
University personnel, where they were stored at —20°C. These
samples were later transferred to the Columbia Environmental
Research Center following standard documentation and chain
of custody procedure with sample logs as specified by the
Research Center and the U.S. Geological Survey. Contaminant
analyses were conducted on all nine chicks that were assessed
for the PHA and SRBC tests that also survived to 4 weeks of
age, and on three other randomly selected chicks that were not
part of these other tests (i.e., from nests outside the enclosures).

Sample prep and instrumental analysis—Organics. Che-
mical analyses were conducted by staff at the Columbia Envi-
ronmental Research Center. Percent lipid and moisture were
determined for each of the tissue samples. Thirty organochlor-
ine pesticides and 141 individual PCB congeners were assayed
using gas chromatography with electron capture detection
[26,27]. Only the pesticides and PCB congeners that were
found to be consistently above detection limits were reported,
as was total PCB concentrations as a sum of all congeners
measured (Table 1). Non-ortho-PCB congeners and PCDD and
PCDF congeners were isolated from the gull liver extracts with
a series of chromatographic cleanup procedures—reactive
cleanup, high-performance gel permeation, porous graphitic
carbon, and alumina—and were then quantified using isotope
dilution gas chromatography with high resolution mass spec-
trometry (GC/HRMS) [28,29]. Tetra-octa-polychlorinated
dibenzothiophenes (PCDTs) were monitored by GC/HRMS
[30]. Dioxin-like compound Toxic Equivalents (TEQs) were
calculated using World Health Organization avian toxic equiv-
alency factors [31].

Sample prep and instrumental analysis—Inorganics. Hea-
vy metals and trace elements in livers were measured by
inductively coupled mass spectrometry (ICP-MS) using the
TotalQuant method that sums multiple isotopes of targeted
elements after suitable acid digestion to a final digestate of
6% nitric acid [32]. Arsenic and Se were determined by flow
injection hydride generation atomic absorption spectroscopy
(FIHGAAS) [32] after suitable acid digestion (10% hydro-
chloric acid for final digestate), whereas Hg was determined
directly by thermal combustion-gold amalgamation atomic

K.A. Grasman et al.

Table 1. Detected organochlorine concentrations in prefledgling herring
gull livers collected from Swinburne Island in lower New York
Harbor during 2003*

Concentration (ng/g wet wt)

Mean SE Median Minimum Maximum
Pentachlorobenzene 0.55 0.23 0.31 0.14 3.0
Pentachloro anisole 0.46  0.080 0.39 0.19 1.2
alpha-BHC (a-HCH) 0.23  0.020 0.25 0.13 0.38
delta-BHC (d-HCH) 0.17  0.030 0.14 0.070 0.31
Heptachlor epoxide 3.7 0.76 3.7 0.010° 7.6
Oxychlordane 9.9 1.1 10 33 14
cis-Chlordane 0.55 0.10 0.43 0.15 1.3
cis-Nonachlor 2.3 0.30 2.2 0.81 4.7
trans-Nonachlor 13 2.2 12 3.6 32
p.p’-DDE 34 6.6 29 7.9 91
p.p’-DDD 1.7 0.25 1.5 0.81 34
Mirex 0.86 0.11 0.84 0.35 1.8
Total PCBs 380 76 320 150 1,100
% Lipid 34 0.31 3.1 2.7 6.7

N =12 livers for all compounds.

b 0.010 ng/g (detection limit) was for one bird in which heptachlor epoxide
was not detected.

SE = standard error; BHC = benzenehexachloride; DDE = dichlorodiphenyl-

dichloroethylene; DDD = dichlorodiphenyldichloroethane; PCBs = poly-

chlorinated biphenyls.

absorption spectrometry (TCGAAAS) with a direct mercury
analyzer [32].

Chemistry quality assurance and quality control—Organics

Reference fish material positive control sample had a total-
PCB concentration of 7,000 ng/g, close to our historical average
result for that sample (6,700 ng/g). Triplicates of the positive
control carp showed excellent precision for non-ortho PCBs
and PCDD/PCDFs; that is, <4% and <20% relative standard
deviation (RSD), respectively. Data are also consistent with our
historical non-ortho PCB, PCDD, and PCDF QC data (<20%
RSD of historic values, except for the 1,2,3,7,8,9-Hexachloro-
and 1,2,3,4,7,8,9-Heptachlorofurans, which have shown greater
variability over time). The PCB congener, total PCB, and
organochlorine pesticide concentrations (ng/g wet wt) for the
herring gull livers and the associated QC samples were cor-
rected for analytical recovery of the surrogates; all values were
reported at three significant figures. Liver concentrations below
a PCB congener or a pesticide’s method detection limit were
censored at that level. Surrogate recoveries for PCBs and
pesticides averaged 77 to 83%, within QC limits (50-125%).
Organochlorine pesticides and toxaphene recoveries for matrix
spikes were also within QC limits. Matrix spike recoveries of
PCB congeners were in the acceptable range (50-125%) with a
few exceptions for congeners near the method detection limit or
with partial interferences. Isotopically labeled non-ortho PCB,
PCDD, and PCDF surrogate recoveries were typically above
50%, within our quality assurance range (25-125%).

Chemistry quality assurance and quality control—Inorganics

Reference fish tissue material (NRCC DORM-2) and whole
egg powder (NIST SRM 8415) analyzed by ICP-MS semi-
quantitative scan exhibited recoveries ranging from 79 to 113%,
with the exception of one low Fe recovery (65%) and one high
Cr recovery (200%). Recoveries of elements from two liver
reference materials (dogfish liver, NRCC DOLT-2, and bovine
liver NIST 1577b) ranged from 74 to 131%, with the exception
of one high Cr recovery (251%). Recoveries of elements from
various reference/research materials digested and analyzed in
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conjunction with the determination of As and Se by quantitative
FIHGASS and Hg by TCGAAAS were within specified limits
for all elements where limits exceeded the method detection
limits. In one exceptional case for As, the measured value was
2% below the lower limit value. Triplicate digestion and
analysis of all other metals in one bird liver sample by ICP-
MS semiquantitative scan exhibited percent RSDs < 22%,
except for two cases of Al (49 and 61%) and one case of Fe
(35%). Replicate digestion or combustion and analysis of
samples for As, Se, and Hg determination produced percent
RSDs < 9.

Recoveries of elements spiked into tissue samples prepared
for the semiquantitative scan ranged from 88 to 133%, with an
average recovery of 108%. Liver spike recoveries ranged from
88 to 128% and averaged 105%. Samples of bird egg and liver
spiked with As, Se, and Hg exhibited recoveries ranging from
93 to 114% and averaged 103%. Recoveries of As and Se in
analysis (postdigestion) spikes ranged from 94 to 101%.

Statistical analyses

Wilcoxon’s rank sum test was used to compare the following
endpoints between birds from lower New York Harbor and
Chantry Island: the reference was lymphocyte proliferation,
thymocyte numbers, and bursal lymphoid cell numbers in gulls
and phytohemagglutinin skin responses in herons. The Kruskal-
Wallis test was used to compare phytohemmagglutinin skin
responses among lower New York Harbor and marine and
freshwater reference sites (Kent and Chantry Islands, respec-
tively). In herring gull chicks from lower New York Harbor,
associations between immunological parameters and contami-
nant concentrations, body size, growth, and condition were
assessed using Pearson’s correlation procedure. Correlations
were reported only if significant (p < 0.05) (Table 2).
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RESULTS

Herring gull chick liver chemistry

The presence of 2,3,7,8-TCDD and related dioxin-like com-
pounds and other organic and inorganic residues was confirmed
in the herring gull livers from the present harbor study area.
Organochlorine pesticides and total PCBs were consistently
detected in herring gull livers (n =12; Table 1). Tables 3 and 4
summarize the congener concentrations of chlorinated- dioxins,
furans, and dioxin-like PCBs, including avian-based 2,3,7,8-
TCDD EQs (TEQs). Dioxins, furans, and PCBs accounted for
13.2, 20.7, and 66.2% of total TEQs, respectively. No PCDTs
were detected except for a tetra-PCDT (TCDT) of < 1 pg/g.
Table 5 summarizes the metals that were found consistently at
reportable concentrations in these samples (n=12).

Atrophy of lymphoid organs in herring gull embryos

The number of developing lymphoid cells in both the thymus
and bursa were greatly reduced in pipping herring gull embryos
in lower New York Harbor (Fig. 1). The mean number of live
thymocytes in the thymi of gull embryos from Swinburne Island
(2.7+0.4 %107 cells; mean+se) was 51% lower than at
Chantry Island, the reference site (5.5 4 1.0 X 107 cells) (p
<0.0010). The thymocyte number at Swinburne was slightly
lower than at the two most contaminated Great Lakes sites,
West Sister Island in western Lake Erie (3.5 £0.5 x 107 cells)
and Saginaw Bay (3.2+0.7 x 107 cells) (C.J. Kelly, 2003,
Master’s thesis, Wright State University, Dayton, OH, USA).
Likewise, the mean number of live bursal lymphoid cells was
42% lower at Swinburne (6.4 +0.6 x 10° cells) compared to
Chantry (1.1£0.1 x 107 cells) (p <0.0012). The number of
live bursal lymphoid cells was 5.0+0.1 x 10° at both West

Table 2. Statistically significant” correlations between immune variables and contaminants, body size, growth, and liver composition in prefledgling herring
gulls from Swinburne Island in lower New York Harbor during 2003

Pearson’s
Immune Variable Exposure, size, growth, or liver variable n r )4
PHA Stimulation Index % lipid in liver 9 -0.86 0.0027
% moisture in liver 9 0.77 0.016
Na 9 0.81 0.0085
Ti 9 0.69 0.041
Rb 9 0.67 0.047
Se 9 -0.82 0.0065
Pentachlorobenzene 9 -0.74 0.021
p.p’-DDE 9 -0.87 0.0023
Mirex 9 -0.80 0.0091
Total PCBs 9 -0.95 0.0001
2,3,7,8-TCDD 9 -0.98 <0.0001
TCDF 9 -0.83 0.0055
PCB 126 9 -0.82 0.0063
Total TEQs 9 -0.89 0.0012
Sum PCB TEQs 9 -0.88 0.0018
Sum m-PCB TEQs 9 -0.96 <0.0001
Sum n-PCB TEQs 9 -0.87 0.0022
PCDD TEQs 9 -0.94 0.0002
PCDF TEQs 9 -0.88 0.002
Bursal index Thymic index 20 0.70 0.0006
Spleen index Body mass 4 weeks 14 -0.54 0.048
% lipid in liver 12 -0.60 0.037
% moisture in liver 12 0.72 0.0078
Na 12 0.61 0.037

“Table lists only those variables with p < 0.05 for Pearson’s correlation.

PHA = phytohemagglutinin; DDE = 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene; PCBs = polychlorinated biphenyls; TCDD = 2,3,7,8-tetrachlorinated
dibenzo-p-dioxin; TCDF = 2,3,7,8-tetrachlorinated dibenzo-p-furan; TEQ = dioxin toxic equivalents; PCDDs = polychlorinated dibenzodioxins; PCDFs =

polychlorinated dibenzofurans.
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Table 3. Concentrations of PCDDs, PCDFs, and planar PCBs in prefledgling herring gull livers collected from Swinburne Island in lower New York
Harbor during 2003*

Concentration (pg/g wet wt)

Compound Mean Standard error Median Minimum Maximum
Dioxins
2.,3,7,8-tetrachloro 4.6 2.4 2.0 1.1 31.0
1,2,3,7,8-pentachloro 1.3 0.2 1.0 0.3 2.4
1,2,3,4,7,8-hexachloro 1.3 0.1 1.4 0.5 2.0
1,2,3,6,7,8-hexachloro 6.4 1.1 5.6 2.1 13.6
1,2,3,7,8,9-hexachloro 1.1 0.1 1.1 0.6 1.9
1,2,3,4,6,7,8-heptachloro 28.6 5.7 22.7 5.5 64.8
Octachloro 99.3 36.3 60.4 11.8 482.0
Sum dioxins 142.6 41.1 103.6 232 558.2
Furans
2.,3,7,8-tetrachloro 1.0 0.3 0.7 0.3 4.3
1,2,3,7,8-pentachloro 0.5 0.1 0.3 0.2 2.0
2,3,4,7,8-pentachloro 6.3 1.3 53 2.1 18.9
1,2,3,4,7,8-hexachloro 13.7 9.0 52 1.8 113
1,2,3,6,7,8-hexachloro 5.2 1.7 3.6 0.9 22.9
2,3,4,6,7,8-hexachloro 0.4 0.0 0.4 0.2 0.4
1,2,3,7,8,9-hexachloro 2.3 0.4 1.9 0.9 4.8
1,2,3,4,6,7,8-heptachloro 19.1 4.1 16.1 2.2 53.4
1,2,3,4,7,8,9-heptachloro 0.8 0.1 0.8 0.4 1.7
Octachloro 34.6 7.6 28.0 3.7 90.2
Sum furans 83.7 16.6 72.3 15.2 211.1
PCBs
PCB 81 23.2 53 18.4 8.7 78.0
PCB 77 138 233 112 39.9 317
PCB 126 203 54.7 136 62.2 699
PCB 169 41.4 9.4 30.9 10.4 107
Sum n-PCBs 406 80.5 317 171.8 1059
PCB 105 6,800 1,300 5,100 2,500 17,000
PCB 114 470 110 300 150 1400
PCB 118 24,000 5,100 17,000 8,700 69,000
PCB 123 490 110 420 1,450 1,400
PCB 156 2,100 480 1,300 650 6300
PCB 157 670 170 480 0.0 2200
PCB 167 1,100 270 700 370 3,700
PCB 189 270 56 170 66 740
Sum m-PCBs 36,360 7,540 26,800 12,670 102,300

#N =12 livers for all compounds.

PCDDs = polychlorinated dibenzodioxins; PCDFs = polychlorinated dibenzofurans; PCBs = polychlorinated biphenyls.

Sister and Saginaw Bay (C.J. Kelly, 2003, Master’s thesis,
Wright State University, Dayton, OH, USA).

In vivo T cell-mediated immune response in herring gulls and
black-crowned night herons

Both herring gull and black-crowned night heron chicks in
lower New York Harbor had some of the lowest mean
PHA responses ever recorded by the senior author (including
multiple years of replication of response levels at reference and
contaminated sites), indicating severe suppression of T cell-
mediated immunity (Fig. 2). Specifically, PHA responses
in herring gulls varied significantly among the three sites
(p <0.0001). Gulls on Swinburne Island (n =13) had a mean
stimulation index of only 0.16 mm. Mean responses were
0.85mm at the marine reference and 0.6 to 0.8 mm at Great
Lakes reference sites (the present study and Grasman et al.
[12]). Gulls at polluted Great Lakes sites typically have mean
responses of 0.3 to 0.4 mm [12]. Black-crowned night herons on
Hoffman Island (n=16) had a mean stimulation index of
0.18 mm compared to 0.5 mm at the Chantry Island reference
site (the present study; p <0.0001) and 0.25 to 0.3 mm at
contaminated Great Lakes sites in western Lake Erie and
Saginaw Bay (K. Grasman, Calvin College, unpublished data).

The suppressed PHA response in lower New York Harbor
gulls was strongly correlated with several organochlorine con-
taminants (Table 2 and Fig. 3). Strong linear correlations (n =9)
were evident for 2,3,7,8-TCDD (Pearson’s r=-0.98), total
PCBs (r=-0.95), sum m-PCBs (r=-0.96), PCDD TEQs
(r=-0.94), total TEQs (r =-0.89), and DDE (r =-0.87). Other
measures of exposure to dioxin-like chemicals and PCBs also
showed strong negative correlations with the PHA response
(Table 2). Only one metal or trace element, Se, was negatively
correlated with the PHA response, although Na, Ti, and Rb were
positively correlated. Overall, these correlation analyses sug-
gest that dioxins or PCBs make a strong contribution to the
suppressed T cell function observed in herring gull chicks in
lower New York Harbor.

Lymphoproliferation responses in herring gulls

Herring gulls from lower New York Harbor exhibited altered
lymphocyte proliferation, most notably reduced spontaneous
proliferation and enhanced LPS-induced proliferation in three-
and four-week-old chicks (Table 6 and Fig. 4). Spontaneous
proliferation in the absence of a mitogen is presumably asso-
ciated with lymphocyte proliferation in vivo at the time of blood
collection. Mean spontaneous proliferation in New York Harbor
gulls was suppressed approximately 40% in all three ages,
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Table 4. Dioxin toxic equivalent concentrations for PCDDs, PCDFs, and planar PCBs in prefledgling herring gull livers from Swinburne Island in lower
New York Harbor during 2003"

Dioxin toxic equivalent concentration (pg/g wet wt)

Compound Mean Standard error Median Minimum Maximum
Dioxins
2,3,7,8-tetrachloro 4.57 242 1.95 1.10 31.00
1,2,3,7,8-pentachloro 1.29 0.21 1.00 0.30 2.40
1,2,3,4,7,8-hexachloro 0.07 0.01 0.07 0.03 0.10
1,2,3,6,7,8-hexachloro 0.06 0.01 0.06 0.02 0.14
1,2,3,7,8,9-hexachloro 0.11 0.01 0.11 0.06 0.19
1,2,3,4,6,7,8-heptachloro 0.03 0.01 0.02 0.01 0.06
Octachloro 0.01 0.00 0.01 0.00 0.05
Sum dioxins 6.14 2.55 3.15 1.65 33.6
Furans
2,3,7,8-tetrachloro 0.98 0.32 0.65 0.30 4.30
1,2,3,7,8-pentachloro 0.05 0.01 0.03 0.02 0.20
2,3,4,7,8-pentachloro 6.28 1.32 5.30 2.10 18.9
1,2,3,4,7,8-hexachloro 1.37 0.90 0.52 0.18 11.3
1,2,3,6,7,8-hexachloro 0.52 0.17 0.36 0.09 2.29
2,3,4,6,7,8-hexachloro 0.04 0.00 0.04 0.02 0.04
1,2,3,7,8,9-hexachloro 0.23 0.04 0.19 0.09 0.48
1,2,3,4,6,7,8-heptachloro 0.19 0.04 0.16 0.02 0.53
1,2,3,4,7,8,9-heptachloro 0.01 0.00 0.01 0.00 0.02
Octachloro 0.00 0.00 0.00 0.00 0.01
Sum furans 9.65 242 7.18 3.13 33.9
PCBs
PCB 81 2.32 0.53 1.84 0.87 7.80
PCB 77 6.92 1.17 5.61 1.99 15.83
PCB 126 20.34 5.47 13.62 6.22 69.93
PCB 169 0.04 0.01 0.03 0.01 0.11
Sum n-PCBs 29.6 6.57 21.9 11.2 87.5
PCB 105 0.68 0.13 0.51 0.25 1.7
PCB 114 0.05 0.01 0.03 0.01 0.14
PCB 118 0.24 0.05 0.17 0.09 0.69
PCB 123 0.00 0.00 0.00 0.00 0.01
PCB 156 0.21 0.05 0.13 0.06 0.63
PCB 157 0.07 0.02 0.05 0.00 0.22
PCB 167 0.01 0.00 0.01 0.00 0.04
PCB 189 0.00 0.00 0.00 0.00 0.01
Sum m-PCBs 1.27 0.26 0.90 0.42 3.47
Sum PCBs 30.9 6.8 224 11.8 89.3
Total 46.7 11.4 31.6 19.2 156.8

N =12 livers for all compounds.

PCDDs = polychlorinated dibenzodioxins; PCDFs = polychlorinated dibenzofurans; PCBs = polychlorinated biphenyls.

although statistically significant only in three- (p < 0.0043) and
four- (p <0.036) week-old chicks but not adults (p < 0.42;
Table 6 and Fig. 4A). Total B lymphocyte proliferation stimu-
lated by LPS was significantly increased by 63% in three-
week-old chicks (p <0.0044) and four-week-old chicks
(p <0.033) but not in adults (p < 0.63; Table 6 and Fig. 4b).
T cell proliferation stimulated by PHA +PMA or Con A
generally was not significantly different between sites, except
for a 15% decrease in the PHA +PMA treatment for three-
week-old gulls from New York Harbor (p < 0.051). Likewise,
four-week-old gulls from New York Harbor had a marginally
significant (p < 0.13) 17% decrease in PHA + PMA stimulated
proliferation compared to the Chantry Island reference site.
No statistically significant correlations were found between
proliferation variables and contaminants in chicks that were
consistent between three and four weeks of age.

Prefledgling survival of herring gulls

Prefledgling survival in herring gulls was measured by
monitoring survival of chicks within enclosures on Swinburne
Island in lower New York Harbor (n =23 total nests in three
enclosures). Chick productivity was calculated at three weeks
posthatch (the standard time for this calculation in herring gulls)

was 0.68 chicks per nest. This is below the level necessary
to maintain a stable population (0.8 chicks per nest) [33].
Furthermore, more than 25% of the chicks that survived to
three weeks of age died in the next week; at four weeks post-
hatch, there were only 0.5 chicks per nest. Although not
evaluated quantitatively, survival of herring gull chicks on
nearby Hoffman Island and great black-backed gull chicks
on Swinburne Island also was poor—very few surviving three-
to four-week-old chicks were observed despite a large number
of nests.

DISCUSSION

Associations of immunotoxicity with dioxins, PCBs, and other
organochlorines

Although the immune assays in this study were not chemical
specific, dioxins and PCBs clearly cause immunosuppresssion
in laboratory animals [10], and environmental exposures have
been associated with similar immunosuppression or increased
infections in wildlife. Polychlorinated biphenyls and DDE were
negatively associated with proliferation of T cells in male
bottlenose dolphins (Tursiops truncatus) from the west coast
of Florida [34]. Young harbor seals (Phoca vitulina) fed PCB-
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Table 5. Detected heavy metal and trace metal concentrations in prefledgling herring gull livers collected from Swinburne Island in lower New York
Harbor during 2003*

Concentration (ug/g dry wt)

Mean Standard error Median Minimum Maximum
Na 3,058 90.8 3100 2,400 3,500
Mg 1,180 13.1 1,200 1,100 1.200
Al 1.2 0.1 1.0 0.7 2.3
K 9,800 237 9,600 8,600 11,000
Ti 7.0 0.4 7.0 4.3 9.2
Mn 23.5 0.9 23.0 20.0 29.0
Fe 764 122 635 310 1,800
Co 0.3 0.0 0.3 0.2 0.4
Cu 173 23.4 175 69.0 340
Zn 120 52 120 95.0 150
AsP 4.6 0.7 38 2.0 8.6
Se® 34 0.2 3.1 2.6 4.7
Rb 10.3 0.6 9.7 7.3 14.0
Mo 2.6 0.2 2.5 1.9 35
Ag 39 0.5 32 1.8 6.4
Cd 1.2 0.4 0.8 0.2 4.3
Hg® 0.7 0.2 0.5 0.3 22
% moisture 69.1 0.4 68.8 66.5 70.9

4N =12 livers for all compounds.

®As and Se determined by flow injection hydride generation atomic absorption spectroscopy.
“Hg determined by thermal decomposition of liver sample, gold amalgamation, and detection by atomic absorption spectroscopy.

contaminated fish from the Baltic Sea had reduced delayed-type
hypersensitivity responses (T cell-mediated skin responses) and
reduced T cell proliferation in vitro, supporting the role of
contaminant-induced immunosuppression in an outbreak of
phocine distemper virus in wild seals [35]. Stranded harbor
porpoises (Phocoena phocoena) dying from infections had
higher tissue PCB concentrations than those dying of
acute trauma [36]. In glaucous gulls (Larus hyperboreus) of
the Svalbard archipelago in the Barents Sea, total organochlor-
ine exposure was positively correlated with gastrointestinal
parasite load [15].

Pipping herring gull embryos from lower New York Harbor
had greatly reduced numbers of developing lymphocytes both in
the thymi and bursa of Fabricius, the sites of T and B cell
maturation, respectively. The magnitude of lymphoid atrophy
(~40 — 50%) was similar to that observed in embryos from
contaminated Great Lakes areas (Saginaw Bay and Lake Erie)
(C.J. Kelly, 2003, Master’s thesis, Wright State University,
Dayton, OH, USA) [21]. In a previous study, thymic atrophy
was negatively correlated with PCB concentrations in the yolk
sacs of pipping herring gull embryos (PCDDs and PCDFs were
not assessed; K. Grasman, Calvin College, unpublished data). In
herring gull chicks of the Great Lakes, thymic atrophy was
associated with liver ethoxyresorufin-O-deethylase (EROD)
activity, an indicator of exposure to PCBs and dioxins [17].
In chickens, PCBs and dioxins decreased the mass and lym-
phoid cellularity of the thymus and bursa of Fabricius [18-20].
In chicken embryos, the dioxin-like PCBs 126 and 77 and
Aroclor 1254 increased apoptosis in thymocytes 1 d before
hatch [20]. In pipping herring gull embryos in the Great Lakes,
thymocyte apoptosis was altered at sites with PCB-associated
thymic atrophy (C.J. Kelly, 2003, Master’s thesis, Wright State
University, Dayton, OH, USA). Lymphocyte proliferation
assays in New York Harbor gulls gave further evidence of
disrupted immune function (Table 6 and Fig. 4). As cited
earlier, altered lymphocyte proliferation has been observed in
wildlife and laboratory species exposed to dioxins and PCBs.

The magnitude of suppression of the PHA skin response in
New York Harbor herring gulls and black-crowned night heron

chicks was among the greatest ever observed by the senior
author’s research team. Dioxins and PCBs exhibited strong
negative correlations (r=-0.89 to —0.98) with the PHA skin
response in herring gull chicks (Fig. 3). The PHA skin test
integrates many important T cell functions and is recognized as
one of the most sensitive assays employed by avian immuno-
toxicologists and ecologists [11,17]. In avian laboratory studies,
elimination of T cell function by irradiation or immunosup-
pressive drugs reduces the PHA response by 50 to 60%
(reviewed in [37]). The magnitude of suppression in herring
gulls and black-crowned night herons in lower New York
Harbor was approximately 70 to 80% lower than at reference
sites. For comparison, 30 to 50% suppression was observed in
herring gull and Caspian tern chicks at contaminated Great
Lakes sites [12]. In Caspian tern chicks, the PHA response
showed a strong negative association with total PCBs and DDE
in plasma of individual birds [13].

Two related Great Lakes studies allow comparison of the
PHA skin response to liver organochlorine concentrations in
herring gull chicks. Livers were collected for contaminant
analysis (pooled by site) from herring gull chicks at 11 colonies,
including Lake Winnipeg (reference colony), Hamilton
Harbour, and Saginaw Bay during 1991 and western Lake Erie
during 1992 [25]. The same team conducted the PHA skin test
on herring gull chicks at all four colonies during 1992 and
additionally in 1993 and 1994 for Saginaw Bay [12]. The PHA
skin response was suppressed at contaminated sites (Lake Erie,
Hamilton Harbour, and Saginaw Bay) with liver concentrations
of 75 to 267 pg/g TEQs, 1.3 to 8.9pg/g 2,3,7,8-TCDD, and
0.792 to 1.191 ug/g PCBs, compared to the reference site
(Winnipeg) with 16 pg/g TEQs, 0.85pg/g 2,3,7,8-TCDD, and
0.132 ug/g PCBs. (PCB concentrations are reported directly
from Fox et al. [25]; TEQs were recalculated to include con-
geners not used originally in Fox et al. [25]; 2,3,7,8-TCDD is
reported as unpublished data from the same data set.) Mean
concentrations in New York Harbor gull chicks in the present
study were 47 pg/g TEQs, 4.6 pg/g 2,3,7,8-TCDD, and 0.382
ug/g PCBs, although maximal concentrations reached 157 pg/g
TEQs, 31 pg/g 2,3,7,8-TCDD, and 1.100 ug/g PCBs (Tables 2
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Fig. 1. Numberof (A) viable thymocytes and (B) lymphoid cells in the bursa of Fabricius in pipping herring gull embryos collected from Swinburne Island in lower
New York Harbor during 2003 and Chantry Island in Lake Huron in 2002. Means for both immune cell types were significantly lower on Swinburne Island
compared with the reference site (Wilcoxon p < 0.01). Numbers in parentheses indicate sample sizes of chicks. Error bars indicate & 1 standard error of the mean.

and 3). (TEQs for the Great Lakes and New York Harbor
included the same set of PCDD and PCDF congeners. TEQs
for New York reported above included seven PCB congeners
with relatively low contributions to TEQs that were not avail-
able for the Great Lakes dataset. If these congeners are elim-
inated, mean and maximal TEQs in New York were slightly
lower at 44 and 148 pg/g, respectively.) Mean DDE concen-
trations in New York gulls (0.033ug/g) were much lower
than pooled DDE concentrations at the Great Lakes sites
(0.158 — 0.505 ug/g) and marginally lower than at the reference
site (0.059 ug/g) in Fox et al. [25], suggesting that the negative
correlation between DDE and PHA response in New York birds
may not be causal but instead the result of co-correlation
between DDE and immunotoxic dioxins and PCBs. Although
no tissues were collected for contaminant analysis in black-
crowned night herons in the present study, significant concen-
trations of dioxins and PCBs have been reported previously in
the eggs of this species nesting in and near the Hudson Raritan
Estuary [38].

Laboratory studies with chickens have shown that birds can
be susceptible to immunotoxic effects at exposures similar to
those observed in herring gulls from lower New York Harbor. In

chicken embryos exposed from the beginning to the end of
incubation (as in the present field study), thymic and bursal
atrophy have been observed over a dose range of approximately
13 to 80 pg TEQs/g egg (converting from PCB concentrations to
TEQs using World Health Organization toxic equivalency
factors) [18-20]. As a species, herring gulls are approximately
33 to 50 times less sensitive to 2,3,7,8-TCDD compared to
chickens, and 7- to 200-fold less sensitive to other planar
PCDDs, PCDFs, and PCBs [39,40]. Still, some individual gulls
are as sensitive as the average chicken [39].

Studies spanning a diverse phylogeny of organisms support
the biological plausibility of these low exposure effects in
herring gulls of New York Harbor. Adductor muscle concen-
trations as low as 2.0pg 2,3,7,8-TCDD/g altered gonadal
development, egg fertilization, and embryonic development
in eastern oysters (Crassostrea virginica) in both controlled
dosing studies in the laboratory and field studies, where oysters
from uncontaminated areas were transplanted to contaminated
areas (Newark Bay and Arthur Kill) [41]. Female rainbow trout
(Oncorrhynkis mykiss) fed 1.8ng 2,3,7,8-TCDD/kg food for
300 d experienced significantly reduced survival, as did their
offspring [42]. These effects occurred at liver concentrations
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Fig. 2. Phytohemagglutinin skin response for T lymphocyte-mediated immunity in prefledgling (A) herring gull chicks and (B) black-crowned night heron chicks
in lower New York Harbor. Mean responses differed significantly between sites for both herring gulls (Kruskal-Wallis p <0.00010) and herons (Wilcoxon p
<0.0001). Herring gulls were sampled on Swinburne Island in lower New York Harbor during 2003, Chantry Island in Lake Huron from 2001 to 2002, and Kent
Island in the Bay of Fundy during 2001. Black-crowned night herons were sampled on Hoffman Island in lower New York Harbor during 2003 and Chantry Island in
Lake Huron from 2001 to 2002. Numbers in parentheses indicate sample sizes of chicks. Error bars indicate £ 1 standard error of the mean.

less than 1 ng/kg. Following a spill of PCBs into Saglek Bay,
Labrador, Canada, the PHA response in prefledgling black
guillemots (Cyphus grille) was suppressed significantly, both
statistically and biologically [14]. The PHA response was
suppressed 50% in a group with mean liver PCBs of only
111 ng/g total PCBs and 70% in a group with mean liver PCBs
of 1,928 ng/g. The mean PCB concentration in reference birds
was 46 ng/g. Mean liver PCBs in the New York Harbor herring
gulls were 3.4 times higher than the intermediate group of
guillemots that had a 50% suppressed response.

Potential associations of immunotoxicity with other contaminants

Several classes of chemicals of emerging concern, partic-
ularly polybrominated diphenyl ethers (PBDEs) and bromi-
nated dioxins and furans were not measured in the present
study but likely were present in bird tissues. A survey of
halogenated organic contaminants in and around New York

Harbor before and after the World Trade Center (WTC) disaster
showed that brominated chemicals were often found in higher
concentrations than similar chlorinated chemicals [43]. Con-
centrations of PBDEs exceeded those of PCBs in post-WTC
sewage sludge, and in some pre- and post-WTC water samples
and post-WTC sediment samples. World Health Organization
dioxin toxic equivalents for polybrominated dibenzodioxins
and furans (PBDDs and PBDFs) were higher than those of
PCDDs and PCDFs in WTC runoff and many water and sedi-
ment samples. In Japan, livers and eggs of common cormorants
(Phalacrocorax carbo) contained significant concentrations
of PBDEs, PBDDs, PBDFs, and polybrominated biphenyls
(PBBs), showing biomagnification to levels of potential concern
[44]. The PBDDs and PBDFs were lower than PCDDs and
PCDFs. Elevated concentrations of PBDEs were found in
herring gull eggs from the Great Lakes [45]. The presence of
2,4,6,8-tetrachlorodibenzothiophene (TCDT) in aquatic biota in
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Fig. 3. Associations between selected contaminants and the phytohemagglutinin skin response for T lymphocyte-mediated immunity in prefledgling herring gull
chicks collected from Swinburne Island in lower New York Harbor during 2003. Contaminants measured in livers included (a) 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), (b) dioxin toxic equivalents attributable to polychlorinated dibenzodioxins (PCDD TEQs), (c) total polychlorinated biphenyls (total PCBs), and (d) total
dioxin toxic equivalents attributable to polychlorinated dibenzodioxins, polychlorinated dibenzofurans, and planar PCBs (total TEQs). For all correlations,

p <0.05.

the Hudson Raritan Estuary [46—48] also suggests the need to
quantify polychlorinated dibenzothiophenes (PCDTs) in birds.

The PHA skin response was negatively correlated with liver
Se concentrations, but correlations with most dioxins and PCBs
were stronger (Table 2). Liver concentrations of Se in herring
gull chicks in New York Harbor (mean of 3.4 ug/g dry wt, range
2.6 —4.7; Table 5) appeared to be below concentrations asso-
ciated with immunotoxicity, reproductive impairment, and
growth retardation. Normal concentrations of Se are generally
12 to 16 ug/g dry weight in bird livers [49] and 7.86 ug/g for
herring gulls in the United Kingdom ([50] as described by
Ohlendorf et al. [51]). New York Harbor concentrations were
similar to control Se concentrations in laboratory studies. In
mallard drakes (Anas platyrhynchos) exposed to sodium selen-
ite in drinking water for 12 weeks, no immunotoxicity was

found at exposures that produced mean liver concentrations of
5 to 6 ug Se/g dry weight [52]. Controls had liver concentrations
of 4ug/g. Selenomethionine in drinking water increased
liver Se to 15ug/g and significantly reduced T cell function
(delayed-type hypersensitivity response to tuberculin antigen)
[52]. In young mallards fed 10ug Se/g as sodium selenite
or selenomethionine, minimal or no effects on growth
were observed [53]. Livers of these birds accumulated 12 ug
Se/g dry weight (3.5 ug/g wet wt) in one week of exposure and
20ug/g dry weight (6ug/g wet wt) after six weeks. Liver Se
concentrations in controls were 0.7 to 1.3ug/g dry weight
(0.2 —0.4ug/g wet wt).

Contaminants and disease susceptibility. The relationship
among pollutant exposure, immune status, and susceptibility to
pathogenic diseases or parasitic infestation is a significant
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Table 6. Lymphocyte proliferation in herring gulls collected from Hoffman Island in lower New York Harbor and Chantry Island in Lake Huron during 2003"

b

Age

Proliferation variable Site/p value Adult 3-week chick 4-week chick

Spontaneous proliferation (absorbance) Chantry 0.294 (0.052) 0.400 (0.039) 0.508 (0.058)
NY Harbor 0.180 (0.025) 0.231 (0.029) 0.314 (0.022)
Wilcoxon p 0.42 0.0043 0.036

LPS Stimulation Index Chantry 4.37 (0.40) 3.08 (0.22) 3.09 (0.32)
NY Harbor 4.17 (0.37) 5.18 (0.61) 4.42 (0.54)
Wilcoxon p 0.63 0.0044 0.033

PHA + PMA Stimulation Index Chantry 3.22 (0.22) 3.86 (0.24) 3.54 (0.28)
NY Harbor 3.19 (0.39) 3.34 (0.59) 3.01 (0.30)
Wilcoxon p 0.46 0.051 0.13

0.5 ug Con A Stimulation Index Chantry 2.71 (0.22) 3.22 (0.23) 2.97 (0.23)
NY Harbor 3.18 (0.43) 3.11 (0.53) 2.38 (0.17)
Wilcoxon p 0.83 0.27 0.098

1.0 ug Con A Stimulation Index Chantry 4.55 (0.51) 3.40 (0.20) 3.96 (0.46)
NY Harbor 3.49 (0.30) 4.87 (0.88) 3.84 (0.50)
Wilcoxon p 0.15 0.48 0.95

# N =16-30 for Chantry and 12-24 for New York Harbor.
® Numbers indicate mean (standard error).
LPS = lipopolysaccharide; PHA = phytohemagglutinin; PMA = phorbol myristate acetate; Con A = concanavalin A.
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Fig. 4. Lymphocyte proliferation in herring gulls collected from Swinburne Island in lower New York Harbor and Chantry Island in Lake Huron during 2003. (A)

Spontaneous or control proliferation in the absence of any mitogen. (B) Lipopolysaccharide (LPS)-stimulated proliferation. Numbers in parentheses indicate
sample sizes. Error bars indicate & 1 standard error of the mean. * indicates p < 0.05 and ™ indicates p < 0.001 compared to Chantry using the Wilcoxon test.
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concern. In laboratory animals contaminant-induced immuno-
suppression defined by immune function assays is usually
associated with increased morbidity and mortality caused by
challenge infections [22]. Similarly, field studies have demon-
strated associations between contaminants and increased infec-
tions in free-living wildlife. More specifically, the PHA skin test
results from the present study indicate a strong inverse relation-
ship of T cell function with dioxin-like and total PCB as well as
p,p’-DDE residues in prefledgling herring gull chicks. Mice
exposed to 2,3,7,8-TCDD exhibited a dose-responsive increase
in mortality following an otherwise nonlethal influenza
virus infection [54]. Low pathogenic avian influenza has been
positively reported in many bird species, with low global
prevalence in herring gulls (1.4%) [55]. No herring gulls tested
in New Jersey have been reported positive for low pathogenic
avian influenza ([55]; supporting online material at:
www.sciencemag.org/cgi/content/full/312/5772/384/DC1). To
date, several reports have found highly pathogenic avian influ-
enza, specifically the H5N1 subtype, in herring gulls from
Denmark (U.S. Geological Survey, http://www.nwhc.usgs.
gov/disease_information/avian_influenza/affected_species_
chart.jsp). Virus-host challenge protocols are available for use
in gulls, including H5N1 [56,57], providing a potential avenue
for future assessments. Other potential studies might investigate
interactions between contaminant-induced immunosuppression
and health consequences of dermestid beetles, ectoparasites,
whose presence has been identified in black-crowned night
heron nests in New York Harbor and other colonies on the
northeastern Atlantic coast [58].

Summary of major findings and ecological significance

The present study has demonstrated poor prefledgling sur-
vival in herring gulls and suppressed immune function in
herring gull and black-crowned night heron chicks on islands
in lower New York Harbor. Altered immunological endpoints
included severely suppressed T lymphocyte function (PHA skin
response) in both species, significantly reduced numbers of
developing lymphocytes in the thymus and bursa of Fabricius of
herring gull embryos, and altered in vitro lymphoproliferation
responses in herring gull chicks. The observed immunosup-
pression was consistent with the immunological effects of
dioxins and PCBs, although exposure was generally lower than
in Great Lakes gulls that were also immunosuppressed [12]. In
herring gull chicks, however, measures of dioxin and PCB
exposure exhibited strong negative correlations (r=-0.89 to
—0.98) with the PHA skin response (Fig. 3), suggesting that
these chemicals contributed to the immunosuppression in New
York Harbor birds. Immunological impairments and low pre-
fledgling survival were consistent with the previously reported
reduced breeding population numbers in the lower Newark
Bay — Arthur Kill area [1]. The impaired T and B cell develop-
ment and function observed in fish-eating birds of lower New
York Harbor is consistent with exposure to organochlorines,
especially PCDDs and PCBs, although definitive causal asso-
ciations cannot be made without further investigation.

The biological and ecological relevance of suppressed
immune function responses is a significant consideration.
Immunotoxicity screening studies in laboratory rodents have
shown that immune function endpoints are excellent indicators
of immunotoxicity and decreased host resistance in challenge
infection experiments [21-23,59]. The present field study of
colonial waterbirds from New York Harbor demonstrated alter-
ations in lymphoproliferation responses as well as suppression
of the PHA skin response, which is one of the most sensitive
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integrative tests of T cell function in wild birds [11,17]. In a
review of 12 immune function studies, nine of which employed
the PHA test, immune responses were the most significant
predictors of subsequent survival of young wild birds [60].
In an assessment of 280 introduction attempts in 38 avian
species, immunocompetence as assessed by the PHA skin
response was an important positive predictor of the ability of
birds to colonize new areas (i.e., found new local populations)
[61]. Hence, the immunological endpoints measured in the
present field study are some of the best available for detecting
immunotoxicity, and the observed changes in these endpoints
are likely to have significant effects on disease resistance,
survival, and other measures of ecological fitness.
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