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STABILITY INDICES

FOR CONSTRAINED SELF-ADJOINT OPERATORS
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(Communicated by Yingfei Yi)

Abstract. A wide class of problems in the study of the spectral and or-
bital stability of dispersive waves in Hamiltonian systems can be reduced to
understanding the so-called “energy spectrum”, that is, the spectrum of the
second variation of the Hamiltonian evaluated at the wave shape, which is
constrained to act on a closed subspace of the underlying Hilbert space. We

present a substantially simplified proof of the negative eigenvalue count for
such constrained, self-adjoint operators, and extend the result to include an
analysis of the location of the point spectra of the constrained operator rel-
ative to that of the unconstrained operator. The results are used to provide
a new proof of the Jones-Grillakis instability index for generalized eigenvalue
problems of the form (R − zS)u = 0 via a careful analysis of the associated
Krein matrix.

1. Introduction

It was first conjectured by Boussinesq [3] that the stability of families of disper-
sive waves for Hamiltonian systems can be reduced to the study of the minimizers
of the Hamiltonian constrained by the quantities conserved under the flow. This
idea was first developed into a rigorous stability proof by Benjamin for the soliton
solution of the Korteweg-de Vries equation [1], applied to the ground state solu-
tion of the nonlinear Schrödinger equation by [22], extended to a wide class of wave
equations by [2], and finally broadened to a general class of Hamiltonian systems by
Grillakis, Shatah, and Strauss in their now classic papers [9, 10]. They considered
systems of the form

(1.1) ut = J δH
δu

(u),

where J is a skew operator with respect to the inner product on the Hilbert space
H and H is the Hamiltonian. For a traveling wave solution φ of (1.1) the underlying
idea is to understand the spectrum of the second variation, L, of the Hamiltonian
evaluated at φ as an operator acting on a subspace of H orthogonal to the con-
straints induced by the conserved quantities of the Hamiltonian flow. The operator
L is self-adjoint, and assuming it has at most a finite number of negative eigenval-
ues (counting multiplicity), and that there is a μ > 0 which bounds the essential
spectrum of L from below, σe(L) ⊂ [μ,+∞), then [10] characterized the spectrum
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of the constrained operator. In particular, they showed that accounting for the
conserved quantities of the underlying system in effect constrains the operator L to
act on a finite co-dimensional space S⊥. If the constrained operator had no nega-
tive eigenvalues, then under a nondegeneracy condition the wave is orbitally stable.
Furthermore, they showed that if the constrained operator has an odd number of
negative eigenvalues, then the wave is unstable with the instability realized via at
least one positive real-valued eigenvalue for the operator JL. Interestingly, this in-
stability criterion was predated by the Jones/Grillakis stability index [8, 12], which
provides a sharper criterion for the existence of positive real-valued eigenvalues and
was arrived at independently by Jones and by Grillakis using markedly different
methods. The general problem of relating the spectra of the constrained operator
to that of JL has been visited in [6, 11, 15, 21].

In this paper we present a simplified proof of a stability index which relates the
spectrum of L to that of its constrained form LS⊥ , defined in (2.1). We focus on
two issues:

(1) the number of negative eigenvalues of LS⊥ ,
(2) the location of the eigenvalues of LS⊥ relative to those of L.

The first issue was resolved by the index theorem of [5, Section 3], which, for any
S perpendicular to ker(L) constructed a real meromorphic matrix which is singular
precisely at the eigenvalues of LS⊥ . We develop herein a concise proof which is
functional analytic in nature and is based upon a decomposition of the quadratic
form of L first introduced in the stability proof of [10]. We also provide a novel
answer to the second issue via the Eigenvalue Interlacing Theorem.

The paper is organized as follows. In Section 2 we rederive the negative eigen-
value index for the operator L when constrained to act on S⊥ (Index Theorem).
We then compare the location of the negative eigenvalues of L with those of L con-
strained to S⊥, developing the Eigenvalue Interlacing Theorem. In Section 3 we use
the Index Theorem in combination with the recent formulation of the Krein matrix
[13] in order to present a new and relatively simple proof of the Jones/Grillakis
instability index [8, 12].

2. Negative eigenvalues for a constrained self-adjoint operator

Consider a self-adjoint operator L with its domain a Hilbert space H with inner
product 〈·, ·〉. We assume that there is a δ > 0 such that L has a finite number of
eigenvalues (counting multiplicity) for λ < δ. We denote by the negative (n(L)),
zero (z(L)), and positive indices (p(L)) the total number (counting multiplicity)
of negative, zero, and positive eigenvalues respectively of L acting on H. For a
subspace H̃ ⊂ H we denote by nH̃(L) the dimension of the maximal subspace of H̃

for which the bilinear form 〈w,Lw〉 < 0 for all w ∈ H̃, with analogous definitions
for zH̃(L) and pH̃(L). It is clear that m(L) = mH(L) for m = n, z, p; however, for

a given subspace H̃, which operator characterizes mH̃(L) for m = n, z, p?
We will address this question in the following context. Let S ⊂ H be a finite-

dimensional subspace which is orthogonal to the kernel of L, i.e., S ⊥ ker(L).
Let P : H �→ S be the orthogonal projection onto S, and let Q := id−P be the
complimentary projection. From the variational characterization of eigenvalues it
is easy to see that

mS⊥(L) = m(LS⊥),
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for m = n, z, p, where the constrained operator

(2.1) LS⊥ := QL : S⊥ �→ S⊥

is the operator induced by the bilinear form of L when it is constrained to act on
S⊥. This is different than the operator L

∣∣
S⊥ obtained by merely restricting the

domain of L in that the constrained operator maps into S⊥. Moreover, since Q is
the identity on S⊥, the constrained operator LS⊥ is readily seen to be self-adjoint.

A key goal is to characterize the location of the point spectrum of the constrained
operator LS⊥ in terms of the point spectrum of the original operator L. As a first
step we characterize ker(LS⊥). We define the inverse of L on its range by the map
L−1 : [ker(L)]⊥ �→ [ker(L)]⊥, which uniquely inverts L on [ker(L)]⊥. There are two
opportunities for an element s⊥ ∈ S⊥ to lie in ker(LS⊥): (a) s⊥ ∈ ker(L), or (b)
Ls⊥ ∈ S. For the first option, since ker(L) ⊂ S⊥, it follows that Q ker(L) = ker(L)
so that ker(L) ⊂ ker(LS⊥). For the second option, since L is invertible on S, we
obtain an element of the kernel precisely when we have s ∈ S with L−1s ∈ S⊥ since
for such an s,

LS⊥L−1s = QLL−1s = Qs = 0.

This motivates the introduction of the subspaces

(2.2) S1 := {s ∈ S : L−1s ∈ S⊥}, T1 := {L−1s : s ∈ S1} ⊂ S⊥,

as well as the orthogonal complement of S1 relative to S, Sc
1 := S\S1, which yields

the decomposition S = S1⊕Sc
1. Since L is one-to-one on S1, we have k := dim(T1) =

dim(S1). To see that T1 is precisely the difference between ker(L) and ker(LS⊥) we
consider an orthonormal basis, {φ1, . . . , φk} for S1 and {φk+1, . . . , φm} for Sc

1, and
introduce the m×m Hermitian matrix

(2.3) D ij = 〈φi,L−1φj〉.
We observe from the definition of S1 that 〈L−1φi, φj〉 = 0 for i = 1, . . . , k and
j = 1, . . . ,m, since L−1φi is orthogonal to all of S. As a consequence D has a
block-diagonal form

(2.4) D =

(
0 0
0 D1

)
,

where D1 ∈ C
(m−k)×(m−k). Moreover, D1 is nonsingular; indeed, if it were not,

then we could use the kernel of D1 to construct an element ψ ∈ Sc
1 for which

L−1ψ ⊥ S, in contradiction to the maximality of S1. As a consequence it follows
that c ∈ ker(D) and φ ∈ ker(LS⊥) ∩ (kerL)⊥ if and only if

∑
cisi ∈ S1. Thus we

have the decomposition

(2.5) ker(LS⊥) = ker(L)⊕ T1.

Generically, k = dim(T1) = 0, so for an appropriate perturbation of the space
S we have ker(LS⊥) = ker(L). After the perturbation k, the zero eigenvalues of
LS⊥ will become nonzero, either positive or negative, and consequently they must
be accounted for in the stability index. The following is our main result:

Theorem 2.1 (Index Theorem). Suppose that S ⊂ ker(L)⊥ is an m-dimensional
subspace and the Hermitian matrix D ∈ Cm×m is defined as in (2.3). The difference
in the negative eigenvalue count of L and LS⊥ is determined through the negative
and zero eigenvalue count of D, i.e.,

(2.6) n(LS⊥) = n(L)− n(D)− z(D);
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moreover,

(2.7) z(LS⊥) = z(L) + z(D).

The constrained operator loses n(D) + z(D) negative eigenvalues and gains z(D)
eigenvalues in its kernel.

Remark 2.2. The Index Theorem was first proved at this level of generality in [5,
Lemma 3.4]; however, the proof, while motivated by [10, Section 3], is new.

Proof. The result (2.7) follows from (2.5) and the fact that z(D) = dim(S1). To
prove (2.6) we first consider the case when z(D) = 0, so that D is nonsingular.
The key step is to show that any h ∈ H can be written as

(2.8) h = L−1s+ s⊥,

where s ∈ S and s⊥ ∈ S⊥. To determine s we write Ph =
∑

aiφi and s =
∑

biφi

and project (2.8) with P , ∑
aiφi = P

∑
biL−1φi.

Taking the inner product with φj for j = 1, . . . ,m yields a system for the unknown
b with unique solution

b = D−1a .

The element s so defined annihilates Ph, and we define s⊥ = Qh−QL−1s. Conse-
quently, for a given h ∈ H we have (at least) two decompositions: the eigenfunction
expansion and (2.8).

The two decompositions for h allow us to make the following argument. Using
the decomposition (2.8) to write Lh = s+Ls⊥ and exploiting the orthogonality of
S and S⊥ yield the identity

(2.9) 〈Lh, h〉 = 〈s+ Ls⊥,L−1s+ s⊥〉 = 〈s,L−1s〉+ 〈s⊥,Ls⊥〉.

Set d1 = nS(L−1) and d2 = nS⊥(L), and let Sd1
(resp. S⊥

d2
) be a space corresponding

to nS(L−1) (resp. nS⊥(L)), i.e.,

Sd1
= span{s1, . . . , sd1

}, S⊥
d2

= span{s⊥1 , . . . , s⊥d2
}.

From the basis elements of these spaces then form the subspace of H given by

Hd1+d2
= span{L−1s1, . . . ,L−1sd1

, s⊥1 , . . . , s
⊥
d2
}

(
= L−1Sd1

+ S⊥
d2

)
.

It follows from (2.9) that for all h ∈ Hd1+d2
there is an s ∈ Sd1

and an s⊥ ∈ S⊥
d2

such that

〈Lh, h〉 = 〈s,L−1s〉+ 〈s⊥,Ls⊥〉 < 0.

Moreover, dim(Hd1+d2
) = d1 + d2, since if not there exists s ∈ Sd1

such that
L−1s ∈ S⊥, which contradicts z(D) = 0. We deduce that

nH(L) ≥ nS(L−1) + nS⊥(L).

On the other hand, if Hd = span{h1, . . . , hd} is a space corresponding to nH(L),
where d = nH(L), then for i = 1, . . . , d we write each basis element as hi =
L−1si + s⊥i and consequently form the spaces

Sd = span{s1, . . . , sd}, S⊥
d = span{s⊥1 , . . . , s⊥d }.
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Writing h =
∑

ajhj , we use (2.9) to expand

〈Lh, h〉 =
d∑

i,j=1

aiaj
(
〈si,L−1sj〉+ 〈s⊥i ,Ls⊥j 〉

)
= a · (A+B)a ,

for appropriately defined d × d symmetric matrices A and B . Since the negative
index is subadditive on symmetric matrices,

nH(L) = n(A+B) ≤ n(A) + n(B) ≤ nS(L−1) + nS⊥(L).
We can then conclude equality, i.e.,

nH(L) = nS(L−1) + nS⊥(L).
Now, writing s =

∑
ajφj yields

〈s,L−1s〉 = a ·Da , a = (a1, . . . , am)T;

hence, nS(L−1) = n(D). In conclusion, we have

(2.10) n(L) = n(D) + nS⊥(L),
which establishes (2.6) in the case z(D) = 0.

The general case k ≡ z(D) ≥ 1 follows by analytically perturbing the finite-
dimensional space S to push the kernel of D negative. The analyticity of the
eigenvalues of L and D under analytic perturbation of S follows from classical
results; see Kato [17] for example. It is sufficient to perturb only the basis elements
of S1 as φj(ε) = φj + εφ1

j , where j = 1, . . . , k and 0 ≤ ε � 1. The perturbations

{φ1
j} are constrained to lie in ker(L)⊥. The projection operator is analytic in ε with

expansion

P (ε) = P (0) + εP ′(0) +O(ε2), P ′(0)f =

m∑
j=1

(
〈f, φj〉φ1

j + 〈f, φ1
j〉φj

)
.

The matrix D = D(ε) given by

(D(ε))ij = 〈φi(ε),L−1φj(ε)〉
will also be analytic in ε, and the k zero eigenvalues of D(0) will each have an
asymptotic expansion λj = ελ1

j +O(ε2), where λ1
j is an eigenvalue of the Hermitian

matrix M ∈ Ck×k given by

M ij = −〈φi, [P
′(0)LP (0) + P (0)LP ′(0)]φj〉 = −〈φi, [P

′(0)L+ LP ′(0)]φj〉.
The task is to choose the perturbations {φ1

j} such that {λ1
j} are strictly negative.

We impose the condition

(2.11) {φ1
j} ⊂ S⊥ ∩ (ker(L))⊥

and observe from the orthonormality of the set {φj} that

P ′(0)φi =

m∑
j=1

(
〈φi, φj〉φ1

j + 〈φi, φ
1
j〉φj

)
= φ1

i .

In particular, since P ′(0) is self-adjoint we have the expression

M ij = −〈φi, (P
′(0)L+ LP ′(0))φj〉 = −2〈φ1

i ,Lφj〉
if, in addition to the constraints (2.11), we impose

(2.12) 〈φ1
i ,Lφj〉 =

1

2
δij ,
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for i, j = 1, . . . , k and where δij is the Kronecker delta. Recalling the definition of
the subspace T1 given in (2.2), we may find {φ1

j} from the span of T1 which satisfy

(2.12) for which M = −I k×k and λ1
j = −1 for j = 1, . . . , k.

To complete the proof, for ε > 0 we have z(D(ε)) = 0, and from (2.10) we
conclude that

n(Q(ε)LQ(ε)) = n(L)− n(D(ε)) (Q(ε) = id−P (ε)).

However from the ε−continuity of the eigenvalues of D we have

n(D(ε)) = n(D(0)) + z(D(0)).

That is, the kernel ofD(0) generates z(D(0)) negative eigenvalues ofD(ε) for ε > 0.
The result (2.6) follows in the general case. �

In the remainder of this section we apply the Index Theorem to locate the eigen-
values of LS⊥ relative to the eigenvalues of L. The quantity n(L−λ2 id)−n(L−λ1 id)
counts the number of eigenvalues of L on the interval [λ1, λ2), which in conjunction
with the index (2.6) generates precise statements about σp(LS⊥). Enumerate the
point spectrum of L and LS⊥ according to multiplicity

σp(L) = {λ0 ≤ λ1 ≤ · · · }, σp(LS⊥) = {λ⊥
0 ≤ λ⊥

1 ≤ · · · }.

For real-valued λ define D(λ) ∈ Rm×m via

(2.13) D ij(λ) = 〈φi, (L − λ id)−1φj〉

(see [22, Lemma E.1] or [5, Lemma 3.4]). For λ ∈ R to the left of the essential
spectra the matrix D(λ) is real meromorphic and self-adjoint. Note that D(λ) is
regular at λ = 0 by assumption; however, it will generically be the case that D(λ)
will have a nonzero (but not necessarily full rank) residue at λ = λj �= 0. Set

(2.14) Dj = lim
λ→λj

(λj − λ)D(λ);

i.e., Dj is the negative of the residue of D(λ) at λ = λj .
Since D(λ) is self-adjoint and real-meromorphic, the eigenvalues, denoted by

dj(λ) for j = 1, . . . ,m, as well as the associated eigenvectors, denoted by v j(λ), are
also real meromorphic (e.g., see [17]). Now,

D ′
ij(λ) = 〈(L− λ id)−1φi, (L − λ id)−1φj〉,

so that for any c ∈ Rm and any λ /∈ σp(L) we may introduce φ =
∑

ciφ to find

c ·D ′(λ)c = 〈(L− λ id)−1φ, (L − λ id)−1φ〉 > 0.

In other words, at the regular points of D , the matrix D ′(λ) is positive-definite,
which implies that its eigenvalues are strictly increasing functions of λ,

(2.15) d′i(λ) =
v i(λ) ·D ′(λ)v i(λ)

|v i(λ)|2
> 0,

for the values of λ at which they are regular.

Definition 2.3. We will denote by zj the number of eigenvalues of D(λ) which
are regular at λ = λj and take the value 0. We will denote by nj the number of
eigenvalues of D(λ) which are regular at λ = λj and are strictly negative.
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Theorem 2.4 (Eigenvalue Interlacing Theorem). The dimension of the kernel of
LS⊥ − λj id is given by

(2.16) z (LS⊥ − λj id) = z (L − λj id) + zj − rank(Dj).

The number of eigenvalues of LS⊥ in the open interval (λj , λj+1) is given by

(2.17) n (LS⊥ − λ id)
∣∣∣λ−

j+1

λ+
j

= rank(Dj) + nj − (nj+1 + zj+1).

Finally, the number of eigenvalues for LS⊥ in the interval [λj , λj+1) is given by

(2.18) n (LS⊥ − λ id)
∣∣∣λ−

j+1

λj

= (zj + nj)− (nj+1 + zj+1).

Proof. Since (L − λ id)|S⊥ = LS⊥ − λ id, the quantity n(LS⊥ − λ id) counts the
number of point spectra of (L − λ id)S⊥ to the left of λ. Let ε > 0 be sufficiently
small. Applying (2.6) to L − (λj ± ε) id yields

(2.19) n (LS⊥ − λ id)
∣∣∣λj+ε

λj−ε
= z(L− λj id)− (n + z) (D(λ))

∣∣∣λj+ε

λj−ε
.

Since the point spectra are isolated, for ε > 0 sufficiently small we have

(2.20) n (LS⊥ − λ id)
∣∣∣λj+ε

λj−ε
= z (LS⊥ − λj id) .

Since the eigenvalues of D(λ) are strictly increasing in λ (see (2.15)), and since
m− rank(Dj) of the eigenvalues will have a removable singularity at λ = λj (e.g.,
see the argument in either of [5, Lemma 3.4] or [13, p. 13], in which it is shown that
Dj is positive semi-definite, but is not necessarily full rank), we find the equalities

(n + z)(D(λj − ε)) = zj + nj , (n + z)(D(λj + ε)) = nj + rank(Dj)

(see Figure 1 for an illustrative example). Subtracting these two equalities yields

(2.21) (n + z) (D(λ))
∣∣∣λj+ε

λj−ε
= rank(Dj)− zj .

Substitution of (2.20) and (2.21) into (2.19) yields the result of (2.16). Since λj

and λj+1 are successive, distinct eigenvalues of L,
n (L − (λj+1 − ε) id) = n (L − (λj + ε) id) ,

and applying the index (2.6) yields

n (LS⊥ − λ id)
∣∣∣λj+1−ε

λj+ε
= −(n + z) (D(λ))

∣∣∣λj+1−ε

λj+ε
.

However,

(n + z)(D(λj + ε)) = nj + rank(Dj), (n + z)(D(λj+1 − ε)) = zj+1 + nj+1,

and taking the limit ε → 0+ we obtain (2.17).
Finally, combining the statements of (2.16) and (2.17) yields the statement of

(2.18) via

z (LS⊥ − λj id) + n (LS⊥ − λ id)
∣∣∣λ−

j+1

λ+
j

= n (LS⊥ − λj+1 id)− n (LS⊥ − λj id) . �

Remark 2.5. For the case λ = 0, the Eigenvalue Interlacing Theorem can be con-
sidered a generalization of (2.7), where the assumption rank(D(0)) = 0 was made.
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Figure 1. (color online only) A sketch of the eigenvalues di(λ)
of D(λ) near λ = λj in the case that m = 3 with zj = nj =
rank(Dj) = 1. Here we see that (n + z)(D(λj − ε)) = 2 and
(n + z)(D(λj + ε)) = 2.

Remark 2.6. It has been observed in [13, p. 13] that rank(Dj) ≤ z(L − λj id);
consequently, when m ≥ 2 it will generically be the case that Dj will not have a
full rank.

The Eigenvalue Interlacing Theorem can be refined in the case m = 1. If Dj �= 0,
then it will necessarily be true that zj = nj = 0. This then yields:

Corollary 2.7. Suppose that m = 1, and further suppose that Dj ,Dj+1 �= 0. If
λj is an eigenvalue with geometric multiplicity � for L, then it will be an eigenvalue
with multiplicity �− 1 for LS⊥ ,

z (LS⊥ − λj id) = z(L− λj id)− 1.

Moreover the missing eigenvalue moves to the right, to lie in the interval (λj , λj+1),
and

n (LS⊥ − λ id)
∣∣∣λ−

j+1

λ+
j

= 1.

In particular, if all the eigenvalues of L are simple, and Dj �= 0 for any j such
that λj �= 0, then the eigenvalues of the reduced operator interlace those of L (see
Figure 2).

3. Application: The Jones/Grillakis instability index

The dynamics of a Hamiltonian system of the form (1.1) in a neighborhood of a
critical point can be related to an eigenvalue problem of the form

(3.1) JLu = λu,

where as in Section 1 J is a skew-symmetric operator with respect to the inner
product on the Hilbert space H with bounded inverse. The self-adjoint operator L
arises from the second variation of the Hamiltonian at the critical point (see [13,
Introduction] for further details), and as in Section 2 it will be assumed that there
is a δ > 0 such that L has a finite number of eigenvalues (counting multiplicity) for
λ < δ. The spectrum, σ(L), can be related to the curvature of the energy surface,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY INDICES 873

0

0

n(D)=1

n(D)=0

0 3 421λ λ λ λ λ

Figure 2. (color online only) The spectrum of L (blue circles)
and LS⊥ (red squares) for two choices, S0 and S1, of the constraint
space. In both cases, n(L) = 3, z(L) = 1 and all the eigenvalues
are geometrically simple with Dj �= 0 for all j except for λ = 0 (a
removable singularity by assumption). In the top figure n(D) = 1,
and in the bottom figure n(D) = 0 so that by the Index Theorem,
n(LS⊥) = n(L)− n(D) = 2 or 3 in the bottom and top figures re-
spectively. Moreover by the Eigenvalue Interlacing Theorem there
is one eigenvalue of LS⊥ in each interval (λj , λj+1) except in the
interval (λ2, λ3) in the case n(D) = 1. The arrows indicate the
motion of the eigenvalues of LS⊥ as S0 homotopies to S1.

that is, the level set of the Hamiltonian, at the critical point. If σ(L) ⊂ R+, with the
kernel of L corresponding to underlying symmetries of the evolution equation (1.1),
then the critical point is a minimizer of the Hamiltonian, and the energy surfaces of
proximal values of the Hamiltonian are closed and remain localized near the critical
point. Any orbit originating near the critical point is trapped on its corresponding
energy surface and the critical point is dynamically stable. If σ(L) �⊂ R+, then
the critical point is not a minimizer. It may be a constrained minimizer if other
conserved quantities of the system are accounted for, or it may be dynamically
unstable under the flow.

If the imaginary part of JL satisfies Im(JL) = 0, then it was shown in [16] that
defining L+ := L and L− := −JLJ the eigenvalue problem (3.1) can be made
equivalent to the canonical case

(3.2) J =

(
0 id

− id 0

)
, L =

(
L+ 0
0 L−

)
.

If Im(JL) �= 0, then one must be careful when comparing the two problems;
in particular, the reduction of the four-fold eigenvalue symmetry for (3.1) when
Im(JL) = 0 to a two-fold symmetry when Im(JL) �= 0 can break the equivalence.
In the sequel we assume that (3.1) is in the canonical form of (3.2). Furthermore,
it will be assumed that:

Assumption 3.1. The kernel of JL satisfies the following conditions:

(1) ker(L+) ⊥ ker(L−),
(2) dim[gker(JL)] = 2 dim[ker(L)].

A simple condition which ensures (b) is given in [15, Lemma 3.1].

In contrast to [11, Assumption 2.1], we do not assume that L is invertible. How-
ever, the invertibility assumption can be recovered by considering the eigenvalue
problem in an appropriate subspace. The condition (a) of Assumption 3.1 ensures
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that the orthogonal projection Π : H �→ [ker(L+)⊕ker(L−)]
⊥ is well-defined. It was

shown in [15, Section 3] that for nonzero eigenvalues the system (3.1) is equivalent
to

(3.3) −ΠL+Πu = λv, ΠL−Πv = λu.

The operators ΠL±Π are naturally self-adjoint and due to Assumption 3.1(b) they
are nonsingular on the range of Π. Moreover, the nonzero spectrum associated
with either (3.2) or (3.3) has the four-fold symmetry

{
±λ,±λ

}
. This motivates the

introduction of the operators

(3.4) R := ΠL+Π, S−1 := ΠL−Π, z := −λ2 (−π/2 < arg λ ≤ π/2),

which reduces the system (3.3) to the equivalent eigenvalue problem

(3.5) (R− zS)u = 0,

under the mapping z = −λ2, as illustrated in Figure 3. Eigenvalues with positive
real part and nonzero imaginary part are mapped in a one-to-one fashion to eigen-
values with nonzero imaginary part, and the four-fold symmetry is reduced to the
reflection symmetry {z, z}. In particular, the system (3.3) has an unstable eigen-
value λ with Reλ > 0 iff the system (3.5) has an eigenvalue z with z < 0 or with
Im z �= 0. We enumerate the unstable eigenvalues, denoting the number of negative
real eigenvalues of (3.5) by kr, and the number of eigenvalues with Im z < 0 by kc.
The subscripts r and c refer to the original system which has a real pair ±λ or a
complex quad

{
±λ,±λ

}
for nonzero kr or kc respectively; see Figure 3.

Re λ 

Im λ 

Re z

Im z
z = −λ2

.

Figure 3. (color online only) Six sets of eigenvalues and their
images under the map. The circles (red) denote two quads of
complex eigenvalues under the four-fold symmetry {±λ,±λ} and
their images, kc = 2. The crosses (green) denote two pairs of
real eigenvalues {±λ} and their images on the negative real axis,
kr = 2. The boxes (blue) denote two pairs of purely imaginary
eigenvalues {±λ} and their images on the positive real axis. The
filled square has a positive Krein signature, while the empty square
has a negative Krein signature, so that k−i = 1. If the positive and
negative Krein eigenvalues were to collide under the tuning of a
parameter, they would generically form a Jordon block of zero
Krein signature and bifurcate into a quad of complex eigenvalues.

Of particular interest for bifurcation problems are the eigenvalues λ of (3.3)
which lie on the imaginary axis; these correspond to eigenvalues z ∈ R+ of (3.5).
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To each such imaginary eigenvalue we associated a positive and a negative Krein
index, defined through the corresponding z ∈ R+ as

k±i (z) = n(∓SEz
),

where Ez is the eigenspace associated to z. If the tuning of a parameter leads to
the collision of a negative and a positive Krein index eigenvalue, then the result-
ing bifurcation generically leads to unstable eigenvalues. For z ∈ R+, which are
geometrically and algebraically simple with eigenfunction u, we obtain

(3.6) k−i (z) =

{
0, 〈u,Su〉 > 0,

1, 〈u,Su〉 < 0.

If 〈u,Su〉 = 0, then the eigenspace has a nontrivial Jordan block structure [7,
Theorem 2.3]. The total negative Krein index of the system is defined by the sum
of the individual indices

k−i =
∑

z∈σ(S−1R)∩R+

k−i (z).

The imaginary eigenvalues of negative Krein index are the “swing producers” of
instability; removing an eigenvalue of negative Krein index generically produces
instability. Indeed, it has recently been shown through different proofs in [4, 11, 16]
that

(3.7) kr + 2kc + 2k−i = n(R) + n(S).

Thus, spectral stability of a critical point requires

2k−i = n(R) + n(S),

and any decrease in the negative Krein index which is not balanced by a decrease
in the negative indices of the operators R and S leads to instability. It follows
immediately from (3.7) that kr ≥ 1 if n(R)+n(S) is odd (see [10] for a similar result
for (3.1)). However, a significantly stronger result was first proven independently
by [12] and by [8]. Jones established this result from dynamical systems arguments,
while Grillakis used a detailed analysis of a contour integral involving the operator
K(z) := R − zS. The instability criterion (3.8) has seen substantial applications;
see [14, 18, 23, 24] and the references therein.

Theorem 3.2 (Jones/Grillakis Instability Theorem). The number of unstable
eigenvalues of positive real part for the problem (3.1) is bounded below by

(3.8) kr ≥ |n(R)− n(S)|,

where the operators R and S are as defined in (3.4).

We furnish a new proof of this classical result via an analysis of the Krein eigen-
values, the eigenvalues of the Krein matrix. These are real meromorphic functions
of the spectral parameter z with the properties that (a) a zero corresponds to an
eigenvalue for the system (3.5), and (b) for positive z the sign of the derivative
at a simple zero is the negative of the Krein signature of the eigenvalue; see [19]
for a development in the scalar setting and [13] for the matrix formulation. We
construct the Krein matrix by projecting off the negative space of the operator S.
More specifically, let N(S) represent the maximal negative subspace of S such that
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〈u,Su〉 < 0 for all u ∈ N(S), and set S := N(S) so that d := dim(S) = n(S). Let
P be the projection onto S⊥, and define the constrained operators

(3.9) R2 := PR, S2 := PS,
which map S⊥ into itself. Since S

∣∣
S⊥ has no kernel it follows that S2 > 0 on S⊥.

We also define the conjugated operator

R̃ := S−1/2
2 R2S−1/2

2 ,

acting on S⊥, where it satisfies n(R̃) = n(R2) and z(R̃) = z(R2). For {s1, . . . , sd}
a basis of S and denoting the negative eigenvalues of S by λ1, . . . , λd, we introduce
the d× d matrices R, S , and C (z) by

Rij := 〈si,Rsj〉, S := diag(λ1, . . . , λd),

C (z)ij := 〈S−1/2
2 (R̃ − z id)−1S−1/2

2 PRsi, PRsj〉.
(3.10)

The meromorphic d× d Krein matrix is now defined by

(3.11) K (z) := R − zS −C (z).

The matrix K (z) is symmetric; in particular, it is Hermitian for z ∈ R. For z ∈ R

the Krein eigenvalues, {ri(z)}di=1, are the real meromorphic eigenvalues of K (z),
with potential singularities arising through C at the eigenvalues of the self-adjoint

matrix R̃.

Lemma 3.3. Define the matrix D by

D ij := 〈si,R−1sj〉.
Then p(K (0)) = p(D).

Proof. We examine the matrix C at z = 0,

C (0)ij = 〈S−1/2
2 R̃−1S−1/2

2 PRsi, PRsj〉 = 〈R−1
2 PRsi, PRsj〉.

First suppose that D is nonsingular. Using the definition R2 = PRP , we may
rewrite the left entry in the inner product above as

(3.12) R−1
2 PRsi = si +

d∑
k=1

aikR−1sk.

In order to enforce the condition R−1
2 PRsi ∈ S⊥, the vector a i = (ai1, . . . , a

i
d)

T

must be chosen so that for m = 1, . . . , d,

0 = 〈R−1
2 PRsi, sm〉 = 〈si, sm〉+

d∑
k=1

aik〈R−1sk, sm〉,

or equivalently

0 = e i +Da i,

where e i ∈ Rd is the ith unit vector. In other words,

a i = −D−1e i =⇒ aik = −(D−1)ik,

so that (3.12) can be rewritten as

(3.13) R−1
2 PRsi = si −

d∑
k=1

(D−1)ikR−1sk.
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Substituting the expression of (3.13) into that for C (0)ij and using the fact that
〈s, Pu〉 = 0 for any s ∈ S yield

C (0)ij = 〈R−1
2 PRsi, PRsj〉

= −
d∑

k=1

(D−1)ik〈R−1sk, PRsj〉

= −
d∑

k=1

(D−1)ik〈R−1sk,Rsj〉+
d∑

�=1

d∑
k=1

(D−1)ik〈R−1sk, s�〉〈Rsj, s�〉,

i.e.,

C (0)ij = −
d∑

k=1

(D−1)ik〈sk, sj〉+
d∑

�=1

d∑
k=1

(D−1)ikDk�Rj� = −(D−1)ij +Rij .

For D nonsingular, the result now follows from the definition of the Krein matrix,

K (0) = R −C (0) = D−1.

Now suppose that z(D) ≥ 1. We would like to characterize the pole of C at
z = 0. From (2.5) and the Index Theorem we have z(R2) = z(D), and moreover
the kernel can be characterized as

ker(R2) = {R−1s : s ∈ S and R−1s ∈ S⊥}.
Now, (3.12) requires that PRsi ∈ ker(R2)

⊥, i.e.,

0 = 〈PRsi,R−1s〉 = 〈Rsi,R−1s〉 −
d∑

k=1

〈Rsi, sk〉〈sk,R−1s〉.

If R−1s ∈ ker(R2), then the above simplifies to

0 = 〈si, s〉.
Since s ∈ S1 (see (2.2)), this yields a contradiction unless si ∈ Sc

1. Consequently,
we can conclude that

rank
(
lim
z→0

zK (z)
)
= rank

(
lim
z→0

zC (z)
)
= z(D).

Considering only s ∈ Sc
1 corresponds to projecting off of the kernel of D , as in the

decomposition (2.4) and reduces us to the invertible case. Since p
(
D
∣∣
Sc
1

)
= p(D)

we recover the result p(K (0)) = p(D). �

From (3.11) we readily see that

lim
z→−∞

1

z
K (z) = −S ,

so that we may enumerate the Krein eigenvalues to satisfy

(3.14) lim
z→−∞

ri(z)

z
= −λi > 0.

In particular, each of the Krein eigenvalues is negative for z < 0 sufficiently large.
Moreover, each zero-crossing of a Krein eigenvalue which occurs for z < 0 generates
a negative eigenvalue of (3.5), while from the definition of the Krein matrix it is

clear that its poles are a subset of the eigenvalues of R̃. In [13, Section 2.3] it was
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shown that each pole of the Krein matrix is simple with a positive definite residue
given by

(3.15) Resz0 = lim
z→z0

(z − z0)K(z) ≥ 0.

In particular, since the poles of the Krein matrix are simple, the poles of each
Krein eigenvalue are distinct and a higher rank residue of the Krein matrix occurs
only when poles of distinct Krein eigenvalues coincide. Moreover, it was shown
that the rank of the residue is precisely the geometric multiplicity of the eigenvalue

of R̃ minus the number of eigenvalues whose eigenfunctions lie in S⊥. Any such

eigenvalue of R̃ is also an eigenvalue of (3.5) and hence contributes to the count of
kr. As we aim for a lower bound on kr, without loss of generality we may assume
that all residues of K have maximal rank.

From Lemma 3.3, precisely

(3.16) p(K (0)) = p(D) = n(S)− n(D)− z(D)

of the Krein eigenvalues are positive for z = 0. Denoting the poles of the Krein
eigenvalues ri(z) by

{
μ0
i < μ1

i < μ2
i < · · ·

}
, then from (3.15) for each � ∈ N0 we

have the limits

(3.17) lim
z→(μ�

i)
±
ri(z) = ±∞

(see Figure 4). In particular, the ith Krein eigenvalue tends to −∞ as it approaches

μ0
1 μ0

2 μ1
2μ1

1

z0

Figure 4. (color online only) A sketch of the graph of the Krein
eigenvalues for z ∈ R when d = 2. The solid (blue) curve corre-
sponds to the graph of r1(z), and the dashed (red) curve is the
graph of r2(z). The zero crossings are indicated by solid balls, the
location of the Krein eigenvalue at z = 0 by open balls. This car-
toon illustrates the situation when the poles of the Krein matrix are
simple and have nonzero residue, and the poles of the Krein eigen-
values are interlaced, i.e., μ1

0 < μ0
2 < μ1

1 < μ1
2. The three negative

poles of the Krein eigenvalues and one positive Krein eigenvalue at
z = 0 require at least two zero-crossings for z < 0; see (3.20).
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one of its poles, μ�
i , from the left, and takes a positive value to the right of the pole,

so that successive poles of the same Krein eigenvalue generate at least one zero-
crossing. By the Index Theorem and the definition (3.9) of R2 we see that the
number of poles is precisely

(3.18) n(R2) = n
(
RN(S)⊥

)
= n(R)− n(D)− z(D).

If there are no zero-crossings of the Krein eigenvalues on the set z < 0, then it
must be that the number of poles is precisely equal to the number of positive
Krein eigenvalues at z = 0. Each integer increment in the discrepancy between the
number of positive eigenvalues at z = 0 and the number of poles must correspond
to at least one additional zero-crossing. In light of the equalities (3.16) and (3.18)
we may rephrase this argument in terms of the lower bound

(3.19) kr ≥ [p(D)− n(R2)] = n(S)− n(R).

On the other hand, if the number of poles exceeds p(D), then either the excess
pole is a second pole of one of the Krein eigenvalues, see the solid line of Figure 4,
or one of the positive Krein eigenvalues must have crossed zero to become negative
at z = 0; see the dashed line of Figure 4. In either case, the excess poles generate
at least one zero-crossing a piece, so that

(3.20) kr ≥ [n(R2)− p(D)] = n(R)− n(S).
Taken together, the two bounds (3.19) and (3.20) yield the Jones/Grillakis insta-
bility condition (3.8).

Remark 3.4. The asymptotic property of (3.17) guarantees that ri(z) will have

an odd number of zeros in the interval (μ�
i , μ

�+1
i ). The lower bound of (3.19)

is achieved by assuming that the odd number is actually one. Furthermore, the
property of (3.14) ensures that ri(z) will have an even number of zeros in the
interval (−∞, μ0

i ). Again, the lower bound is achieved by assuming that the even
number is zero. See [20] for an example in which both stability and instability are
obtained for n(R) = n(S).
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