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Abstract: Primarily motivated by the stability analysis of nonlinear waves in second-
order in time Hamiltonian systems, in this paper we develop an instability index theory for
quadratic operator pencils acting on a Hilbert space. In an extension of the known theory
for linear pencils, explicit connections are made between the number of eigenvalues of a
given quadratic operator pencil with positive real parts to spectral information about the
individual operators comprising the coefficients of the spectral parameter in the pencil.
As an application, we apply the general theory developed here to yield spectral and
nonlinear stability/instability results for abstract second-order in time wave equations.
More specifically, we consider the problem of the existence and stability of spatially
periodic waves for the “good” Boussinesq equation. In the analysis our instability index
theory provides an explicit, and somewhat surprising, connection between the stability
of a given periodic traveling wave solution of the “good” Boussinesq equation and the
stability of the same periodic profile, but with different wavespeed, in the nonlinear
dynamics of a related generalized Korteweg–de Vries equation.
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1. Introduction

When analyzing equations arising in mathematical physics and engineering, the question
of stability of special families of solutions is of prominent importance as it generally
determines those solutions which are most likely to be observed in physical applications.
In particular, solutions which are unstable do not naturally, i.e., in absence of a controller,
arise in applications except possibly as transient phenomena. Furthermore, stability
analysis is often the first step in the study of finer phenomena such as transient behavior,
bifurcation, and the ability to control a wave to restrict it to a stable configuration. In this
paper, we are primarily motivated by recent studies into the stability of traveling wave
solutions of second-order in time Hamiltonian equations of the form

∂2
t u + Lx u + N (u) = 0, (t, x) ∈ R

2, (1.1)

where Lx is a self-adjoint linear operator acting on the x-variable only, and N (u) denotes
nonlinear terms (e.g., see [2,3,16,35]). A fundamental characteristic of such PDE is that
they take into account weak effects of both nonlinearity and dispersion, and they arise
naturally, for instance, as models for propagation of waves in nonlinear strings and in the
study of bi-directional water wave propagation in the small amplitude, long wavelength
regime.

In regards to the latter water wave application, an equation of particular interest in
this paper (see Sect. 4.2 below) is the generalized “good” Boussinesq (gB) equation

∂2
t u − ∂2

x

(
∂2

x u − u + f (u)
)

= 0, (1.2)

which is a variant of one of one of the equations formulated by Boussinesq in the 1870s
in precisely this physical context. While the nonlinear stability and instability of solitary
waves in (1.2) is by now well understood (see [4,29]), the stability (whether linear
or nonlinear) of the periodic traveling waves has received considerably less attention,
and results only exist for very special classes of solutions; namely, those expressible in
terms of Jacobi-elliptic functions. One of the main applications of the theory developed
in this paper is an explicit connection between periodic traveling waves of (1.2) and
the stability of the same traveling wave profile (but with a different wavespeed) in the
nonlinear dynamics governed by the generalized Korteweg–de Vries (gKdV) equation

∂t u + ∂x

(
∂2

x u + f (u)
)

= 0. (1.3)

We consider this observation as a major contribution to the theory of traveling periodic
waves in (1.2). Indeed, since the stability of periodic traveling waves in gKdV equations
has been under intense investigation over the last few years (see, for instance, [1,3,5,6,
8,9,19]), this connection between the dynamics of gB and gKdV near periodic traveling
waves allows one to immediately translate known results for the stability of gKdV
periodic waves to results about periodic waves in gB. Applications of this connection
will be illustrated in Sects. 4.2.1 and 4.2.2 below.

Suppose that u(x − ct) is a traveling wave solution to (1.1). When considering small
perturbations to this wave of the form eλtv(x − ct), λ ∈ C, we are naturally led to
quadratic spectral problems of the form

λ2v − 2cλ∂xv +
(

c2∂2
x + Lx + N ′(u)

)
v = 0.
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More generally, when considering the spectral stability of the given nonlinear dispersive
wave u, it becomes important to understand the spectrum of quadratic operator pencils
of the form

P2(λ) := A + λB + λ2C, (1.4)

where the operators A and C are self-adjoint on some Hilbert space X , endowed with an
inner-product 〈·, ·〉, and B is skew-symmetric on X. The class of perturbations considered
in our applications naturally leads us to assume that the domain of each of the operators
A,B, C is dense in X and that they each enjoy a particular compactness property which
guarantees that the spectrum of P2(λ), i.e., the collection of values λ for which P2(λ)

fails to be boundedly invertible, is composed of point spectrum only, that each eigenvalue
has finite algebraic multiplicity, and the only accumulation point of the eigenvalues is
infinity (see Lemma 2.1 below for a precise statement). In this paper σ(P2) will denote
the collection of all eigenvalues for the pencil.

Due to its clear connection and importance in analyzing the spectral stability of
traveling wave solutions of equations of the form (1.1), our main theoretical results
concern extending many previously known results regarding the number of eigenvalues
of P2 with positive real part. For the reader’s convenience, we now briefly recall the
relevant known results. The spectrum was studied in [33] under the assumption that A has
compact resolvent, and B, C are bounded and positive semi-definite. The operators B, C
are not assumed to have any symmetry properties, however. While it is not shown in that
paper, by Lemma 2.1 it is then known that the pencil only possesses point eigenvalues,
each of which has finite algebraic multiplicity. It is shown in that paper that if A is
positive semi-definite, then all of the spectrum is located in the closed left-half of the
complex plane. If A is not definite, it is shown that if C = I and B is positive definite,
then the total number of eigenvalues in the closed right-half of the complex-plane is
equal to the number of negative eigenvalues of A. As is seen in, e.g., Sect. 3, it is
not necessary that C = I in order for that result to hold; indeed, all that is needed is
that C be positive-definite. In [30] similar results are shown regarding the number of
eigenvalues with positive real part under the assumption that C = I and B is positive
semi-definite. The spectrum of operators of the form P2 was studied in [15] under the
assumptions that both A, C are positive definite and self-adjoint, while B is a negative
definite self-adjoint operator (also see [27] for a generalization). Under assumptions
different than those given in Lemma 2.1 (in particular, both A and C are assumed to
be compact) it is shown therein that in σ(P2) there is an infinite number of positive
eigenvalues which have zero as a limit point. Finally, the matrix-valued version of the
pencil was studied in [7,27] under the assumption that C = I and A, B self-adjoint.
Therein a parity index is given relating the number of eigenvalues with positive real part
to the number of negative eigenvalues of A. This result strongly depends upon the fact
that the operators are matrix-valued, and consequently the Hilbert space under question
is finite-dimensional.

One of the main goals of this paper is thus to extend the previous theory regarding the
number of eigenvalues (counting multiplicity) with positive real part; see Sect. 3 below.
Throughout this analysis, two underlying assumptions will be:

(a) n(A), n(C) < +∞, where n(S) refers to the number of negative eigenvalues (count-
ing multiplicity) of the self-adjoint operator S

(b) C is invertible, i.e., z(C) = 0, where z(S) = dim[ker(S)] for the self-adjoint
operator S.
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Under these assumptions we have the intuition that the sum n(A)+ n(C) acts as an upper
bound on the total number of eigenvalues of P2 with positive real part. Indeed, if the
linear term in the pencil is dropped, then the quadratic pencil becomes

P2(λ) = A + λ2C.

The spectral theory of this quadratic pencil was studied by Grillakis [12]. By considering
the Krein signature of the purely imaginary eigenvalues, and using the Euler characteris-
tic of the projective sphere, he was able to show that the intuitive upper bound is actually
the true upper bound. Another proof follows by linearizing the pencil. When the linear
term is dropped the quadratic pencil is equivalent to the linear pencil

[(
A 0
0 C−1

)
− λ

(
0 I

−I 0

)](
u
v

)
=

(
0
0

)
.

Note that the first term in the linear pencil is self-adjoint, whereas the second term is skew-
symmetric. Linear pencils of this form have been well-studied (e.g., see [18,25,26,32]
and the references therein), and for this problem it has firmly been established that the
intuition is indeed correct. The technical difficulty to establish the result for the full
pencil is then the inclusion of the linear term, and it is overcome in the establishment of
Lemma 3.1 below. In particular, in the case where P2(λ) arises in the stability analysis
of a given periodic traveling wave (as described previously), a sufficient condition for
spectral stability is that n(A) + n(C) = 0.

In order to achieve an equality relating the number of eigenvalues of P2 with positive
real part to spectral properties of the operators A, B, and C themselves, two additional
factors must be taken into account:

(a) the effect of A having a nontrivial kernel
(b) purely imaginary eigenvalues having a negative Krein index (see Sect. 3).

The first factor arises because in applications the presence of symmetries yields the
existence of a nontrivial kernel, while the consideration of the second factor is necessary
in order to remove the intuitive inequality and make it an equality.

The paper is organized as follows. In Sect. 2 it is shown that under general assump-
tions, which are natural for the applications we have in mind, there is no essential
spectrum for the quadratic operator pencil P2; in other words, there will be only point
eigenvalues, and each eigenvalue will have finite algebraic multiplicity. The proof of
this result easily generalizes to polynomial operators of arbitrary order; see Remark 2.2
below. In Sect. 3 the main theoretical result of the paper relating the number of eigen-
values of P2 with positive real part to the spectral properties of A, B, and C, are stated
and proved. Finally, in Sect. 4 we apply the theoretical results developed in Sects. 2
and 3 to the study of the spectral and orbital stability of nonlinear waves to second-
order in time Hamiltonian systems. The first application develops a general theoretical
result concerning the stability of steady states in abstract nonlinear wave equations; see
Sect. 4.1. The second application examines the spectral and nonlinear (orbital) stability
of periodic traveling waves in the “good” Boussinesq equation (1.2); see Sect. 4.2. As
described above, of particular interest in our study of the Boussinesq equation is that
we establish in Lemma 4.2 and Theorem 4.8 a rigorous connection between a given
stationary periodic wave u of the equation

∂2
t u − 2c∂2

t x u + ∂2
x

(
∂2

x u − (1 − c2)u + f (u)
)

= 0, |c| < 1,
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corresponding to the traveling wave u(x − ct) in the gB, and the stability of the same
stationary wave profile in the gKdV,

∂t u + ∂x

(
∂2

x −
√

1 − c2 u + f (u)
)

= 0.

To illustrate the power of this connection, in Sect. 4.2.1 we translate recent results
by Bronski et al. [6] concerning the stability of periodic KdV waves with power-law
nonlinearity to results for the corresponding Boussinesq equation, allowing one to see the
complete stability picture of periodic waves in gB in the cases considered. In Sect. 4.2.2,
using known asymptotic analyses worked out in the context of stability theory for gKdV
waves (see [5]), we analyze the stability of periodic waves with power-law nonlinearity
which are near (in an appropriate sense) either the solitary wave or equilibrium solutions
of gB. The analysis near the solitary wave makes a beautiful connection with the known
nonlinear stability/instability results for the nearby solitary waves. Similarly, the analysis
near the equilibrium solution provides new insights into the transitions to instability in
the periodic context; in particular, we find that for a given power-law nonlinearity stable
periodic traveling wave solutions always exist, even when no stable solitary wave exists.

2. Preliminary Result: Spectra is Point Only

Notation: In this paper, and particularly in this and the subsequent section, the notion
of matrix representation of a self-adjoint operator S constrained to a subspace E , i.e.,
S|E , will often be used. Let {e1, . . . , en} be a basis for E , and let PE : X �→ E be the
orthogonal projection. If the basis is orthonormal, then one can write

PE =
n∑

j=1

〈·, e j 〉e j .

Setting S|E = PES PE : E �→ E , the quadratic form

〈u, S|E u〉 = 〈PE u, PES PE u〉 = c · Sc,

where PE u = ∑
c j e j , c = (c1, . . . , cn)T, and the symmetric matrix S ∈ R

n×n is given
by Si j = 〈ei ,Se j 〉. The matrix S is precisely the matrix representation for the self-
adjoint operator S|E . In the rest of this paper the symbol S|E will be used to represent
the matrix representation S of S constrained to operate on the subspace E .

The goal of this section is to demonstrate that for the quadratic pencil of (1.4), i.e.,

P2(λ) = A + λB + λ2C,

there is point spectra only, that each eigenvalue has finite multiplicity, and infinity is
the only possible limit point of the eigenvalues. The result requires the use of [31,
Theorem 12.9], in which it is shown that the spectrum has the desired properties for the
polynomial operator

Pn(λ) = I +
n∑

j=1

λnA j
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if each operator A j , j = 1, . . . , n, is compact. With this result in mind, first assume
that A is invertible, and rewrite the eigenvalue problem as

A(I + λA−1B + λ2A−1C)u = 0.

Of course, since A is nonsingular this problem is equivalent to

(I + λA−1B + λ2A−1C)u = 0.

If the operators A−1B and A−1C are both compact, then the result immediately follows
from [31, Theorem 12.9].

On the other hand, now suppose that ker(A) is nontrivial, but that A has compact
resolvent. The proof of the desired result will now be accomplished via the construction
and evaluation of a generalized Krein matrix, which was recently introduced in a general
form in [22]. Let PA : X �→ ker(A) be the orthogonal projection. Writing u = a + a⊥,
where a ∈ ker(A) and a⊥ ∈ ker(A)⊥, the eigenvalue problem becomes

P2(λ)a + P2(λ)a⊥ = 0. (2.1)

Defining the complementary projection P⊥
A := I− PA, applying this projection to (2.1),

and solving for a⊥ = P⊥
Aa⊥ yields

a⊥ = −(P⊥
AP2(λ)P⊥

A )−1 P⊥
AP2(λ)a. (2.2)

In the formulation of (2.2) it is implicitly being assumed that P2(λ)a⊥ 
= 0. If
P2(λ)a⊥ = 0, then λ is an eigenvalue whose eigenfunction is in ker(A)⊥: this fol-
lows immediately from (2.1) upon setting a = 0. Since P2(λ)a = 0, the potential pole
singularity for such a λ is removable. If the inner-product with a is now taken in (2.1),
then it is seen that

〈a,P2(λ)a〉 + 〈a⊥,P2(λ)aa〉 = 0, (2.3)

where

P2(λ)a = A − λB + λ
2C

is the adjoint operator for the original pencil. Note that the fact that A, C are self-adjoint
and B is skew-symmetric was used in this formulation of the adjoint pencil. Substituting
the expression for s⊥ given in (2.2) into (2.3) yields the linear system

K2(λ)x = 0, K2(λ) := P2(λ)|ker(A) − (P⊥
AP2(λ)P⊥

A )−1|P⊥
AP2(λ)[ker(A)]. (2.4)

Here

x ∈ C
z(A), K2(λ) ∈ C

z(A)×z(A),

and

P2(λ)[ker(A)] := {P2(λ)a : a ∈ ker(A)}.
The matrix K2(λ) is known as the Krein matrix.

Eigenvalues for the pencil are found either via x = 0, which means that if λ is an
eigenvalue, then the associated eigenfunction satisfies u ∈ ker(A)⊥, or det[K2(λ)] = 0.
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The quest for eigenvalues is now a search for the zeros of the determinant of the Krein
matrix. The poles of the Krein matrix are the eigenvalues of the operator

P⊥
AP2(λ)P⊥

A = P⊥
AAP⊥

A + λP⊥
ABP⊥

A + λ2 P⊥
AC P⊥

A : ker(A)⊥ �→ ker(A)⊥.

Since P⊥
AAP⊥

A : ker(A)⊥ �→ ker(A)⊥ is invertible, from the earlier argument in this
section we know that the operator P⊥

AP2(λ)P⊥
A has point spectra only, each eigenvalue

has finite multiplicity, and infinity is the only possible limit point of the eigenvalues.
Thus, one can say that det[K2(λ)] : C �→ C is meromorphic, each singularity is a pole
of finite order, and the only possible accumulation point of the poles is infinity. Since
det[K2(λ)] is meromorphic, it is then known that each of its zeros is of finite order,
and that the only possible accumulation point of the zeros is infinity. Finally, it was
demonstrated in [22] that for linear pencils the order of the zero of det[K2(λ)] is equal
to the algebraic multiplicity of the eigenvalue. The proof of that result easily carries over
to quadratic pencils, and will be left for the interested reader.

Lemma 2.1. Let PA : X �→ ker(A) be the orthogonal projection, and let P⊥
A = I− PA

be the complementary projection. Suppose that the operators

(P⊥
AAP⊥

A )−1 P⊥
ABP⊥

A , (P⊥
AAP⊥

A )−1 P⊥
AC P⊥

A : ker(A)⊥ �→ ker(A)⊥

are both compact. Then the spectrum of the quadratic pencil A + λB + λ2C is point
spectra only. Furthermore, each eigenvalue has finite multiplicity, and infinity is the
only possible limit point of the eigenvalues.

Remark 2.2. Note that the proof of Lemma 2.1 did not require that any of the operators
have a symmetry property. Thus, this lemma can be thought of as a general result about
quadratic pencils. Indeed, although it will not be proven here, the above argument can
be extended to show that for nth-order polynomial pencils of the form

Pn(λ) =
n∑

j=0

λ jA j ,

if each of the operators (P⊥
A0

A0 P⊥
A0

)−1 P⊥
A0

A j P⊥
A0

is compact for j = 1, . . . , n, then
the spectrum for this pencil will have exactly the same properties as that for the quadratic
pencil.

3. Main Result: The Instability Index Theorem

The goal here is to derive an instability index theorem for the quadratic pencil. In
applications it may be the case that C−1 is bounded and not compact, and/or B is not
bounded. In order to overcome these technical difficulties (which are associated with the
proof only), take a positive definite self-adjoint operator S which has a compact inverse,
and consider the quadratic pencil

P̂2(λ) := Â + λB̂ + λ2Ĉ.

The operators in this new pencil are related to those of the original pencil by

Â := S−1AS−1, B̂ := S−1BS−1, Ĉ := S−1CS−1,
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so that

P2(λ) = SP̂2(λ)S.

The working assumption is that B, C are S-compact, while A has S-compact resolvent,
where an operator T is said to be S-compact if the operator S−1T S−1 is compact, and
is said to have S-compact resolvent if the inverse ST −1S (defined to act on the range
space) is compact.

Define the space XS by

XS := {u ∈ X : 〈Su,Su〉 < ∞}.

It will be assumed that XS ⊂ X is dense. Since S−1 is compact, and therefore bounded,
it is clear that σ(P̂2) ⊂ σ(P2) on X . It is also clear that σ(P2) when considered on the
space XS is a subset of σ(P̂2) when considered on the space X . In other words, it is true
that

σ(P2) on XS ⊂ σ(P̂2) on X ⊂ σ(P2) on X.

Since XS ⊂ X is dense, by [34, Proposition 3.2] it will be the case that

σ(P2) on XS = σ(P̂2) on X.

Finally, since S−1 is bounded, it is true that n(A) = n(Â) and n(C) = n(Ĉ). In conclu-
sion, from this point forward the “hat”’s associated with the operators can be dropped,
and it will be assumed that the operators satisfy A−1, C, B are compact.

The instability index theorem for the quadratic pencil will be proven by constructing
an equivalent linear pencil, and then deriving an index theorem for that linear pencil.
Upon setting w = (u, λCu)T, the quadratic pencil (1.4) is linearized to become

(L − λJ −1)w = 0, (3.1)

where

L =
(

A 0
0 C−1

)
, J =

(
0 I

−I −B

)
.

Here is where the assumption that C be invertible comes into play. Since B is skew-
symmetric, (3.1), and consequently the pencil (1.4), is formally equivalent to the Hamil-
tonian eigenvalue problem

J Lw = λw, (3.2)

where J is skew-symmetric and L is self-adjoint. Note that in this formulation

(a) L has compact resolvent
(b) J has bounded inverse
(c) the spectrum satisfies the symmetry {λ,−λ} ⊂ σ(J L), and if all of the operators

have zero imaginary part, the symmetry becomes {±λ,±λ} ⊂ σ(J L).
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Since C is invertible, it is clear that for nonzero λ the two eigenvalue problems have
identical eigenvalues; furthermore, the geometric multiplicities match. As it will be seen,
it is also the case that the algebraic multiplicities of these eigenvalues also coincide. We
will show that this is true at the origin: the proof will clearly generalize to the case of
a nonzero eigenvalue. We must consider the structure of gker(J L) and the manner in
which it relates to gker(P2(0)).

First consider gker(P2(0)). It is clear that ker(P2(0)) = ker(A). Following Markus
[31], generalized eigenfunctions are found by solving

P2(0)a1 + P ′
2(0)a0 = 0, a0 ∈ ker(A).

This is equivalent to solving

Aa1 = −Ba0, (3.3)

which by the Fredholm alternative has a nontrivial solution if and only if Ba0 ∈ ker(A)⊥.
Since B is skew-symmetric, it is not unreasonable to assume that B|ker(A) = 0. In
this case there is a solution to (3.3) for any a0 ∈ ker(A), and a full set of associated
eigenfunctions is given by A−1B ker(A), where the obvious notation

A−1B ker(A) := {A−1Ba : a ∈ ker(A)}
is being used. The next set of eigenfunctions is found by solving

P2(0)a2 + P ′
2(0)a1 +

1

2
P ′′

2 (0)a0 = 0, a0 ∈ ker(A), a1 =−A−1Ba0 ∈ A−1B ker(A).

This equation is equivalent to

Aa2 = −Ba1 − Ca0 = −(C − BA−1B)a0. (3.4)

Again using the Fredholm alternative, it is seen that there is a nontrivial solution to (3.4)
if and only if (BA−1B − C)a0 ∈ ker(A)⊥. Upon using the fact that for any a ∈ ker(A),

〈B(A−1Ba0), a〉 = −〈A−1Ba0,Ba〉,
it is seen that if

D := (C − BA−1B)|ker(A)

is nonsingular, then (C −BA−1B)a0 /∈ ker(A)⊥ for any a0 ∈ ker(A). It will henceforth
be assumed that D is nonsingular.

Now consider gker(J L). It is clear that ker(L) = (ker(A), 0)T. Since

J −1 ker(L) =
{(−Ba0

a0

)
: a0 ∈ ker(A)

}
, (3.5)

upon writing w = (u, v)T the generalized eigenfunctions are found by solving

Au = −Ba0, C−1v = a0.
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The first equation is precisely (3.3), which was seen to have a solution for any a0 ∈
ker(A). Consequently, there is a generalized eigenspace at λ = 0 which is given by
{(−A−1Ba0, Ca0)

T : a0 ∈ ker(A)}. Since

J −1
(−A−1Ba0

Ca0

)
= −

(
(C − BA−1B)a0

A−1Ba0

)
,

the next set of generalized eigenfunctions is found by solving

Au = −(C − BA−1B)a0, C−1v = −A−1Ba0.

The first equation is precisely (3.4), which was seen to have no solution under the
assumption that D is nonsingular.

It is now seen that regarding the algebraic multiplicity of the eigenvalue the Hamil-
tonian linearization (3.2) is equivalent to the pencil at λ = 0. Following the same
argument for nonzero λ it is not difficult to check that this equivalence continues to
hold; namely, the location of the eigenvalues, and their multiplicities, are the same for
the two systems.

We are now ready to derive the instability index for the linear Hamiltonian system
(3.2). We must first construct the appropriate closed subspace on which both J , L
are nonsingular. Recalling that P⊥

A : X �→ ker(A)⊥ is the orthogonal projection, let
�⊥

L : X × X �→ ker(A)⊥ × X = ker(L)⊥ be given by

�⊥
L :=

(
P⊥

A 0
0 I

)
;

in other words, for w = (u, v) ∈ X × X it is true that �⊥
Lw = (P⊥

Au, v). Define another
orthogonal projection by

�⊥
J −1 ker(L)

: X × X �→ [J −1 ker(L)]⊥. (3.6)

Because ker(L) ⊥ J −1 ker(L), the projections �⊥
L, �⊥

J −1 ker(L)
commute. Upon set-

ting � := �⊥
L�⊥

J −1 ker(L)
(note that � being the composition of self-adjoint commuting

operators implies that it too is self-adjoint), nonzero eigenvalues for the linearization
(3.2) are found by solving

�J � · �L� · �w = λ�w, �w ∈ [ker(L) ⊕ J −1 ker(L)]⊥ (3.7)

(e.g., see [8, Section 2]). This is the eigenvalue problem to be studied in the rest of this
section.

The goal is to now count the total number of eigenvalues in the open right-half of the
complex plane (counting multiplicity), along with a those eigenvalues on the imaginary
axis which have negative Krein index. For each λ ∈ iR let Eλ denote the generalized
eigenspace. The negative Krein index of the eigenvalue for the linearized system (3.2)
is given by

k−
i (λ) := n(L|Eλ),

and if k−
i (λ) = 0, then the eigenvalue is (often) said to have positive Krein signature. Let

us now relate this definition to a definition using the quadratic pencil. By the definition
of w leading to the linearization (3.1) one has that

L|Eλ = (A + |λ|2C)|�1 Eλ = (A − λ2C)|�1 Eλ ,
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where �1 : X × X �→ X is the projection onto the first component, i.e., �1(u, v)T = u,
and the second equality follows from the fact that λ ∈ iR. Now, λ being an eigenvalue
with associated eigenfunction u means that

P2(λ)u = 0 ⇒ Au = −λBu − λ2Cu,

which in turn implies

(A − λ2C)|�1 Eλ = −λP ′
2(λ)|�1 Eλ .

In conclusion, the negative Krein index for the quadratic pencil is defined to be

k−
i (λ) := n(−λP ′

2(λ)|Eλ), (3.8)

where now Eλ = gker(P2(λ)), i.e., the generalized eigenspace of the quadratic pencil
P2(λ) associated with the eigenvalue λ ∈ iR.

We are now ready to derive the index formula. For the eigenvalue problem (3.7) let kr
represent the number of positive real-valued eigenvalues (counting multiplicity), and let
kc be the number of complex-valued eigenvalues (counting multiplicity) with positive
real part. Furthermore, let the total negative Krein index be given by

k−
i :=

∑
σ(P2(λ))∩iR

k−
i (λ).

Regarding the eigenvalue problem (3.7) it is known that (�L�)−1 is compact, and that
the operator �J � is bounded with bounded inverse. Indeed, since one can write

�J � = �

(
0 I

−I 0

)
� + �

(
0 0
0 −B

)
�,

one actually has that both �J � and (�J �)−1 can be written as the sum of a bounded
operator and a compact operator. Thus, upon using the fact that compact operators
are uniformly approximated by matrices, when computing an index which takes into
the account the (finite) number of negative directions of an operator it is sufficient to
consider the case of matrices only. For the eigenvalue problem (3.7) when the operators
are matrices it is known from [18,23] that

kr + kc + k−
i = n(�L�). (3.9)

Since all of the quantities are integer-valued, by taking the limit one deduces that the
result holds for the full operators.

Before stating the final result, the quantity n(�L�) must be computed in terms of
the original operator L. It is known (e.g., see [24, Index Theorem]) that

n(�L�) = n(L) − n(L−1|J −1 ker(L)). (3.10)

It is clearly the case that

n(L) = n(A) + n(C).

Furthermore, it is straightforward to verify that

L−1|J −1 ker(L) = (C − BA−1B)|ker(A).

The instability index (3.9) can then be rewritten as

n(�L�) = n(A) + n(C) − n((C − BA−1B)|ker(A)). (3.11)

Combining (3.9) with (3.11) yields the following theorem:
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Theorem 3.1. Suppose that the operators satisfy the assumption of Lemma 2.1. Further
suppose that there is a self-adjoint and positive operator S such that

(a) XS := {u ∈ X : 〈Su,Su〉 < ∞} ⊂ X is dense
(b) the operators B, C are S-compact, and the operator A has an S-compact resolvent.

Finally, assume that the operator C is invertible. If

(i) B|ker(A) = 0z(A), and
(ii) (C − BA−1B)|ker(A) is invertible,

then the total number of eigenvalues in the closed right-half of the complex plane satisfies
the instability index

kr + kc + k−
i = n(A) + n(C) − n((C − BA−1B)|ker(A)).

Remark 3.2. If A is nonsingular, then Theorem 3.1 is precisely the result of [34, Corol-
lary 3.9]. On the other hand, in the event that A has a nontrivial kernel then it is an
improvement over [34, Theorem 4.2], where it was shown that

kr + kc + k−
i ≤ n(A) + n(C).

The proof presented here is quite different than that given in [34]; in particular, in that
paper the analysis takes place on Pontryagin spaces, and the linearization that is studied
there is not the Hamiltonian linearization of (3.2).

Remark 3.3. If the imaginary part of all of the operators is zero, then due to the Hamil-
tonian eigenvalue symmetry {±λ,±λ} ⊂ σ(P2) it is necessarily the case that kc and k−

i
are even-value. Thus, under this assumption n(�L�) being odd automatically implies
that kr ≥ 1. On the other hand, if one or more of the operators has a nontrivial imaginary
part, then the Hamiltonian eigenvalue symmetry reduces to {λ,−λ} ⊂ σ(P2), and no
such conclusion can be drawn.

Remark 3.4. One consequence of the index is that all but a finite number of eigenvalues
are purely imaginary; furthermore, the purely imaginary eigenvalues have positive Krein
signature if the modulus is sufficiently large.

Remark 3.5. The proof of the index formula (3.9) in [18] first required the SCS Basis
Lemma, in which it was shown that the generalized eigenvectors associated with the
linearization (3.1) formed a basis. Technical assumptions on the operators were needed
in order for the SCS Basis Lemma to hold true. Unfortunately, at least in the application
discussed later in this paper these technical assumptions do not hold; hence, the alternate
proof via the limiting argument.

4. Applications to Second-Order in Time Hamiltonian Systems

As discussed in the introduction, quadratic operator pencils arise naturally when one
studies the stability of solutions to second-order in time Hamiltonian systems. In this
section, we present two applications of the general theory developed in the previous
sections in precisely this context. We begin by considering the stability of periodic
waves in an (abstract) nonlinear wave equation posed in a Hilbert space, and conclude
with a stability analysis for periodic waves in the so-called “good” Boussinesq equation.



Instability Index Theory for Quadratic Pencils 533

4.1. Example: stability in (abstract) nonlinear wave equations. One important example
of quadratic pencils arises in the study of second-order (in time) Hamiltonian systems
(for a specific case of the following discussion, see, e.g., [14, Section 7]). Consider a
wave equation of the form

∂2
t u + H′(u) = 0, H(k)(u) := δkH

δuk
(u), (4.1)

where u ∈ X , which is a Hilbert space with inner-product 〈·, ·〉. The Hamiltonian H :
X �→ R is assumed to be smooth.

It will be assumed that the Hamiltonian system has symmetries. Let G be a finite-
dimensional abelian Lie group with Lie algebra g. Denote by exp(ω) = eω for ω ∈ g
the exponential map from g into G, and assume that T : G �→ L(V ), where X ⊂
V ⊂ X∗ (the dual space of X ), is a unitary representation of G on V . It is then the
case that T ′(e) maps g into the space of closed skew-symmetric operators on V with
domain X . The notation Tω := T ′(e)ω for ω ∈ g will be used to denote the linear
skew-symmetric operator which is the generator of the semigroup T (eωt ). Using this
notation the symmetry assumption becomes that the Hamiltonian satisfies T (ω)H(u) =
H(T (ω)u) for all ω ∈ g.

Writing u = (u, v)T, where v = ∂t u ∈ X1 (in applications, it is often the case
that X ⊂ X1 is dense), the system (4.1) can be written on X × X1 as the first-order
Hamiltonian system

∂t u = J Ĥ′(u), (4.2)

where

J =
(

0 I
−I 0

)
, Ĥ(u) = H(u) +

1

2
〈v, v〉.

The system (4.2) is invariant under the action T̂ (ω), where

T̂ (ω)u =
(

T (ω) 0
0 T (ω)

)
u.

An n-parameter family of conserved quantities for the Hamiltonian system (4.2) is
induced from the self-adjoint operator J −1T̂ω, and is given by

Q(u) := 1

2
〈J −1T̂ωu, u〉 = − Re (〈Tωu, v〉) .

Upon defining the Lagrangian

�(u) := Ĥ(u) + Q(u),

waves to (4.2) will be realized as steady-state solutions for the system

∂t u = J �′(u), (4.3)

i.e., they are critical points for the Lagrangian. Since

�′(u) = Ĥ′(u) + J −1T̂ω(u) =
(

H′(u) + Tωv

v − Tωu

)
,
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critical points are solutions to

H′(u) + T 2
ω u = 0, T 2

ω u := Tω(Tωu). (4.4)

It should be noted here that (4.3) is equivalent to the second-order problem

∂2
t u + 2Tω∂t u + H′(u) + T 2

ω u = 0. (4.5)

Suppose that u = U is a solution to (4.4) (the ω-dependence of the solution is being
suppressed here), so that U = (U, TωU )T is a critical point of the Lagrangian. Indeed,
further suppose that there is a nonempty open set 	 ⊂ g such that the solution is smooth
in ω for all ω ∈ 	, and further assume that the isotropy subgroups {g ∈ G : T (g)U = U }
are discrete for all ω. Now consider the spectral and orbital stability of the wave. The
linearized problem associated with (4.3) is given by

∂t u = J Lu, (4.6)

where the self-adjoint operator L is

L := �′′(U) =
(

H′′(U ) Tω

−Tω I

)
.

The eigenvalue problem for (4.6) is given by

J Lu = λu.

This eigenvalue problem is the system

−H′′(U )u − Tωv = λv, −Tωu + v = λu,

which after substitution is equivalent to the quadratic pencil

(H′′(U ) + T 2
ω + 2λTω + λ2I)u = 0. (4.7)

In the notation of (1.4) one has

A = H′′(φ) + T 2
ω , B = 2Tω, C = I.

Note that the operators A, C are self-adjoint, while the operator B is skew-symmetric. It
is interesting to note that the negative index of L is discussed in [28, Lemma 1], where
it is stated that

n(L) = n(H′′(φ) + T 2
ω ).

The number of negative directions of L is precisely the number of negative directions
associated with the linearization of (4.4) about u = U .

With respect to the spectrum of the pencil (4.7) the result of Theorem 3.1 says the
following. The assumptions associated with the symmetries present in the problem imply
that

ker(H′′(U ) + T 2
ω ) = span{TωU },

so that z(H′′(U ) + T 2
ω ) = n. Furthermore, these assumptions imply that

Tω : ker(H′′(U ) + T 2
ω ) �→ ker(H′′(U ) + T 2

ω )⊥,
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so that the generalized kernel for the pencil has (at least) dimension 2n. Since C = I,
under the assumption that the matrix

(I − 4Tω(H′′(U ) + T 2
ω )−1Tω)|span{TωU }

is invertible, it will then be the case that the instability index count satisfies

kr + kc + k−
i = n(H′′(φ) + T 2

ω ) − n
(
(I − 4Tω(H′′(U ) + T 2

ω )−1Tω)|span{TωU }
)

(4.8)

Now that the spectral problem is understood, consider the orbital stability of the
wave. This result follows almost immediately for [14, Theorem 4.1]. An alternate inter-
pretation of that result is as follows. In the language of that paper the wave is said to be
orbitally stable if the reduced Hamiltonian, which is the Hamiltonian restricted to the
closed subspace orthogonal to the generalized kernel of J L, is positive definite. As was
discussed in, e.g., [8,9,21], this condition is equivalent to saying that for the linearized
problem (4.6) the spectrum is purely imaginary and satisfies k−

i = 0. Under this spectral
assumption, and the compactness assumptions associated with the operators, the wave
is then a local minimizer for the Lagrangian, and hence is orbitally stable.

Theorem 4.1. Suppose that for the quadratic pencil

P2(λ) := (H′′(U ) + T 2
ω ) + λ(2Tω) + λ2I,

which is the spectral problem for the linearization of the second-order Hamiltonian sys-
tem (4.5) about the steady-state u = U, the operators satisfy the assumptions associated
with Theorem 3.1. Assume that solutions to (4.5) exist globally in time. If the eigenval-
ues satisfy the instability index count kr = k−

i = kc = 0 (see (4.8)), then the wave is
orbitally stable. In other words, for each ε > 0 there is a δ > 0 such that if

‖u(0) − U‖X + ‖∂t u(0) − TωU‖X1 < δ,

then

sup
t>0

inf
g∈G

(‖u(t) − T (g)U‖X + ‖∂t u(t) − T (g)TωU‖X1

)
< ε.

4.2. Example: periodic waves to the “good” Boussinesq equation. The generalized
“good” Boussinesq equation (gB) is of the form

∂2
t u + ∂2

x (∂2
x u − u + f (u)) = 0, (4.9)

where f : R �→ R is smooth. In traveling coordinates, i.e., ξ = x −ct with c ∈ (−1, 1),
the gB can be rewritten as

∂2
t u − 2c∂2

tξ u + ∂2
ξ (∂2

ξ u − (1 − c2)u + f (u)) = 0. (4.10)

The interest will be on solutions to (4.10) which are 2L-periodic in ξ , i.e., u(ξ +2L , t) =
u(ξ, t).

In order to study the existence, spectral, and orbital stability problems, it is convenient
to recast the gB (4.9) in a Hamiltonian formulation similar to that of (4.2). Herein this
task will be accomplished via a trick presented in [4]. The evolution is considered to take
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place on the space L2
per[−L , +L], i.e., the space of square-integrable functions which

are 2L-periodic in ξ . The inner-product is the standard one, i.e.,

〈 f, g〉 =
∫ +L

−L
f (x)g(x) dx .

It is straightforward to check that the original gB (4.9) is equivalent to the system

∂t u = J Ĥ′(u), u = (u, v)T, (4.11)

where ∂xv = ∂t u,

J =
(

0 ∂x
∂x 0

)
, Ĥ(u) =

∫ +L

−L

[
1

2
(∂x u)2 +

1

2
u2 − F(u) +

1

2
v2

]
dx .

Here F ′(u) = f (u). Note that the above formulation of Ĥ is consistent with the formu-
lation of the previous section, i.e.,

Ĥ(u) = H(u) +
1

2
〈v, v〉, H(u) =

∫ +L

−L

[
1

2
(∂x u)2 +

1

2
u2 − F(u)

]
dx,

while the skew-symmetric operator J no longer has the property of having a bounded
inverse. The system is invariant under spatial translation, i.e., T̂ (ω)u(x, t) = u(x +ω, t).
Consequently, upon using the fact that on ker(∂x )

⊥ it is true that

J −1T̂ω =
(

0 1
1 0

)
,

the conserved quantity associated with the spatial translation is given by

Q(u) = 〈u, v〉
(

= 1

2
∂t 〈u, u〉

)
,

and the Lagrangian for the system is

�(u) = Ĥ(u) + cQ(U) ⇒ �′(u) =
(

H′(u) + cv
cu + v

)
.

In conclusion, the system to be studied is

∂t u = J �′(u), (4.12)

which is equivalent to ∂t u = Ĥ′(u) in traveling coordinates ξ = x − ct .
First consider the existence problem. Since ker(∂x ) = span{1}, for real-valued para-

meters a, b the problem is

− ∂2
x u + u − f (u) + cv = −a, v + cu = b (4.13)

which is equivalent to

− ∂2
x u + (1 − c2)u − f (u) = −(a + cb). (4.14)
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Fig. 1. (color online) The criteria that the potential V (U, a, ĉ) must satisfy relative to the energy E in order for
there to exist spatially periodic solutions. Here the energy was chosen so that there exist two distinct periodic
solutions. Increasing the energy past a threshold E∗, for which there are two homoclinic orbits, yields that the
two solutions merge into one periodic solution

This is a well-studied problem. In order to use the desired geometric formulation of
Bronski et al. [6], it will first be necessary to rescale the wave-speed via

ĉ := 1 − c2 ⇒ c = c± := ±
√

1 − ĉ, (4.15)

so that (4.14) can be rewritten as

− ∂2
x u + ĉu − f (u) = −(a + cb). (4.16)

Note that in (4.16) the wave-speed c is either of c±. Without loss of generality assume
that b = 0. A periodic steady-state, say U , will be a solution to the ODE

∂2
ξ U − ĉU + f (U ) = a; (4.17)

hence, the solution will naturally depend on the parameters a and ĉ. If one sets

E = 1

2
(∂ξU )2 + V (U, a, ĉ), V (U, a, ĉ) := −aU − 1

2
ĉU 2 + F(U ),

then under the assumption that E, a, and ĉ are chosen so that

(a) E = V (U, a, ĉ) has (at least) two real roots U± with U− < U+
(b) V (U, a, ĉ) < E for U− < U < U+

(see Fig. 1) there will be a periodic solution with period 2L , where

L = 1√
2

∫ U+

U−

dU√
E − V (U, a, ĉ)

.

As it will be seen, in particular examples the spectral stability of the 2L-periodic solution
will naturally depend upon the parameters a, ĉ, E . The dependence of the solution on
these parameters will be implicit in all that follows.

Now consider the stability problem. Let the 2L-periodic wave found in (4.16) be
denoted by u = U . Recalling that we set b = 0, from (4.13) the v-component of the
wave is given by v = −cU , where from (4.15) one has c = c± can be of either sign for
a fixed value of ĉ. The steady-state solution for (4.12) is then given by

u = U =
(

U
−cU

)
.



538 J. Bronski, M. A. Johnson, T. Kapitula

Under the mapping

u = U + v (4.18)

the system (4.12) becomes

∂t v = J �′(U + v).

The evolution problem must now be considered on a space for which J has bounded
inverse, i.e., on the space of mean-zero functions. Let �0 : L2

per[−L , +L] �→ H0 be the
self-adjoint projection operator

�0u = u − 1

2L
〈u, 1〉;

in other words, �0 is the orthogonal projection onto ker(∂ξ )
⊥. Here

H0 := {u ∈ L2
per[−L , +L] : 〈u, 1〉 = 0} = ker(∂ξ )

⊥.

When writing �0v it will be implicitly assumed that �0 is being applied to each com-
ponent of v. In [8, Section 2] it is shown that the proper evolution equation to consider
is

∂t v = J �0�
′(U + v), v(0) = v0, (4.19)

where �0v0 = v0 implies that �0v(t) = v(t) for all t > 0. In other words, (4.19)
describes the evolution of mean-zero perturbations of the underlying wave. Since the
evolution occurs on H0×H0, and ∂x : H0 �→ H0 has bounded inverse, in this formulation
the operator J now has bounded inverse.

First consider the spectral stability problem. The linearized eigenvalue problem

λv = J �0�
′′(U)v, �0v = v

can be rewritten as

∂x [�0H′′(U )�0u + cv] = λv, ∂x [cu + v] = λu,

where u, v ∈ H0. Differentiating the first equation yields

∂2
x �0H′′(U )�0u + c∂x (∂xv) = λ∂xv,

and substituting the second equation into the first and simplifying gives the quadratic
pencil problem

[
λ2 − 2cλ∂x + ∂2

x (�0(−H′′(U ) + c2)�0)
]

u = 0.

Since u ∈ H0, one can write v = ∂−1
x u ∈ H0, so that the pencil becomes

∂x

[
λ2 − 2cλ∂x − ∂x (�0(H′′(U ) − c2)�0)∂x

]
v = 0.

Since ∂x has bounded inverse, upon setting L2 to be the well-understood self-adjoint
Hill operator

L2 = −∂2
x + ĉ − f ′(U (x)),



Instability Index Theory for Quadratic Pencils 539

the pencil problem to be studied is
[
λ2 − 2cλ∂x − ∂x (�0L2�0)∂x

]
v = 0, v ∈ H0.

Note that in the notation of the previous section,

C = I, B = −2c∂x , A = −∂x (�0L2�0)∂x . (4.20)

Before proceeding with the spectral analysis, the assumptions on the operators given
in Theorem 3.1 must be verified. First consider ker(A). Since L2(∂ξU ) = 0, it is true
that

L2�0 · ∂ξ (U − U ) = 0, U = 1

2L

∫ +L

−L
U (x) dx .

In other words, U−U ∈ ker(A). In order for ker(A) to have another linearly independent
element, it must be the case that L−1

2 (1) ∈ H0. It will be henceforth assumed that no
other element in the kernel exists, i.e.,

〈L−1
2 (1), 1〉 
= 0, (4.21)

so that

ker(A) = span{U − U }.
Letting

PA : H0 �→ span{U − U }, P⊥
A : H0 �→ span{U − U }⊥ ⊂ H0

be orthogonal projections, it must be checked that

(P⊥
AAP⊥

A )−1 P⊥
ABP⊥

A , (P⊥
AAP⊥

A )−1 P⊥
AC P⊥

A

are compact operators. This immediately follows from the fact that (P⊥
AAP⊥

A )−1 is
compact, and both B and C are differentiable operators of lesser order than A. Together,
the above considerations verify the hypothesis of Lemma 2.1.

Next, we must verify that the operators A, B, and C are S-compact for some compact
operator S. For each α > 0, define the operator

Sα := �0(∂
2
x + 1)α�0

acting on L2
per([−L , +L]). It is clear that S−1

α is a compact self-adjoint operator on H0
for each α > 0; furthermore, it is true that the space

XSα
= {u ∈ H0 : 〈�0(∂

2
x + 1)2α�0u, u〉 < ∞}

is dense for any α > 0. Now, clearly the operator S−1
α CS−1

α = S−2
α is compact for any

α > 0. Regarding the operator B, it is easy to see that S−1
α ∂xS−1

α will be compact as
long as 1/4 < α. Finally, the operator S−1

α AS−1
α will have a compact resolvent as long

as 0 < α < 1. In conclusion, as long as 1/4 < α < 1, the operators will be Sα-compact,
thus verifying hypothesis (a) and (b) of Theorem 3.1.
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From the skew-symmetry of the operator and the fact that U is 2L-periodic it is clear
that

B|ker(A) = −2c〈U − U , ∂x (U − U )〉 = 0.

Provided that (I − 4c2∂xA−1∂x )|ker(A) is invertible then, a direct application of Theo-
rem 3.1, using the explicit form of the operators given in (4.20) and noting that C = I
is clearly a positive definite operator, implies that the index count satisfies

kr + kc + k−
i = n(A) − n((I − 4c2∂xA−1∂x )|ker(A)).

In order to compute n(A), first note that

〈u,Au〉 = 〈u,−∂x (�0L2�0)∂x u〉 = 〈∂x u,�0L2�0(∂x u)〉.
Thus, upon using the fact that ∂x : H0 �→ H0 has a bounded inverse it is clear that

n(A) = n(�0L2�0).

Regarding the quantity on the right, it was shown in [8, equation (2.25)] that if the
inequality of (4.21) holds, then

n(�0L2�0) = n(L2) − n(〈L−1
2 (1), 1〉).

Consequently, it can now be said that

n(A) = n(L2) − n(〈L−1
2 (1), 1〉), (4.22)

so that the index count satisfies

kr + kc + k−
i = n(L2) − n(〈L−1

2 (1), 1〉) − n((I − 4c2∂xA−1∂x )|ker(A)).

Recalling that c2 = 1 − ĉ, the index count is complete once the scalar

(I − 4(1 − ĉ)∂xA−1∂x )|ker(A)

is computed. From (4.20) one has that

I − 4(1 − ĉ)∂xA−1∂x = I + 4(1 − ĉ)∂x · ∂−1
x (�0L2�0)

−1∂−1
x · ∂x

= I + 4(1 − ĉ)(�0L2�0)
−1 :

the second line follows from the fact that ∂x is invertible on H0. Using the characterization
of ker(A), it is then seen that

(I − 4(1 − ĉ)∂xA−1∂x )|ker(A)

= 〈U − U , U − U 〉 + 4(1 − ĉ)〈(�0L2�0)
−1(U − U ), U − U 〉.

Finally, in the study of the orbital stability of periodic waves for the generalized
Korteweg–de Vries equation (gKdV) it was shown in [8, Section 3] that

〈(�0L2�0)
−1(U − U ), U − U 〉 = DgKdV, DgKdV :=

∣∣∣∣
〈L−1

2 (U ), U 〉 〈L−1
2 (U ), 1〉

〈L−1
2 (U ), 1〉 〈L−1

2 (1), 1〉
∣∣∣∣

〈L−1
2 (1), 1〉 .
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Lemma 4.2. Consider the quadratic pencil (4.19). If 〈L−1
2 (1), 1〉 
= 0, then the stability

index is given by

kr + k−
i + kc = n(L2) − n(〈L−1

2 (1), 1〉) − n(〈U − U , U − U 〉 + 4(1 − ĉ)DgKdV),

where

DgKdV :=

∣∣∣∣
〈L−1

2 (U ), U 〉 〈L−1
2 (U ), 1〉

〈L−1
2 (U ), 1〉 〈L−1

2 (1), 1〉
∣∣∣∣

〈L−1
2 (1), 1〉 ,

and the parameter ĉ is related to the original wave-speed c via c2 = 1 − ĉ.

Remark 4.3. It was shown in [8, Theorem 2.6] that the stability index for the gKdV is
given by

kr + k−
i + kc = n(L2) − n(〈L−1

2 (1), 1〉) − n(DgKdV);
hence, when studying the spectrum for periodic waves to gB and gKdV there is an
intimate connection in the indices for the two problems. If DgKdV < 0, then for

1 > ĉ > 1 +
〈U − U , U − U 〉

4DgKdV

the stability index for the gB is exactly the same as for the gKdV. Otherwise, there
is precisely one more eigenvalue which is counted by the index. On the other hand, if
DgKdV > 0, then the index for the quadratic pencil is exactly that for the gKdV equation.

Remark 4.4. There is a geometric interpretation associated with the quantity DgKdV. The
interested reader should consult [6] for more details.

Remark 4.5. In Hakkaev et al. [16] the spectral stability problem was considered under
the additional assumption that n(L2) = 1. Furthermore, while it is not explicitly stated,
they further assume that 〈L−1

2 (1), 1〉 > 0, so that (in this paper’s notation) the index
becomes

kr + k−
i + kc = 1 − n(〈U − U , U − U 〉 + 4(1 − ĉ)DgKdV).

The instability criterion in that paper follows from the fact that k−
i , kc must be even

integers, so that k−
i = kc = 0, with

kr =
{

1, ĉ > ĉ∗
0, ĉ < ĉ∗,

where

ĉ∗ = 1 +
〈U − U , U − U 〉

4DgKdV
.

It is not clear if in that paper an explicit connection is shown between the gB and the
gKdV.
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Now consider the orbital stability problem. The local global well-posedness problem
has been studied in, e.g., [3,10,11], and it will henceforth be assumed that the problem
can be solved (at least) locally. Depending on the growth rate of the nonlinearity, this
implies that the initial data for (4.19) satisfies, e.g., v1(0) ∈ H1

per[−L , +L], and v2(0) ∈
H−1

per [−L , +L], where the norm for the latter space is given by

‖u‖2
H−1 =

∑
z∈Z

|û(z)|2
1 + |z|2 .

The form of the Lagrangian in (4.12) makes clear that in order to control the nonlinear
terms the proper space in which to work is H1

per[−L , +L] × L2
per[−L , +L]. It will be

further assumed that the hypothesis leading to Lemma 4.2 hold, and that the spectral
problem has zero instability index, i.e., kr = kc = k−

i = 0. As was seen in [8, Sec-
tion 2.4], this is sufficient in order to conclude that the wave is orbitally stable with
respect to the evolution defined by (4.19).

Proposition 4.6. Suppose that the IVP for (4.19) is locally well-posed. Further suppose
that in addition to what is required for a unique local solution to exist, the mean-
free perturbative initial data for the system (4.19) satisfies v(0) ∈ H1

per[−L , +L] ×
L2

per[−L , +L]. If the spectral problem satisfies kr = kc = k−
i = 0, then the underlying

wave is orbitally stable. In other words, for each ε > 0 there is a δ > 0 such that for
(4.19),

‖u(0) − U‖H1
per×L2

per
< δ ⇒ sup

t>0
inf
ω∈R

‖u(t) − T̂ (ω)U‖H1
per×L2

per
< ε.

Note that for the original system (4.9) the requirement on the initial data is

u(0) = U + v1(0), ∂t u(0) = −c∂xU + ∂xv2(0),

where each component v j (0) has zero mean. A natural question is then: what happens if
the initial perturbation is not mean-free? In this case, we now argue for orbital stability
with respect to a nearby periodic traveling wave of (4.19). For related arguments in the
contexts of other nonlinear dispersive equations, see the work of Hǎrǎgus and Gallay
[17] on the nonlinear Schrodinger equation as well as the works of Johnson [19,20] on
generalized KdV and BBM models, respectively.

To begin, we make a few comments regarding the conserved quantities of (4.11). As
discussed above, even though we set b = 0 in the analysis, the periodic traveling wave
solutions of (4.19), which are solutions to the ODE (4.14), form a five-parameter family
of solutions of the form

uξ (x, t) = u(x − ct + ξ ; a, E, c, b)

where ξ ∈ R and (a, E, c, b) belong to some open set 	 ∈ R
4. Furthermore, the

evolution equation (4.11) admits the following two conserved quantities: the momentum
(charge)

P(w) :=
∫ L

−L
w1w2 dx, w := (w1, w2) ∈ H1

per[−L , +L] × L2
per[−L , +L],
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arising from the translation invariance of (4.19), and the casimirs

M1(w) :=
∫ L

−L
w1 dx, M2(w :=

∫ L

−L
w2 dx,

w := (w1, w2) ∈ H1
per[−L , +L] × L2

per[−L , +L],
arising from the fact that ker(J ) is non-trivial. Notice that P and M are smooth func-
tionals on H1

per[−L , +L] × L2
per[−L , +L] and that, when restricted to the manifold of

traveling wave solutions of (4.19) the functionals M1, M2, and P reduce to

M1(a, E, c, b) :=
∫ T

0
u(x; a, E, c, b) dx, M2(a, E, c, b) := cM1(a, E, c, b) − bT,

and

P̃(a, E, c, b) := −P(a, E, c, b) + bM1(a, E, c, b),

where here T = T (a, E, c, b) (= 2L) denotes the period of the wave and
P(a, E, c, b) := c

∫ T
0 u(x; a, E, c, b)2 dx .

Now, consider the case where the means of v j (0) are small, but non-zero. Using the
geometric formalism of Bronski et al. (see [5,6]) we have the following key lemma.

Lemma 4.7. With the notation as above, we the equality

(
I − 4(1 − ĉ)∂xA−1∂x

)
|ker(A) = T det

(
Ta M1,a
TE M1,E

)
det

⎛
⎜⎜⎝

TE M1,E P̃E M2,E

Ta M1,a P̃a M2,a

Tc M1,c P̃c M2,c

Tb M1,b P̃b M2,b

⎞
⎟⎟⎠ .

Proof. To compute the left hand side, define the function

φ2(x) := det

⎛
⎝

ua Ta M1,a
uE TE M1,E
uc Tc M1,c

⎞
⎠

and satisfies

�0L2�0φ2 = �0L2φ2 = 2cdet

(
Ta M1,a
TE M1,E

) (
U − Ū

)
.

The stated equality now follows by directly calculating
(
I − 4(1 − ĉ)∂xA−1∂x

)
|ker(A) =

〈
�0U,

(
1 + 4c2 (�0L2�0)

−1
)

�0U
〉

and comparing to the right hand side of the above equality. ��
From Lemma 4.7 and the assumption that

(
I − 4(1 − ĉ)∂xA−1∂x

)
|ker(A)
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is nonsingular at the underlying wave U , corresponding say to (a, E, c, b) =
(a0, E0, c0, b0), implies that the map

R
4 � (a, E, c, b) �→ (

T (a, E, c, b), M1(a, E, c, b), P̃(a, E, c, b), M2(a, E, c, b)
) ∈ R

4

is a local diffeomorphism from a neighborhood of (a0, E0, c0, b0) onto a neighborhood
of the point

(T, M1, P̃, M2)(a0, E0, c0, b0).

It follows that we can find a curve [0, 1] � s �→ (a(s), E(s), c(s), b(s)) ∈ R
4 with

(a(0), E(0), c(0), b(0)) = (0, 0, 0, 0) such that for each s ∈ [0, 1] the function

ũ(x; s) = u (x; a0 + a(s), E0 + E(s), c0 + c(s), b0 + b(s))

is a T = T (a0, E0, c0, b0)-periodic traveling wave solution of (4.9) and that, moreover
the endpoint condition

M j (a0 + a(1), E0 + E(1), c0 + c(1), b0 + b(1)) = M j (u(0) + v(0)) , j = 1, 2

P (a0 + a(1), E0 + E(1), c0 + c(1), b0 + b(1)) = P (u(0) + v(0))

and growth constraint

sup
s∈(0,1)

|(a(s), E(s), c(s), b(s))|R4 � ‖v(0)‖H1
per(−L ,L)×L2

per(−L ,L)

are satisfied. Assuming ‖v(0)‖H1
per×L2

per
is sufficiently small, it follows that the wave

ũ(·, 1) is nonlinearly orbitally stable in the sense described in Theorem 4.6, which,
by the triangle inequality, implies orbital stability of U to initial perturbations v(0)

with nonzero, but sufficiently small, mean. Since M j and P are continuous in the
H1

per × L2
per topology, it follows that we have orbital stability in the standard sense

without the restriction to mean-free initial data in (4.19). This observation yields the
following extension of Theorem 4.6

Theorem 4.8. Suppose that the IVP for (4.19) is locally well-posed. Further, suppose
that in addition to what is required for a unique local solution to exist, the perturbative
initial data for the system (4.19) satisfies v(0) ∈ H1

per[−L , +L] × L2
per[−L , +L]. If the

spectral problem satisfies kr = kc = k−
i = 0, then the underlying wave is orbitally

stable, i.e., for each ε > 0 there exists a δ > 0 such that for (4.19) we have

‖u(0) − U‖H1
per×L2

per
< δ ⇒ sup

t>0
inf
ω∈R

‖u(t) − T̂ (ω)U‖H1
per×L2

per
< ε.

In the next sections, we utilize the above explicit connection of the stability problems
for gB and gKdV type equations to make several comments regarding the stability of
periodic waves in the gB equation.
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4.2.1. Case study: power law nonlinearity The stability indices for the gKdV equation
were computed in Bronski et al. [6] for the case that f (u) = u p+1 for some p ≥ 1 and
|ĉ| < 1. Note via (4.15) that this implies |c±| < 1. While we will not do it here, the
gB can be rescaled so that the influence of ĉ is removed from the steady-state problem.
This independence is reflected in the existence diagrams. As in the analysis leading to
the statement of Lemma 4.2, it will be assumed here that b = 0.

First suppose that p = 1, which corresponds to the classical gB equation. In [6,
Section 5.1] it is shown that all periodic waves in this model satisfy

n(L2) = 1, n(〈L−1
2 (1), 1〉 = 0, n(DgKdV) = 1.

Thus, via Lemma 4.2 it is true that for a given (a, E) there is a critical positive wave-speed
ĉ∗

a,E < 1 such that k−
i = kc = 0 with

kr =
{

1, ĉ > ĉa,E

0, ĉ < ĉa,E .

Returning to the original wavespeed c, it follows that for any periodic traveling wave
solution of the classical gB equation there exists a range of wavespeeds (1 − ĉ∗

a,E )1/2 <

|c| < 1 for which the wave is nonlinearly (orbitally) stable, while it is unstable spectrally
unstable to perturbations with the same period if |c| < (1 − ĉ∗

a,E )1/2. This is consistent
with the result of [16, Theorem 2], where ĉa,E is explicitly given when a = 0. In
that paper the case of nonzero a was not considered and only spectral instability for
|c| ≤ (1 − ĉ∗

a,E )1/2 was verified. Here, our calculations complemented this result by

verifying that waves traveling with speed greater than (1 − ĉ∗
a,E )1/2 are by Theorem 4.6

indeed nonlinearly stable.
For examples which are not covered in Hakkaev et al. [16], e.g., when it is possible for

n(L2) ≥ 2, first consider the problem when p = 2. The table below, which corresponds
to Fig. 2, can be derived from [6, Section 5.2]:

Region n(L2) n(〈L−1
2 (1), 1〉) n(DgKdV)

(a) 1 0 1
(b) 2 0 1
(c) 2 1 0
(d) 2 1 1
(e) 1 0 1

From the theoretical result in Lemma 4.2 it will be the case that in that in regions (a),
(d), and (e) there will exist a 0 < ĉa,E < 1 such that kr = 1 for ĉ > ĉa,E and kr = 0
otherwise; furthermore, it is always true that k−

i = kc = 0 in these regions. In region
(c) it will be the case that kr = 1 for all c with the other two indices being zero. Finally,
in region (b) there will exist a 0 < ĉa,E < 1 such that kr = 1 for −1 < ĉ < ĉa,E
with the other two indices being zero, while for ĉ > ĉa,E all that can be said is that
kr + k−

i + kc = 2. Notice, however, that by parity we see for speeds ĉ > ĉ∗
a,E in region

(b) we have kr = 0 and k−
i + kc = 2, which allows the possibility that some waves may

still be spectrally stable in this region with k−
i = 2 or that some waves may be spectrally

unstable to perturbations with the same period with kc = 2: such a situation is precluded
in the well-studied solitary wave theory.
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Fig. 2. (color online) The configuration space in the aE-plane when p = 2, b = 0, and |ĉ| < 1 fixed
(see [6, Figure 3]). The swallowtail figure divides the plane into regions containing 0, 1, and 2 periodic
solutions. In region (a) there are two solutions, while all of the other marked regions have one solution. In the
unmarked region there are no periodic solutions. The quantities used in the stability calculation are given in
an accompanying table

Remark 4.9. In [16, Theorem 1] it is shown that for one of the two solutions in region
(a) of Fig. 2 with a = 0 the index satisfies k−

i = kc = 0 with kr = 1 for ĉ > ĉa,E , and
kr = 0 for ĉ < ĉa,E . Furthermore, for this solution the constant ĉa,E is explicitly given
when a = 0. Although they do not consider the case in their paper, the same result holds
in region (e). The parameter region which is outside their theory comprises the union of
(b), (c), and (d).

The below table for p = 4 which corresponds to Fig. 3 can be derived from [6,
Section 5.3]:

Region n(L2) n(〈L−1
2 (1), 1〉) n(DgKdV)

(a) 1 0 1
(a’) 1 0 1
(b) 1 0 0
(c) 2 1 0
(d) 2 0 1

From the theoretical result in Lemma 4.2 it will be the case that in that in regions (a) and
(a’) there will exist a 0 < c∗

a,E < 1 such that kr = 1 for ĉ > ĉa,E and kr = 0 otherwise;

furthermore, it is always true that k−
i = kc = 0. In regions (b) and (c) it will be the case

that kr = 1 for all ĉ with the other two indices being zero. Finally, in region (d) there
will exist a 0 < ĉa,E < 1 such that kr = 1 for ĉ < ĉa,E with the other two indices being
zero, while for ĉ > ĉa,E all that can be said is that kr + k−

i + kc = 2.



Instability Index Theory for Quadratic Pencils 547

Fig. 3. (color online) The configuration space in the aE-plane when p = 4 and |ĉ| < 1 (see [6, Figure 4]).
The swallowtail figure divides the plane into regions containing 0, 1, and 2 periodic solutions. In region (a)
there are two solutions, while all of the other marked regions have one solution. In the unmarked region there
are no periodic solutions. The quantities used in the stability calculation are given in an accompanying table

4.2.2. Case study, continued: solitary wave and equilibrium solution limits In this final
section, we make some comments regarding the stability of periodic traveling wave
solutions of (4.9) which are either near the solitary wave or near an equilibrium (con-
stant) solution. Throughout this section, we continue to consider (4.9) with power law
nonlinearity f (u) = u p+1 for some p ≥ 1. In this case, we have from (4.14) that the
profile U satisfies the ODE

∂2
x u = (1 − c2)u − u p+1,

where, for simplicity, we are restricting our discussion to those waves with a = b = 0.1

This equation is clearly Hamiltonian, and has critical points (u, ∂x u) = (0, 0), cor-
responding to a saddle point, and (u, ∂x u) = ((1 − c2)1/p, 0),2 corresponding to a
nonlinear center. Further, for a fixed wavespeed c ∈ (−1, 1), in the two-dimensional
(u, ∂x u) phase plane the nonlinear center ((1−c2)1/p, 0) is surrounded by a one parame-
ter family of periodic orbits, which are in turn bounded by an orbit which is homoclinic
to the saddle point (0, 0). These periodic orbits can be parameterized by the ODE energy
E determined from the defining relation

1

2
(∂x u)2 = E +

1 − c2

2
u2 − 1

p + 2
u p+2.

1 As we will see below, this is a natural restriction when considering the limiting case to a solitary wave
asymptotic to zero as x → ±∞.

2 Notice when p is an even integer, the point (u, ∂x u) = (−(1 − c2)1/p, 0) is also a critical point. In this
discussion, we ignore this additional critical point, noting that any conclusions for periodic waves emerging
from the ((1 − c2)1/p, 0) critical point hold also for those emerging from the (−(1 − c2)1/p, 0) critical point.
For general p ≥ 1, the governing ODE does not admit such negative solutions.
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The period T (E, c) of these waves inside the homoclinic orbit satisfies

lim
E→0− T (E, c) = +∞, lim

E→E∗(c)+
T (E, c) = 2π√

(1 − c2)p

where E∗(c) is the ODE energy level associated with the equilibrium point ((1 −
c2)1/p, 0). Below, we consider the stability of the periodic traveling wave solutions
of (4.9) in both the distinguished limits E → 0−, corresponding to the solitary wave
limit, and E → E∗(c)+, associated with small amplitude periodic wave trains.

We begin by considering the stability of the periodic traveling waves of (4.9) in the
solitary wave limit. When considering solitary wave solutions which decay to zero as
x → ±∞ we obtain a two-parameter family of solutions parameterized by wavespeed c
and spatial translation, which corresponds to a one-parameter family of homoclinic orbits
in the two-dimensional phase space of (4.17) (notice the boundary conditions in this case
require a = E = b = 0). Keeping throughout a = b = 0 and fixing the wavespeed
c ∈ (−1, 1), by the above considerations there exists, up to translations, a one parameter
family of “large period” periodic traveling wave solutions of (4.9) parameterized by the
ODE energy E . Furthermore, for fixed c these periodic waves approach locally uniformly
on R an appropriate translate of the limiting solitary wave as E → E−. The stability of
the limiting solitary waves was investigated by Bona and Sachs [4], where they applied
the abstract theory of Grillakis et al. [13] to obtain nonlinear stability of the solitary wave
when 1 < p < 4 and p/4 < c2 < 1. This stability theory was later complemented by
Liu [29], obtaining nonlinear instability if either c2 ≤ p/4 or p ≥ 4. Next, we show that
this phenomenon is observed again for the “nearby” periodic traveling wave solutions
of (4.9). For such periodic waves, it is easy to see that

n(L2) − n(〈L−1
2 (1), 1〉) = 1, 0 < −E � 1,

and, furthermore,

lim
Ẽ→0−

DgKdV

∣∣∣
(a,E,c,b)=(0,Ẽ,c,0)

= −�(c, p)(4 − p)

for some positive constant �(c, p) > 0 (for details, see the asymptotic analysis in
[5, Section 3.2]). It follows that for all3 1 ≤ p < 4 there exists a critical wavespeed
c = c∗(p, E) such that the periodic traveling wave u(·; a = 0, E, c, b = 0) with
0 < −E � 1 is orbitally stable for c∗(p, E) < |c| < 1 and spectrally unstable
with kr = 1 for |c| < c∗(p, E), while for p > 4 all such long-period waves waves
are spectrally unstable with kr = 1. This is consistent with the solitary wave orbital
stability/instability results of [4] and [29].

Finally, continuing to restrict to a = b = 0, we consider the stability of small
amplitude periodic traveling waves of (4.9) associated to those periodic orbits of the
profile ODE near the nonlinear center ((1−c2)1/p, 0). Fixing the wavespeed c ∈ (−1, 1),
it follows by basic asymptotic analysis near the equilibrium solution u = (1 − c2)1/p

that

n(L2) − n(〈L−1
2 (1), 1〉) = 1

3 By the previous example, we see that such a critical wavespeed also exists for p = 4.
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and, furthermore, that at the nonlinear center we have

DgKdV(a = 0, E∗(c), c, b = 0) = −	(c, p)V ′′ ((1 − c2)1/p, 0, 1 − c2
)−9/2

= −	(c, p)
(
(1 − c2)p

)−9/2

for some positive constant 	(c0, p) > 0 (see [19, Section 5] for details). It follows
that in a neighborhood of the equilibrium solution u ≡ (1 − c2)1/p there exists a
critical wavespeed c(p, E) such that all nearby small-amplitude periodic traveling wave
solutions of (4.9) of the form u(·; a = 0, E, c, b = 0) with E0 < E � 1 are orbitally
stable for c∗(p, E) < |c| < 1, and are spectrally unstable to perturbations with kr = 1 for
0 < |c| < c∗(p, E). In particular, the equilibrium solution itself is orbitally stable for all
|c| ∈ (−1, 1), implying that c∗(p, E) → 0+ as E → (E∗

0 )−, i.e. as one approaches the
equilibrium solution. Note this is consistent with the numerical calculations of c∗(p, E)

presented in [16] in the cases f (u) = u2 and f (u) = u3.

Remark 4.10. It is interesting to note that when p > 4 the waves with a = b = 0
undergo a transition to instability as one moves from a neighborhood of the equilibrium
solution u ≡ (1 − c2)1/p to a neighborhood of the limiting solitary wave.
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