
Calvin University Calvin University 

Calvin Digital Commons Calvin Digital Commons 

University Faculty Publications University Faculty Scholarship 

4-1-2010 

Harmonic distortion state estimation using an evolutionary Harmonic distortion state estimation using an evolutionary 

strategy strategy 

Elcio F. De Arruda 
Universidade de São Paulo 

Nelson Kagan 
Universidade de São Paulo 

Paulo F. Ribeiro 
Calvin University 

Follow this and additional works at: https://digitalcommons.calvin.edu/calvin_facultypubs 

 Part of the Power and Energy Commons 

Recommended Citation Recommended Citation 
De Arruda, Elcio F.; Kagan, Nelson; and Ribeiro, Paulo F., "Harmonic distortion state estimation using an 
evolutionary strategy" (2010). University Faculty Publications. 378. 
https://digitalcommons.calvin.edu/calvin_facultypubs/378 

This Article is brought to you for free and open access by the University Faculty Scholarship at Calvin Digital 
Commons. It has been accepted for inclusion in University Faculty Publications by an authorized administrator of 
Calvin Digital Commons. For more information, please contact dbm9@calvin.edu. 

https://digitalcommons.calvin.edu/
https://digitalcommons.calvin.edu/calvin_facultypubs
https://digitalcommons.calvin.edu/university_scholarship
https://digitalcommons.calvin.edu/calvin_facultypubs?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.calvin.edu/calvin_facultypubs/378?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dbm9@calvin.edu


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224106802

Harmonic Distortion State Estimation Using an Evolutionary Strategy

Article  in  IEEE Transactions on Power Delivery · May 2010

DOI: 10.1109/TPWRD.2009.2036922 · Source: IEEE Xplore

CITATIONS

28
READS

196

3 authors:

Some of the authors of this publication are also working on these related projects:

Modernization of Model of Expansion and Operation of Electrical Distribution Systems considering Demand Response and Smart Grids View project

La Medica View project

Elcio F. Arruda

Universidade Federal de Itajubá (UNIFEI)

35 PUBLICATIONS   90 CITATIONS   

SEE PROFILE

Nelson Kagan

University of São Paulo

168 PUBLICATIONS   1,290 CITATIONS   

SEE PROFILE

Paulo F. Ribeiro

Universidade Federal de Itajubá (UNIFEI)

367 PUBLICATIONS   6,952 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Elcio F. Arruda on 09 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224106802_Harmonic_Distortion_State_Estimation_Using_an_Evolutionary_Strategy?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224106802_Harmonic_Distortion_State_Estimation_Using_an_Evolutionary_Strategy?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modernization-of-Model-of-Expansion-and-Operation-of-Electrical-Distribution-Systems-considering-Demand-Response-and-Smart-Grids?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/La-Medica?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elcio-Arruda?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elcio-Arruda?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-Federal-de-Itajuba-UNIFEI?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elcio-Arruda?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelson-Kagan?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelson-Kagan?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Sao-Paulo?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelson-Kagan?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Ribeiro-12?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Ribeiro-12?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-Federal-de-Itajuba-UNIFEI?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paulo-Ribeiro-12?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elcio-Arruda?enrichId=rgreq-221d9e826e367d113e4c1e8f1a77e2a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEwNjgwMjtBUzoxNTA0MjAwMDk3ODczOTJAMTQxMjg3NDMzMzMzNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 25, NO. 2, APRIL 2010 831

Harmonic Distortion State Estimation
Using an Evolutionary Strategy

Elcio F. de Arruda, Member, IEEE, Nelson Kagan, Senior Member, IEEE, and Paulo F. Ribeiro, Fellow, IEEE

Abstract—This paper presents a new methodology to estimate
harmonic distortions in a power system, based on measurements of
a limited number of given sites. The algorithm utilizes evolutionary
strategies (ES), a development branch of evolutionary algorithms.
The main advantage in using such a technique relies upon its mod-
eling facilities as well as its potential to solve fairly complex prob-
lems. The problem-solving algorithm herein proposed makes use of
data from various power-quality (PQ) meters, which can either be
synchronized by high technology global positioning system devices
or by using information from a fundamental frequency load flow.
This second approach makes the overall PQ monitoring system
much less costly. The algorithm is applied to an IEEE test network,
for which sensitivity analysis is performed to determine how the pa-
rameters of the ES can be selected so that the algorithm performs
in an effective way. Case studies show fairly promising results and
the robustness of the proposed method.

Index Terms—Evolutionary algorithms, evolutionary strategy,
harmonic distortion, power quality (PQ), state estimation.

I. INTRODUCTION

A SSESSING the impact of harmonic sources to the perfor-
mance and behavior of electric power systems is a rele-

vant and complex aspect concerning power quality (PQ).
When one admits harmonic injections to the power system as

known parameters, actions can be devised in order to mitigate
the impact of the harmonic distortions throughout the network.
This is generally carried out by the design and utilization of
passive or active harmonic filters. However, one should realize
that in most cases the sources of harmonic distortions are not
known [1].

Although PQ meters are becoming less costly, it is still eco-
nomically unviable to design PQ monitoring systems where me-
ters are to be installed in all network buses.

In such a condition, when a few sites are selected for the in-
stallation of PQ meters, the use of a harmonic distortion state
estimation algorithm is highly recommended.
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The harmonic distortion state estimation (HDSE) consists of
a process which is the reverse of a simulation process. Simula-
tors determine the power system response to harmonic injection
in one or more locations, whereas estimators evaluate the har-
monic injections when the power system responses are given by
a set of measurements [2].

The HDSE methodology consists in an efficient and eco-
nomic tool to be used in PQ monitoring systems, so that
harmonic distortions can be estimated throughout the network.
The HDSE algorithm is based on the network topology and the
corresponding harmonic frequency admittance matrices, pas-
sive (linear) loads and PQ meter locations and measurements
[3].

Intelligent computation can be used as a good hand to eval-
uate harmonic sources, as it is herein proposed. Evolutionary
strategies (ES) are interesting options due to their easy imple-
mentation, especially when simulation algorithms for the spe-
cific problem are well known. The implementation and speed
of ES are important aspects when comparing to conventional
techniques.

Estimation of the network harmonic distortion states is a com-
plex problem since one should base its formulation on min-
imum and reliable data coming from a few PQ meters. Many
aspects might result in discrepancies between the real and sim-
ulated systems. Besides meter calibration, important issues such
as data communication and network data fidelity are really im-
portant. Another important aspect though is related to the syn-
chronization data from different PQ meters, which is dealt with
in this paper in an innovative and viable manner.

Harmonic Estimation is generally considered as two classes
of problems. The first one concerns the estimation of the har-
monic content in a measured waveform whereas the second one
regards the estimation of harmonic distortions in non monitored
buses of an electric power system by using information from
PQ meters in monitored buses as reference (harmonic propaga-
tion). Several works concerning the first class of problems are
addressed by using tools like genetic algorithms (GAs) [4]. As
for the second class of problems, which is herein dealt with, a
number of HDSE methods can be found in the scientific liter-
ature. One of the earlier methods [2] identifies sources of har-
monic signals in electric power systems by using the least square
(LS) method to calculate the frequency spectra at buses sus-
pected as harmonic sources. Reference [5] shows the relevance
of PQ meters specification as well as the equipment used in the
process of HDSE. Reference [6] shows a HDSE method based
on global positioning systems (GPS) to synchronize data from
different meters. Other research works in harmonic state estima-
tion can be seen in [7]–[10]. All of these methods use traditional

0885-8977/$26.00 © 2010 IEEE
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Fig. 1. Flowchart of the proposed harmonic distortion state estimation
algorithm.

techniques that demand a total observability from the measure-
ment system or a mathematical method like Least Square to find
a harmonic response in a wide solution space.

This paper considers evolutionary strategy (ES) to find the
harmonic injections in the non monitored buses.

Waveforms stored in PQ meters as well as power flow infor-
mation (in steady state—fundamental frequency conditions) can
be used to synchronize data from the meters. This consideration
is a valuable alternative to reduce costs in solutions that inte-
grate innovative HDSE algorithms to PQ monitoring systems.

II. FORMULATION OF THE HARMONIC DISTORTION

STATE ESTIMATION PROBLEM

The HDSE problem consists in evaluating the system state
for each harmonic order, using the voltage and current measure-
ment data. The system state is defined by the voltage values in
all buses. The voltage and possibly current harmonic values in
monitored buses are usually available from a PQ measurement
system. As PQ meters costs are considerably high, a few mea-
surement points are generally available.

When the proposed algorithm is processed for all relevant
harmonic orders, the total harmonic distortion (THD) can be
estimated in any network bus. The flowchart in Fig. 1 illustrates
the proposed methodology. Its main steps are described in detail
in the following items.

A. Fundamental Frequency System State Estimation

The fundamental frequency system state, represented by the
stage (i) in Fig. 1, can be obtained in two ways:

1) load flow using the active and reactive power load mea-
surements and the generators state;

2) conventional state estimators, where power flow and
voltage measurements compose a redundant measurement
set.

In this work, the fundamental frequency system state is ob-
tained by using a conventional load flow model. Active and re-
active power in load buses and voltage in generation buses are
assumed to be known. In particular, for this specific application,
a simple Gauss Method load flow algorithm determines the fun-
damental frequency system state based on the following matrix
relation:

(1)

where
are the vectors of injected currents, respec-

tively, in all buses, supply buses, and load buses;
are the vectors of nodal voltages, re-

spectively, in all buses, supply buses, and load buses;
is the nodal admittance matrix for the fundamental

frequency, partitioned according to supply and load buses.
From (1), one can derive the voltage vector at load buses as a

function of the known supply voltages and load injected currents

(2)

In the case that the elements of the vector , which are in-
jected currents, are functions of the corresponding load bus volt-
ages , as it is the case of well known load models (e.g.,
constant power or constant impedance), (2) can be solved in an
iterative way.

B. Offline Synchronization for each Harmonic Order

The voltage or current measured values in a network bus, for
a harmonic order, are available in magnitude and angle. As the
PQ meters also provide the fundamental frequency data, the har-
monic angles can be referenced to the fundamental frequency
values.

By taking as reference the bus angles obtained by the load
flow algorithm stated in Section II.A, the harmonic angles, for
each harmonic order, are able to be synchronized. This step is
represented by the stage (ii) of Fig. 1. The phasor regarding
the voltage at bus i, determined as the solution of (2), can be
written as

(3)

In PQ monitoring systems where information regarding the
phasor of harmonic voltages are not known, the phasors in
(3) that correspond to the system state at the fundamental
frequency, and especially the phase angles ,
are used by the algorithm to adjust the phasor angles for the
different harmonic frequencies which are measured by the PQ
meter. In this fashion, a given measured harmonic voltage at
bus , which is an output from the meter as

(4)

can be adjusted to

(5)
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The aforementioned procedure promotes the synchroniza-
tion of measurement information according to the variations of
the harmonic voltage angles with respect to the fundamental
frequency voltage, at each system bus. This method provides
a simple technique to compensate a possible unavailability of
more sophisticated GPS based PQ meters that would provide
synchronized phasors at different sites.

C. Individual Harmonic Distortion State Estimation

As shown in Fig. 1, the procedure makes use of the selected
or available harmonic frequency measurements as input for the
HDSE. This selection might be defined as the most significant
harmonic frequencies, or all available harmonic frequencies
captured by the PQ meter or still those ones defined by the
HDSE user. The selected harmonic orders are organized in a
vector , which is given by , where is the number
of selected harmonic frequencies. The ES algorithm, corre-
sponding to stage (iii) of Fig. 1, is then run for each harmonic
order in .

The HDSE model assumes measurements in some given
buses and the presence of harmonic distortion due to harmonic
injected currents in some customers located in the network.

At this way, the problem to be solved is to find, for a spe-
cific harmonic order, the network harmonic injected currents.
Once the injected harmonic currents are found, the evaluation
of the harmonic voltages at any system bus is straightforward.
The HDSE can be formulated as follows:

Determine the injected harmonic currents in load
buses, , in order to minimize
the sum of squared errors between the measured and
calculated voltage values, given by

(6)

where the calculated voltages in the monitored buses
are evaluated by

(7)

where

estimation error for bus , for the harmonic order
;

calculated voltage at bus , which is related to
the injected currents for the harmonic order in
analysis;

measured harmonic voltage at bus ;

impedance matrix element for the harmonic
order , given by the inverse of the admittance
matrix .

The stated problem formulation (6–7) can be solved by many
heuristic search algorithms. In an exhaustive search algorithm,

for example, one must vary the injected harmonic current
values (magnitude and angle) and assess the mean squared
error for each combination. Another technique uses the Monte
Carlo method, randomly simulating a large number of possible
solutions (injected current values), and then, using an adequate
evaluation criterion to choose the best solution (or solutions).

This paper however uses Evolutionary Strategy, as detailed
in Section III, to evaluate the injected currents that generate the
least sum of the squared errors in the harmonic estimated volt-
ages for the monitored buses. Once the harmonic injected cur-
rents are determined, the system state for any harmonic order is
estimated by (7).

After assessing the harmonic state for all harmonic orders, the
total harmonic distortion in a given bus , can then be defined,
as

(8)

III. EVOLUTIONARY STRATEGIES APPLIED TO THE

HARMONIC DISTORTION STATE ESTIMATION

A. First Considerations

Evolutionary strategies were developed by Rechenberg and
Schwefel [11], [12], who developed research works in these
topics in the 1960s at the Technical University of Berlin,
Germany.

Such an approach makes use of evolution concepts that apply
to a population of individuals, each one representing a possible
solution to the given problem. Mutation and recombination pro-
cesses, that base the main ES operators, do not rely upon each
real problem. Rather, only the individual codification and the
fitness evaluation method are very much related to the specific
problem to be dealt with and must be consistently adapted and
designed by the problem formulator.

In a general way, an ES algorithm can be simply described as
follows:

� � �;

initialize P(t);

evaluate P(t);

while (stopping criterion) do

� ���� � �����	�
� � ���;

evaluate P’(t);

���� � � �� ���


� ��� �� � �����	�
� �� ���� � ����
;

� � � � �

End

In this algorithm, denotes a population of individuals
in a given generation . represents a set of individuals that
can be considered for selection, according to the function .
As illustrative examples, can be made equal to the
or can be made equal to the null set. A new population
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of individuals is then generated through the recombi-
nation and mutation operators. New individuals from are
then evaluated by measuring their “distance” to the “target” or
optimal solution of the given problem. As a result, a specific
fitness function is established for each one individual. A new
population is then formed at generation , by selecting the
most fitted individuals.

After a given number of generations, a stopping criterion is
to be met, that usually presupposes that a given individual in
the population represents the most acceptable solution to the
problem. When such criterion is difficult to be previously estab-
lished, the number of generations is used as an input parameter
[11], [12] to determine the end of the process.

In the following sections the ES operators will be detailed
with considerations regarding the HDSE formulation.

B. Codification of Individuals in the HDSE-ES Formulation

The codified individual must represent an alternative solution
for the problem, i.e., it should lead to a given harmonic distortion
state of the system. Furthermore, the ES formulation considers
each harmonic frequency at a time, that is, the general problem
is decomposed into a number of harmonic orders selected for
the analysis.

In steady state estimation methods, the problem state is gener-
ally given by the voltage variables. In the HDSE problem herein
stated, for a given network topology and linear load composi-
tion, such voltage variables are directly dependent upon har-
monic current injections, as shown in (7).

In this manner, the authors proposed an individual codifica-
tion that consists of variables representing the specific harmonic
currents, in terms of their magnitude and angle, given, respec-
tively as a percentage of the magnitude and the angle variation
with respect to the fundamental frequency load currents. In such
strategy, it is easier to set up limiting values regarding the har-
monic components for non linear loads, needed for the ES algo-
rithm, i.e., a “per unit” value is more representative and readily
available in PQ meters that provide harmonic components as
a percentage of the fundamental frequency value. Thus, for
buses where injection harmonic currents are to be determined,
the individual dimension will be , which corresponds to
magnitude value percentages and angle variations, related to
the injected fundamental frequency currents.

In ES one also considers for each variable in the individual
codification, a mutation step, named . It represents the distance
that a generated descendent might occupy in the solution space
in relation to the current individual location. Thus each param-
eter, corresponding to the magnitude value percentage or to the
angle variation, is given an associated mutation step.

For illustration sake, the representation of the individual cod-
ification for the network in Fig. 2, where one is to determine
the harmonic currents injected to the 3 bus network, can be de-
signed as follows:

(9)

Fig. 2. Representing an individual for harmonic order h.

where

percentage (multiplying factor) with respect to the
magnitude value of the fundamental frequency
current at the load bus for the harmonic order ;

angle variation with respect to the angle of the
fundamental frequency load current at bus ,
harmonic order ;

mutation step regarding the parameter , at bus ,
harmonic order ;

mutation step regarding the parameter , at bus ,
harmonic order ;

and fundamental frequency current parameters
(magnitude value and angle) at bus .

The number of individuals in a given population is em-
pirically determined and must be adjusted according to each
application.

C. Mutation Operator

As described in [12], Evolutionary Strategies regard the mu-
tation process as a central role in directing the evolution of a
single individual. In this respect, each individual generates a
subset of individuals. The variations imposed by the mu-
tation process correspond to small steps around the original in-
dividual position.

In order to dynamically assign values to the mutation steps, a
self-adaptation method was introduced, as defined in [13] and
[14]. This method optimizes the parameters (the mutation
steps) as the generations evolve. This is carried out in such a
way that their absolute values gradually decrease as the solu-
tions move towards better regions.

The mutation operator changes each parameter value of the
individual and the corresponding mutation step according to
the following equations:

(10)

(11)

where

mutation step, index ;

variation of the mutation step ;
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randomly generated value at each generation, with
a Gauss probability distribution of 0 (zero) mean
value and 1 (unitary) standard deviation value;

randomly generated value at each generation, with
a Gauss probability distribution of 0 (zero) mean
value and 1 (unitary) standard deviation value;
this is kept constant for each individual;

learning rate ;

learning rate .

In ES algorithms, the parameter , which is a constant that
controls the mutation variability, and the initial mutation steps

must be adjusted for each application.

D. Recombination

The recombination operator, which is associated to the muta-
tion operator, provides variability to the random search towards
the problem solution. It is based on the fact the “genetic” infor-
mation exchanges amongst individuals of a given species might
result in better individuals as far as the fitness function is con-
cerned. Also, the recombination operator helps the algorithm in
not converging to local optima.

This operator is also called crossover, since it consists in cre-
ating new individuals that are formed by genetic information
from two original individuals.

The parameters of the new individual are generated by a re-
production process, for instance by the average of each param-
eter and mutation steps of a pair of original individuals or still by
exchanging parameter information from each locus of the pair
of original individuals.

E. Fitness Function

The evaluation of the individuals in each population is a
process that assesses, through a given fitness function, how
close each alternative solution is from the best possible and
attainable solution.

The algorithm assumes that harmonic voltage distortions are
measured in specific sites of the network. Based on that, the fit-
ness function determines how close the computed voltage har-
monic distortions are from the measured ones. The computation
of voltage values is based on the injected harmonic currents,
which are given by the individual codification, namely its pa-
rameters related to the magnitude value and angle of injected
harmonic currents.

As for the HDSE problem, the fitness function is based on
a vector formed by the absolute values of the differences be-
tween the measured and computed estimated harmonic voltage
values, which are applied for each individual. This vector pro-
vides the required information for the formation of the fitness
function. The lower the difference between measured and com-
puted values, the better is the individual under evaluation.

The fitness function or the grade of a given individual in es-
timating harmonic distortions for harmonic order , is based
on the aggregation of bus estimation errors, given by (6). For
a PQ monitoring system comprising measurements, an

Fig. 3. Selection method type �� � ��.

individual grade was adopted as being the inverse of the sum of
the squared errors as show in (6) for harmonic order , that is,
the algorithm must determine the least mean squared estimation
error

(12)

The fitness function also incorporates a rule that penalizes
individuals in which estimation errors are not within an expected
range (i.e., such individuals are forced very low grades).

F. Selection

The selection operator is responsible for choosing individuals
from generation to form generation . In this work, this
operator is assumed deterministic, since it strictly selects, for
a generation , the best individuals in the Universe comprising
the population —or alternatively which is a subset of

, and , which comprises the descendents of , by
mutation and recombination operators. The selection operator
is generally of type , which applies the selection to the
union of and , or type , which applies the selec-
tion for only [13]. Fig. 3 illustrates the selection
operator.

IV. SETTING THE ALGORITHM PARAMETERS

Before starting the HDSE using the ES-based algorithm, one
needs to better understand the sensitivity of the method with
respect to the variation of the parameters mentioned in the pre-
vious section.

Such sensitivity analysis is carried out at the 14-bus network
presented in Fig. 4, whose topology and data were extracted
from the IEEE site [15]. The analysis is based on the simulation
of the third harmonic distortion estimation and a number of PQ
meters installed in 6 buses of the network, namely, buses #2, #4,
#8, #9, #12, and #14, as shown in Fig. 4.
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Fig. 4. Network for HDSE case studies.

Fig. 5. Average estimation error as a function of the number of individuals in
the initial population.

A. Setting the Number of Individuals for the ES Initial
Population

A first parameter to be analyzed corresponds to the number
of individuals used in the initial population of the evolutionary
strategy.

The base case considers as fixed the following parameters:
• simulation of 100 generations;
• five mutation operations per individual;
• recombination rate equal to 10%;
• initial mutation step for voltage amplitudes ;
• initial mutation step for voltage angle variations ;
• self-adaptation parameter ;
• selection procedure type ;
• recombination operator takes the average between param-

eters of the two original individuals.
In these conditions, a number of 30 simulations were carried

out for alternatives of [2 5 20 40 100 400] individuals in the
initial population. The results in Fig. 5 show the average relative
bus estimation errors.

One can readily notice that as the number of individuals in
the population increases, the estimation errors tend to decrease.

Fig. 6. Evolution for different pairs of initial mutation steps.

However, from 20 individuals per population upwards, the vari-
ation on errors is not significant, which shows that this limit en-
sures a good HDSE.

B. Setting the Mutation Step

The mutation step determines the distance from the original
to the generated individual, which sets the possible positions of
new individuals in the solution space. A very large mutation step
will produce too large variations on the population, what does
not characterize the concept of mutation in ES. On the other
hand, too small of a step implies in too slow variations, reducing
the convergence speed of the algorithm.

For the parameters (percentage of the magnitude value of
the fundamental frequency current) of the individuals the [0.1
0.5 1 2 5] initial mutation steps were considered. As for the
parameters (angle variation with respect to the angle of the
fundamental frequency current), the initial
mutation steps were considered.

The same base case was used, considering 20 individuals per
population and 30 cases for each of the initial mutation steps
considered.

Fig. 6 shows the evolution of pairs of mutation steps starting
from the given initial considered values. One can notice that
too large initial mutation steps imply in convergence difficul-
ties since the mutation process does not proceed properly. Too
low initial mutation steps tend rapidly to zero, which eliminate
the evolution variability and, therefore, jeopardize the determi-
nation of the global optimal solution. The pair of mutation steps

and have proven a good configuration for the
HDSE requirements.

C. Setting the Number of Mutations per Individual

Another important ES parameter is the number of mutations
for which each original individual is submitted to.

This parameter is related to the characteristics of the solution
region, since it increases the covering of the search space.

The number of mutations per individual were set to [1 5 10
50 100]. During these simulations, the number of individuals in
the population was fixed to 20, initial mutation steps
and and 30 simulations in each case.
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TABLE I
AVERAGE PERCENTUAL ERROR AS A FUNCTION OF THE NUMBER OF

MUTATIONS PER INDIVIDUAL IN A POPULATION

As shown in Table I, the estimation error tends to be reduced
as the number of mutation per individual increases, though this
is the case until a certain limit, where the results are no longer
dependent on this parameter. One can perceive that varying
from 50 to 100 mutations per individual, the estimation errors
in the monitored buses are reduced but they can worsen in other
system buses. Another very important aspect in selecting this
parameter concerns its direct relation to the computation time.
That is, the higher the number of mutations per individual, the
higher the computation time.

D. Setting Self-Adaptation Parameters

As shown in [12], self-adaptation aims at varying the muta-
tion steps along the evolution of an individual. Thus the muta-
tion step must be reduced as the individual directs towards the
optimal solution. The behavior of the mutation process due to
changes in self-adaptation parameters might vary the evolution
form and speed.

The use of a mutation step for each parameter in the individual
provides more evolution diversity, allowing for the individuals
to evolve in elliptical regions around the original individual [12].

The parameter is related to the speed of the mutation step
variation in each generation. This parameter was varied at the
values [0.1 1 2 10 100] and 30 cases were simulated for each
analysis.

Although expressive speed variations were noticed when al-
tering parameter , benefits were not perceived for values of
greater than 1. For values lower than 1, the evolution of the mu-
tation steps really changes, as can be seen in Fig. 7. Larger vari-
ations occur when is equal to 0.1. As for the other values of

, the evolution of mutation steps followed a similar trajectory.
Although one can notice huge variations in the evolution, as

shown in Fig. 7, the estimation errors do not vary substantially
with the variation of the parameter .

Table II shows the estimation errors in each network bus for
each value of the self-adaptation parameter. By verifying such
errors, one can infer that the sensitivity analysis does not show
a suggestive value for this parameter.

Fig. 7. Mutation steps evolution as a function of the � parameter.

TABLE II
ESTIMATION ERRORS AS A FUNCTION OF THE SELF-ADAPTATION PARAMETER

E. Setting the Recombination Operator

Besides mutation, variations in populations can be achieved
by recombination. This can be carried out by either creating
a new individual for which each parameter and mutation step
is determined by the average of the parameters of the pair of
original individuals or by exchanging the parameters of the two
original individuals. Recombination is a powerful genetic oper-
ator that tends to create individuals that completely redirect the
search, thus avoiding convergence to local optima.

The two alternatives for the recombination were tested for
the base case. A total of 100 cases were simulated for each
alternative.

As shown in Fig. 8, the alternative of averaging the param-
eters shows a behavior where larger variations are noticed
when comparing with the exchange of parameters between the
two original individuals. This variation on the mutation steps
does not affect substantially the estimation errors, as shown in
Table III. Nevertheless, one is to expect that convergence to
local optimal solutions when using the average of parameters is
more easily avoided.

F. Setting the Selection Operator

As shown in [11], there is no consensus on the selection
type. This paper compares the two selection types for the HSE,
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Fig. 8. Mutation steps evolution related to the alternatives of recombination.

TABLE III
BUS ESTIMATION ERRORS FOR THE RECOMBINATION OPTIONS

namely and , by simulating 100 cases for each
selection procedure.

Fig. 9 shows the evolution of mutation steps for the two selec-
tion types. The type, which does not consider elitism, led
to large variations on the mutation steps and did not converge to
a solution. One can also notice that the algorithm does not con-
verge for the selection type, by analyzing the estimation
errors in Table IV.

V. RESULTS

The total harmonic distortion (THD) is determined for each
bus in the IEEE test network shown in Fig. 4. The THD is de-
termined by (8), that considers the estimation results obtained
at each harmonic order .

PQ meters are considered at buses #2, #4, #8, #9, #12, and
#14 and the simulation includes harmonic orders 3, 5, 7, 9, 11,
and 13 for the THD composition in each network bus.

As previously mentioned, the algorithm carries out the es-
timation for each harmonic order in an independent way. Fol-
lowing that, the total harmonic distortion is readily computed.

Fig. 9. Mutation steps evolution related to the selection type.

TABLE IV
ESTIMATION ERROR FOR THE SELECTION TYPES

The following algorithm parameters were considered for the
first case study, namely case #1:

• number of generations: 500;
• initial population size: 40;
• number of mutations per individual: 5;
• recombination rate per generation: 10%;
• initial mutation steps: and ;
• self-adaptation parameter: ;
• selection type ;
• recombination method: average of parameters.
Table V shows estimation errors for each harmonic order.

These results actually show the average error for 30 simula-
tion cases in each harmonic order. Similar results were found
in [16], though focusing on the estimation of specific harmonic
order distortions. This table shows fairly small estimation er-
rors. The outlined lines in the table show the monitored buses.
Fig. 10 shows the evolution speed at the solution space, by plot-
ting the average grade for the best individuals in each harmonic
order along the generations. This grade is obtained according to
(6), representing the inverse of the squared deviations between
measured and computed harmonic voltage distortions. Although
for some harmonic orders the best individuals are not so well
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Fig. 10. Average grade of best individuals (vertical axis) in each harmonic
order along the generations (horizontal axis).

TABLE V
ESTIMATION ERROR (%) FOR EACH HARMONIC ORDER

graded, the estimation errors are satisfactory, as can be seen
inTable V.

The continuous growth of individual grades for each har-
monic order confirms the elitism of the proposed algorithm and
its capacity in finding solutions for the HDSE. Due to the com-
plexity of the solution space, the monotonous growth of the best
individual grades might represent some difficulty in the recom-
bination operator to input variability to the evolution, taking in-
dividuals more quickly to better solution regions.

Fig. 11 shows the evolution of mutation steps for each har-
monic order considered. One can perceive that mutation steps
can vary along the generations but tend to values close to zero.
Those variations are mainly due the recombination process that
determines variability to the evolution.

Figs. 12 and 13 show the magnitude and angle, respectively,
related to the calculated and the reference third harmonic cur-
rents in each network bus. Although errors in third harmonic
currents are considerably high, voltage estimation is adequate.

Fig. 11. Evolution of mutation steps (vertical axis) for each harmonic order (H)
during the generations (horizontal axis).

Fig. 12. Third harmonic current magnitude in each bus.

Fig. 13. Third harmonic current angle in each bus.

This can be explained by (6) and (7), since in this case, dif-
ferent combinations of injected currents might produce very
small voltage estimation errors (suboptimal solutions), due to
the relative positions of PQ meters and injected currents. Nev-
ertheless the method still works in an appropriate way in esti-
mating harmonic voltage distortions. This could be improved by
a different allocation of PQ meters in the network. The voltage
magnitude and angle values are shown in Figs. 14 and 15. Since
the fitness function is based on voltage values obtained from
the individuals, the resulting calculated and reference voltage
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Fig. 14. Third harmonic voltage magnitude in each bus.

Fig. 15. Third harmonic voltage angle in each bus.

values were very close. Similar behavior was verified for other
harmonic orders.

Once harmonic voltage distortions are obtained for each har-
monic order and network bus, THD values can be straightfor-
wardly obtained. The reference and estimated THD values are
shown in Table VI, alongside with relative and absolute estima-
tion errors. The reference THD values simulate the values to be
determined.

The absolute error shown in Table VI represents the deviation
with respect to the rated voltage. It is expected therefore that rel-
ative THD errors are to be much higher. The algorithm though
determined fairly small relative errors, not greater than 5%.

In order to check the robustness of the proposed methodology,
a second case study, case #2, is considered, with PQ meters at
network buses #2, #8, and #12 only. Table VII shows estimation
errors and THD values when considering these three PQ meters
installed in the system. The much higher estimation errors in
nonmonitored buses are due to the low visibility of the PQ me-
ters associated with the network topology and their installation
sites, even though (i.e., with low visibility PQ meters) the results
are satisfactory, especially when one considers absolute errors.

A simple way to improve the estimation results is by con-
sidering other known information or system measurements, for
instance, harmonic currents. Since the proposed methodology
considers the variation of angles and percentage of magnitude
of fundamental currents as parameters of the individuals codi-
fied in the HDSE, the inclusion of a measured current limits the

TABLE VI
REFERENCE AND ESTIMATED THD VALUES

AND ESTIMATION ERRORS FOR CASE #1

TABLE VII
REFERENCE AND ESTIMATED THD VALUES

AND ESTIMATION ERRORS FOR CASE #2

search space, which obviously helps the algorithm to take the
solution to the global optimal solution. Table VIII shows the es-
timation errors for a third case study, case #3, in which the same
three PQ meters are installed in the system, though one of the
meters also outputs the injected harmonic currents at network
bus #8. One can notice a significant reduction in estimation er-
rors for most network buses.

VI. CONCLUSION

This paper dealt with a new method for the estimation of in-
dividual and total harmonic distortions in network buses based
on the measurement of voltage distortions in a limited number
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TABLE VIII
REFERENCE AND ESTIMATED THD VALUES

AND ESTIMATION ERRORS FOR CASE #3

of buses of the power system. Evolutionary strategy was con-
sidered as a tool to determine the best possible solution in a vast
search space. The main advantage in using such a technique re-
lies upon its modeling facilities as well as its potential to solve
fairly complex problems.

The Evolutionary Strategy shown in this paper is a promissing
tool to deal with the HDSE problem, where individuals in a
population representing possible solutions are submitted to evo-
lutionary operators and evaluated in each generation. During
the evolution, only the best individuals (best problem solutions)
survive. Another benefit is that the proposed approach requires
fewer simulations to find a viable solution when compared to
the Monte Carlo statistical method.

The 14-bus IEEE test network [15] was taken as basis for
the case studies to estimate 3rd, 5th, 7th, 9th, 11th, and 13th
harmonic voltages. A total of 30 cases for each harmonic order
have shown the robustness of the algorithm and promising esti-
mation results. Harmonic voltage distortions for each harmonic
order were used to compose the THD for each network bus. For
all simulations, estimation errors do not exceed 1%.

In low visibility conditions of the PQ monitoring system,
some possible actions to reduce estimation errors include
the consideration of few additional measurements, such as
harmonic currents at lines or buses. Case study #3 utilized
only three PQ meters with information of harmonic voltage
distortions and the injection of harmonic current in one single
bus. The algorithm was then able to reduce estimation errors by
more than 50% in some specific buses when compared to case
study #2 that did not consider the measurement of the injected
harmonic current.

The authors have considered decoupled harmonic sources
modeled as constant current injections and network elements
as linear components. Moreover, nonlinear characteristics
with frequency couplings were not dealt with in this paper.
This decision was mainly for simplicity reasons, though more
detailed network and load representation could be implemented
on future modeling and simulations.

Computation time can be further reduced by using techniques
such as parallel processing:

• estimation of different harmonic orders can be computed
in different processors;

• groups of individuals created during the ES can be evalu-
ated in different processors.

These characteristics show that one can envisage online or
quasi online applications. Also, when considering time-varying
harmonics, the authors believe that previously evolved popula-
tions, stored in a database and prepared in offline mode, could
be used to speed up processing.

The results obtained in this paper, though in a small size net-
work, show promising future research with respect to HDSE.
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