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a b s t r a c t

In [D. Quillen, On the (co)homology of commutative rings, Proc. Symp. PureMath. 17 (1970)
65–87; L. Avramov, Locally complete intersection homomorphisms and a conjecture of
Quillen on the vanishing of cotangent homology, Annals of Math. 2 (150) (1999) 455–487]
a conjecture was posed to the effect that if R → A is a homomorphism of Noetherian
commutative rings then the flat dimension, as defined in the derived category of A-
modules, of the associated cotangent complexLA/R satisfies: fdA LA/R <∞ H⇒ fdA LA/R ≤
2. The aim of this paper is to initiate an approach for solving this conjecture when R has
characteristic 2 using simplicial algebra techniques. To that end, we obtain two results.
First,weprove that the conjecture can be reframed in termsof certain nilpotence properties
for the divided square γ2 and the André operation ϑ as it acts on TorR(A, `), ` any residue
field of A. Second, we prove the conjecture is valid in two cases: when fdR A < ∞ and
when R is a Cohen–Macaulay ring.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

In [1,2], a notion of relative homology D∗(A|R;M)was defined and studied for a homomorphism R→ A of commutative
rings with coefficients in A-modules. These are defined as the derived functor of abelianization on the homotopy category
of simplicial commutative R-algebras. Thus they can be viewed in terms of the Kahler differentials:

D∗(A|R;M) := π∗(ΩX·/R⊗X· M) = H∗(LA/R⊗AM)

where X· is a cofibrant replacement of A in Quillen’s simplicialmodel structure for simplicial commutative R-algebras (cf. [3])
and

LA/R := N(ΩX·/R⊗X· A)

is the cotangent complex of R → A, which can be viewed as an object of the derived category of A-modules. Thus various
homological dimensions can be attached to it, such as the projective or flat dimension. In [2], Quillen conjectured certain
rigidity properties regarding the cotangent complex. In [4], these conjectures were framed as follows:

Quillen’s Conjecture. Let R→ A be a homomorphism of Noetherian rings such that fdA LA/R <∞. Then

(1) fdA LA/R ≤ 2;
(2) If, in addition, fdR A <∞, then fdA LA/R ≤ 1. Furthermore, R→ A is a locally complete intersection homomorphism.

I Partially supported by grant number DMS-0206647 from the National Science Foundation (USA) and a Calvin Research Fellowship. SDG.
E-mail address: jturner@calvin.edu.
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Much is currently known about the validity of this conjecture. In [5], T. Gulliksen showed the validity of (2) for a local ring
R→ `, with ` a rational field, utilizing Quillen’s result on the collapse of the fundamental spectral sequence. Subsequently,
M. André [6] showed that this approach fails when ` is a primary field. In [7], L. Avramov and S. Halperin established part
(2) when R contains a rational field. Later, the author [8] gave a proof of the first part of (2) when A contains a primary
field. Finally, Avramov [4] gave a complete solution to (2) while simultaneously establishing general properties for locally
complete intersection homomorphisms. Following that work, Avramov and S. Iyengar [9] proved part (1) for R → A an
algebra retract. The general case of (1) is still open. See [10,11] for an excellent account of the history of Quillen’s Conjecture
and the current state of affairs.
The purpose to this paper is to make a further contribution to resolving Quillen’s Conjecture by establishing our:

Theorem A (Main Theorem). Let R→ S be a homomorphism of Noetherian rings with fdA LA/R <∞. Then

(1) fdA LA/R ≤ 2 if R is a Cohen–Macaulay ring of characteristic 2;
(2) fdA LA/R ≤ 1 if fdR A <∞ and A has characteristic 2.

Note: The second part of Theorem A is true independent of characteristic. This is the main result of L. Avramov in [4].
Philosophically, the way we will approach proving the Main Theorem is by building off of André’s observations in [12,6].

The restriction in characteristic allows us to take advantage of both the methods the author used in [8,13] together with the
methods of P. Goerss in [14]. In both places, the properties and internal structure of the homotopy andhomology of simplicial
commutative algebras over a field of characteristic 2 are analyzed and used. In particular, the higher divided squares of W.
Dwyer [15] act on the homotopy groups, with two such operations being the divided square γ2 and the André operation ϑ [6].
In the context of homomorphisms R→ (A, `) of local rings, these operations act as follows:

γ2 : TorRn(A, `)→ TorR2n(A, `)

and

ϑ : TorRn(A, `)→ TorR2n−1(A, `).

In this context, we will define R→ (S, `) to be:

(1) γ2-nilpotent provided that for each x ∈ TorR≥2(A, `) there is an n > 0 such that γ
n
2 (x) = 0;

(2) André nilpotent provided that for each x ∈ TorR
≥3(A, `) there is an n > 0 such that ϑ

n(x) = 0.

In connection with proving the Main Theorem, we will establish:

Theorem B. Let R→ (A, `) be a surjective homomorphism of local rings with char ` = 2 and fdA LA/R <∞. Then

(1) Ds(A/R; `) = 0 for all s > 2 if and only if R→ (A, `) is André nilpotent;
(2) Ds(A/R; `) = 0 for all s > 1 if and only if R→ (A, `) is γ2-nilpotent.

Notes:

(1) For both parts of this theorem, the proof of necessity is straightforward. For (1), if fdA LA/R ≤ 2 then it follows that
TorR
∗
(A, `) is a free divided power algebra and so André nilpotency follows from ϑγ2 = 0. For (2), if fdA LA/R ≤ 1 then it

follows that TorR
∗
(A, `) is finite graded and, hence, γ2-nilpotent.

(2) Theorem B(2) gives a generalization of Quillen’s Conjecture (2) (for local rings of characteristic 2) as it allows for cases
of Tor-modules which are non-trivial for infinitely many degrees.

The simplicial setting

In [8,13], the author took a different tack to proving part (2). By noting that the cotangent complex is defined for an
arbitrary simplicial commutative R-algebra A, an extension of part (2) to such A was proved when A has the following
properties: char π0A > 0 and A has strongly finite Noetherian homotopy, i.e. π0A is Noetherian, π∗A is a finite graded π0A-
module and fdπ0A π∗A <∞. (Awill be said to have finite Noetherian homotopy if this last condition is dropped.) This enabled
the author to use simplicial methods. It is the aim of this paper to use these same methods to approach part (1).
Now, assume the induced map R→ π0A is a surjection. We define A to be a a locally homotopy n-intersection, where n is

a natural number, provided for each p ∈ Spec(π0A) the connected component at p

A(p) := A⊗L
R k(p) ' Sk(p)(W )

withW a connected simplicial k(p)-module satisfying πsW = 0 for s > n. Here and throughout Sk(p)(−) denotes the free
commutative k(p)-algebra functor.
Notes: Let A be a simplicial commutative algebra with strongly finite Noetherian homotopy.

(1) In fact, a definition of locally homotopy n-intersection can be made when R → π0A is a general homomorphism of
Noetherian rings using the methods of [13].
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(2) In [13], a locally homotopy 1-intersection is called a homotopy complete intersection shown to be equivalent to fdA LA/R ≤
1.

(3) In [16], a notion of homotopy Gorenstein is defined for such A and was shown to be a property of Awhen fdA LA/R <∞,
independent of the characteristic of π0A.

Within this simplicial context, we will be able to establish Theorem B by first proving:

Theorem C. Let A be a simplicial commutative R-algebra with finite Noetherian homotopy such that R → π0A is a surjection.
Let p ∈ Spec(π0A) be such that char k(p) = 2 and Ds(A|R; k(p)) = 0 for s� 0. Then:
(1) A(p) is André nilpotent if and only if A(p) is a homotopy 2-intersection;
(2) A(p) is γ2-nilpotent if and only if A(p) is a homotopy 1-intersection.

As a consequence of the Theorem C, given its assumptions, if Ds(A|R; k(p)) = 0 for s > 2 then A(p) is André nilpotent. From
this we offer the following:

Nilpotence Conjecture. Let A be a simplicial commutative R-algebra with finite Noetherian homotopy such that R→ π0A is a
surjection. Let p ∈ Spec π0A be such that char(k(p)) = 2. Then A(p) is André nilpotent if Ds(A|R; k(p)) = 0 for s� 0.

Assuming the validity of the Nilpotence Conjecture gives us the following:

Theorem D. Let R → A be a homomorphism of Noetherian rings with char A = 2 and fdA LA/R < ∞. If the Nilpotence
Conjecture is true then fdA LA/R ≤ 2.

Proof. Let f : R→ A be the homomorphism of Noetherian rings with char R = 2. Let q ∈ Spec A and p = f −1(q) ∈ Spec R.
By the main result of [17], there is a Cohen factorization of complete local rings

R̂p → R′ → Âq

satisfying
(a) R̂p → R′ is a faithfully flat monomorphism with weakly regular fibre;
(b) R′ → Âq is a surjection.
from which arises
(c) fdA LA/R ≤ n if and only if Ds(Âq/R′; k(q)) = 0 for all s > n and for all q ∈ Spec A.
See [4, Section 1] for further details regarding (c). Now, by (c) and the Nilpotence Conjecture, Âq(̂q) is André nilpotent.
Hence, R′ → Âq is André nilpotent and it follows that Ds(Âq/R′; k(q)) = 0 for s > 2 by Theorem C.1. Since this holds for all
q ∈ Spec A, Theorem D follows from (c). �

As a contribution to establishing the Nilpotence Conjecture, we will prove:

Theorem E. The Nilpotence Conjecture is true when R is a Cohen–Macaulay ring of characteristic 2.
We close this section by indicating how Theorems A and B follows from Theorems C–E.

Proof of Theorem B. Let p be the maximal ideal of the local ring A. Then π∗A(p) ∼= TorR∗(A, `). If fdA LA/R < ∞ then
Ds(A|R; `) = 0 for s� 0. Thus:
(1) If A(p) is André nilpotent then A(p) is a homotopy 2-intersection by Theorem C.1. Thus A(p) ' S`(W )with πiW = 0 for
i > 2. By flat base change

LA/R⊗L
A `
∼= LA(p)/`⊗L

A(p) `
∼= W .

Thus Ds(A/R; `) = 0 for all s > 2.
(2) If A(p) is γ2-nilpotent then A(p) is a homotopy 1-intersection by Theorem C. Thus A(p) ' S`(W )with πiW = 0 for i > 1.
Again, by flat base change

LA/R⊗L
A `
∼= LA(p)/`⊗L

A(p) `
∼= W

and it follows that Ds(A/R; `) = 0 for all s > 1.
As noted before, the converses are straightforward. �

Proof of Theorem A. For each q ∈ Spec A, choose a Cohen factorization as described above. Then

(1) If R is Cohen–Macaulay then R′ is Cohen–Macaulay for each q ∈ Spec A [17]. It follows that TorR
′

∗
(Âq, k(q)) is André

nilpotent, by Theorem E. The result now follows from Theorem B.1 and (c) above. Notice that this result also follows
from Theorem D.

(2) If fdR A <∞ then fdR′ Âq <∞ [17] and so TorR
′

∗
(A(̂q), k(q)) is finite graded and, hence, γ2-nilpotent. Thus Theorem A.2

follows from Theorem B.2 and (c) above. �

Organization. Since our proofs require technical results pertaining to the homotopy and homology of simplicial
commutative algebras in characteristic 2, we begin with a review and extension of the work in [15,14] pertinent to our
purposes in the first section. This is followed by two sections which provide proofs of Theorems C and E.
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1. Homotopy and homology of simplicial commutative algebras of characteristic 2

The proofs of Theorems C and E relied heavily on several technical aspects of the homotopy and homology of simplicial
commutative algebras over a general field of characteristic 2. In this section, we provide an exposition of the aspects of this
theory that suit our purposes.We do this for the following reason: the standard references to this theory [15,14] focus on the
ground field F2 and say nothing explicit about general ground fields of characteristic 2. That this should be straightforward
should not be a surprise: the analogous result for rational ground fields can be similarly resolved. See [18, Section 4]. It will
be our assertion that the known theory over F2 extends to any field extension without little change, the only important
addition being a needed account of how the action of the Frobenius is incorporated. That this is straightforward can already
be culled from [15,14]. Furthermore, that this simple addition is all that is required matches with the analogous account for
Steenrod operations. See [19, Section 4] and [20].

1.1. Review of the homotopy of simplicial commutative algebras over a field

Let A be a simplicial commutative `-algebra where ` is a field of characteristic 2. In this section we review some basic
facts about the homotopy groups of such objects, computed as the homotopy groups of simplicial `-modules.
LetA` be the category of augmented `-algebras, i.e. commutative `-algebras augmented over `. Let sA` be the category

of simplicial objects overA`. Then for A ∈ sA` and n ≥ 0 we have a natural isomorphism

πnA ∼= [S`(n), A]Ho(sA`)

where S`(n) = S`(K(n)) is the free commutative (i.e. symmetric) algebra generated by K(n), K(n) being the simplicial `-
module satisfying π∗K(n) ∼= ` concentrated in degree n. We will use this relation to determine the natural primary algebra
structure on π∗A.
Given integers r1, . . . , rm, t1, . . . , tn 6= 0 anmultioperation of degree (r1, . . . , rm; t1, . . . , tn) is a natural map

θ : πr1 × · · · × πrm → πt1 × · · · × πtn

of functors on sA`. Let Natr1,...,rm;t1,...,tn be the set of multioperations of degree (r1, . . . , rm; t1, . . . , tn). It is straightforward
to show that

Natr1,...,rm;t1,...,tn ∼= Natr1,...,rm;t1 × · · · × Natr1,...,rm;tn .

Now, we define

f : Natr1,...,rm;t → πt(S`(r1)⊗` · · · ⊗` S`(rm)) (1.1)

as follows. LetN = Natr1,...,rm;t and let X = S`(r1)⊗` · · · ⊗` S`(rm). For each 1 ≤ j ≤ m, let ιj ∈ πrjX be the homotopy class
of the inclusion S`(rj)→ X . Given θ ∈ N there is an induced map

θX : πr1X × · · · × πrmX → πtX .

Thus we can define f : N → πtX by

f (θ) = θX (ι1, . . . , ιm). (1.2)

Proposition 1.1. Nat r1,...,rm;t ∼= πt(S`(r1)⊗` · · · ⊗` S`(rm)).

Proof. Since we have

πr1 × · · · × πrm
∼= [S`(r1)⊗` · · · ⊗` S`(rm),−]Ho(sA`)

the result follows from Yoneda’s lemma [21]. �

Note:

(1) There is an obvious map

Natr1,...,rm;t × Natt;q → Natr1,...,rm;q
induced by composition.

(2) Nat is naturally an `-module and f is naturally a linear map.

We now can address the issue of understanding possible relations among multioperations.

Corollary 1.2. For θ ∈ Nat r1,...,rm;t then any expression for θ in Nat r1,...,rm;t as a linear combination is formed and determined
by a corresponding expression for f (θ) in πt(S`(r1)⊗` · · · ⊗` S`(rm)). Furthermore, if ψ ∈ Nat t;q then f (ψ ◦ θ) = f (ψ) ◦ f (θ),
as composites of their homotopy representatives, in πq(S`(r1)⊗` · · · ⊗` S`(rm)).

Proof. This again follows from Yoneda’s lemma [21]. �
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Now, we are in a position to determine the full natural primary structure for homotopy in sA`. First, recall that for any
field Fwe have

SF(V ⊕W ) ∼= SF(V )⊗ SF(W ). (1.3)
Next, we seek a natural map of `-algebras

φV : S`(V ⊗F2 `)→ SF2(V )⊗F2 `

where V is a F2-module. This can be defined as the adjunction of the inclusion V ⊗k `→ I(SF2(V )⊗F2 `) (here I : A` → V`
is the augmentation ideal functor).

Proposition 1.3. The natural map φ : S`((−)⊗F2 `)→ SF2(−)⊗F2 ` is an isomorphism of functors from F2-modules toA`.
Proof. By the identity (1.3) and naturality, it is enough to provide a proof for one dimensional V , i.e. for V ∼= F2 〈 x 〉. Then
φV : `[x] → F2[x]⊗F2 ` is determined algebraically by the value φV (x) = x⊗F2 1. This is clearly an isomorphism.
Alternately, the inclusion V → IS`(V ⊗F2 `) of F2-modules induces a naturalA`-map ζV : SF2(V )⊗F2 `→ S`(V ⊗F2 `)

which serves as an inverse to φV . �

Corollary 1.4. For V ∈ sVF2 there is a natural isomorphism

π∗(S`(V ⊗F2 `))
∼= π∗(SF2(V ))⊗F2 `.

As a consequence all natural primary homotopy operations for simplicial augmented `-algebras and their relations are determined
by π∗SF2(n) for all n ∈ N.
Proof. The first statement follows from Proposition 1.3 and the faithful flatness of (−)⊗F2 `. The second statement follows
additionally from Corollary 1.2 and the Kunneth theorem. Recall that S`(n) ∼= S`(K`(n)) and we can take K`(n) = ` 〈 Sn 〉 ∼=
F2 〈 Sn 〉⊗F2 `, where S

n is a choice of simplicial set model for the n-sphere. �

Remarks. As a consequence of this corollary, we can conclude:
(1) An F2-basis for the natural operations of the homotopy of simplicial commutative F2-algebras will give an `-basis for
the natural operations of the homotopy of simplicial commutative `-algebras for any field extension ` of F2.

(2) In order to give a complete account of the relations for the natural operations of the homotopy of a simplicial
commutative `-algebra, it is enough to combine the same account for simplicial commutative F2-algebras with the
account that occurs for the same operations as they act upon `, viewed as a constant simplicial commutative F2-algebra.
This is where the Frobenius acting upon ` gets incorporated.

1.2. Homotopy operations at the prime 2

Let A be a simplicial commutative algebra of characteristic 2 (and, therefore, a simplicial F2-algebra). Associated to A is a
chain complex, (C(A), ∂), where, for each n ∈ N, we have

C(A)n = An, ∂ = Σni=0(−1)
i di = Σni=0 di : C(A)n → C(A)n−1.

It is standard that we have the identity [22]
πnA ∼= Hn(C(A)).

In [15], W. Dwyer showed the existence of natural chain maps
∆k : (C(V )⊗ C(W ))i+k → C(V ⊗W )i 0 ≤ k ≤ i,

where V andW are simplicial F2-modules, having the following properties:
(1) ∆0 + T∆0T = ∆+ φ0;
(2) ∆k + T∆kT = ∂∆k−1 +∆k−1∂ .

Here T : C(V )⊗ C(W )→ C(W )⊗ C(V ) is the twist map,∆ : C(V )⊗ C(W )→ C(V ⊗W ) is the shuffle map [22, p. 243],
and φk : C(V )⊗ C(W )→ C(V ⊗W ) is the degree (−k) map defined by

φk(v ⊗ w) =

{
0 deg v 6= k or degw 6= k;
v ⊗ w otherwise.

Note: Tensor product of chain complexes is graded tensor product and tensor product of simplicial modules is levelwise
tensor product.
Now, for x ∈ C(A)n and 1 ≤ i ≤ n, defineΘi(x) ∈ C(A)n+i byΘi(x) = αn−i(x)where
αt(x) = µ∆t(x⊗ x)+ µ∆t−1(x⊗ ∂x),

and
α0(x) = µ∆0(x⊗ x),

where µ is the map C(A ⊗ A) → C(A) induced by the product on A. As shown in [14, Section 3], these natural maps have
the following properties:
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(1) ∂Θi(x) = Θi(∂x) for 2 ≤ i ≤ n;
(2) ∂Θn(x) = µ∆(x⊗ ∂x);
(3) ∂Θ1(x) = Θ1(∂x)+ x2;
(4) Θi(x+ y) = Θi(x)+Θi(x)+

{
∂µ∆n−i−1(x⊗ y) 2 ≤ i < n;
µ∆(x⊗ y) i = n.

From these chain properties for theΘi, there are induced homotopy operations

δi : πnA→ πn+iA 2 ≤ i ≤ n,

or, upon letting αt = δn−t , we have

αt : πnA→ π2n−tA 0 ≤ t ≤ n− 2.

Note, in particular, that

ϑ = α1. (1.4)

The following is proved in [15,23]:

Theorem 1.5. The homotopy operations δi have the following properties:

(1) δi is a homomorphism for 2 ≤ i ≤ n− 1 and δn = γ2—the divided square;
(2) δi acts on products as follows:

δi(xy) =

δi(x)y
2 deg y = 0;

x2δi(y) deg x = 0;
0 otherwise;

(3) if i < 2j, then

δiδj =
∑

i+1
2 ≤k≤

i+j
3

(
j− i+ k− 1
j− s

)
δi+j−kδk.

Corollary 1.6. The homotopy operations αt have the following properties:

(1) αt is a homomorphism for 1 ≤ i ≤ n− 2 and α0 = γ2—the divided square;
(2) αt acts on products as follows:

αt(xy) =

αt(x)y
2 deg y = 0;

x2αt(y) deg x = 0;
0 otherwise;

(3) if s > t, then

αsαt =
∑

s+2t
3 ≤q≤

s+t−1
2

(
s− q− 1
q− t

)
αs+2t−2qαq.

Proof of Corollary 1.6. The first two items follow immediately from Theorem 1.5 using the identity αt(x) = δn−t(x)where
deg x = n. The last relation follows from (3) of Theorem 1.5 upon letting j = n− t , i = 2n− s− t , and k = n− q. �

Let ` be a general field of characteristic 2 and let σ : `→ ` be the action of the Frobenius: xσ = x2. Our goal at present
is to describe homotopy operations for simplicial commutative `-algebras. Specifically, we will prove:

Theorem 1.7. Let A be a simplicial augmented `-algebra with char(`) = 2. Then, for 2 ≤ i ≤ n, the natural operation
δi : πnA→ πn+iA satisfies properties (1)–(3) of Theorem 1.5. In particular, for a, b ∈ ` and x, y ∈ πnA we have

δi(ax+ by) = aσ δi(x)+ bσ δi(y)+
{
(ab)(xy) i = n;
0 otherwise

and for u, v ∈ π∗A

δi((au)(bv)) =

(ab)
σ (δi(u)v2) deg v = 0;

(ab)σ (u2δi(v)) deg u = 0;
0 otherwise.

Furthermore, homotopy operations πnA→ πn+kA, as functors of simplicial augmented `-algebras, are determined algebraically
over ` by the operations δi1δi2 . . . δir with (i1, . . . , ir) an admissible sequence of degree k and excess≤n.
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Recall that the degree of I = (i1, . . . , ir) is i1 + · · · + ir and the excess of I is i1 − i2 − · · · − ir . We will write throughout
δI = δi1δi2 . . . δir . Finally, we call I admissible provided iq−1 ≥ 2iq for all 2 ≤ q ≤ r .
To prove Theorem 1.7, we need two lemmas. First, we record the following. See [14, 12.4.2].

Lemma 1.8. Let A and B be simplicial commutative F2-algebras. Then the induced action of δi on π∗(A)⊗F2 π∗B is determined
by

δi(x⊗ y) =

δi(x)⊗ y
2 deg y = 0;

x2 ⊗ δi(y) deg x = 0;
0 otherwise.

Next, we define a Γ`-algebra, ` a field of characteristic 2, to be a graded commutative `-algebra together with a set map
γ2 : An → A2n, n ≥ 2, satisfying:

(1) x2 = 0 for x ∈ A≥1
(2) γ2(ax) = aσγ2(x) for a ∈ `
(3) γ2(x+ y) = γ2(x)+ γ2(y)+ xy
(4) γ2(xy) = 0 for x, y ∈ A≥1
(5) γ2(xy) = x2γ2(y) for x ∈ A0 and y ∈ A≥2.

Given an `-module V , we denote the free Γ`-algebra on V by Γ`[V ].

Lemma 1.9. For n ≥ 1, we have

π∗S`(n) ∼= Γ`[δI(ιn)| excess (I) < n]

as Γ`-algebras.

Proof. For the case ` = F2, see [15, Remark 2.3]. By Proposition 1.3, π∗S`(n) ∼= (π∗SF2(n))⊗F2 `. The general result follows
from Lemma 1.8 (with ` viewed as a constant simplicial F2-algebra) and the case ` = F2. �

Proof of Theorem 1.7. Since ` has characteristic 2, the operations δi are defined on πnA and satisfy (1) through (3) of
Theorem 1.5. In particular, to compute δi(ax+ by) it is enough, by Corollary 1.4, to compute

δi(aιn⊗` 1+ 1⊗` bιn) ∈ π∗(S`(n))⊗` π∗(S`(n)).

Under the isomorphism (using Proposition 1.3 and Kunneth Theorem)

π∗(S`(n))⊗` π∗(S`(n)) ∼= (π∗(SF2(n))⊗F2 π∗(SF2(n)))⊗F2 `,

δi(aιn⊗` 1+1⊗` bιn) corresponds to δi((ιn⊗F2 1)⊗F2 a+(1⊗F2 ιn)⊗F2 b). Thus the desired result follows from Lemma1.8.
Similarly, to compute δi((au)(bv)) it is enough to compute δi((aιm)⊗`(bιn)) ∈ π∗(S`(m))⊗` π∗(S`(n)), or, equivalently,
δi((ιm⊗F2 ιn)⊗F2(ab)) ∈ (π∗(SF2(m))⊗F2 π∗(SF2(n)))⊗F2 `. This again can be computed using Lemma 1.8.
Finally, the last statement follows from Corollary 1.4 and Lemma 1.9. �

Note: Theorem1.7 shows that the operations δi and the relations (1)–(3) of Theorem1.5 completely determine the homotopy
operations for simplicial augmented algebras over general fields of characteristic 2. Thus the Galois group of ` over F2
produces no new homotopy operation of positive degree or alters the relations between them. This should not be surprising
as the same considerations is known to hold rationally. See [18, Section 4].

1.3. Quillen’s spectral sequence

We now focus on the André–Quillen homology for simplicial commutative `-algebras. The key computational device
relating André–Quillen homology and homotopy is Quillen’s fundamental spectral sequence [2,24]. The main reference for
computing with this spectral sequence over F2 is [14, Section 6] and we will spend this section reviewing and extending
those results to a general field ` of characteristic 2.
To begin, we need to be more explicit about the functors S`(−). Let V be an `-module. For n ∈ N, define S`,0(V ) = ` and

S`,n(V ) = ` 〈 v1v2 . . . vn| vi ∈ V 〉 .

Then

S`(V ) ∼=
⊕
n∈N

S`,n(V ).

Next, letW be a non-negatively graded `-module and define

S`(W ) = Γ`[δI(w) | w ∈ W , I admissible, excess(I) < degw] (1.5)
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which, by Corollary 1.6, can be expressed as

S`(W ) ∼= Γ`[α
i1
1 α

i2
2 . . . α

in−2
n−2 (w) | w ∈ W , n = degw, i1, . . . , in−2 ∈ Z+]. (1.6)

For u ∈ S`(W ), we define the weight of u, wt(u), as follows:

wt(u) =


0 if u ∈ `;
1 if u ∈ W ;
wt(x)+wt(y) if u = xy;
2wt(x) if u = δi(x).

We then define, for n ∈ N,

S`,n(W ) = ` 〈 u ∈ S`(W )| wt(u) = n 〉 .

Proposition 1.10. For a simplicial F2-module V and n ∈ N there are a natural isomorphisms

S`,n(V ⊗F2 `)
∼= SF2,n(V )⊗F2 `

and

S`,n((π∗V )⊗F2 `)
∼= SF2,n(π∗V )⊗F2 `.

As a consequence, if W is a simplicial `-module then

π∗S`,n(W ) ∼= S`,n(π∗W ).

Proof. The first two statements can be proved just as for Proposition 1.3. For the last statement, note that [14, Section 3]
shows that the isomorphism holds when ` = F2. Note also that a standard argument (e.g. via Postnikov towers) shows that
there is a simplicial set X and a homotopy equivalenceW ' ` 〈 X 〉. Thus

π∗S`,n(W ) ∼= SF2,n(π∗V )⊗F2 `

where V = F2 〈 X 〉. Since π∗W ∼= (π∗V )⊗F2 ` it follows that

S`,n(π∗W ) ∼= SF2,n(π∗V )⊗F2 `. �

We now follow [14, Section 6]. Let A be a simplicial augmented `-algebra and let IA be its augmentation ideal. We may
assume, using the standard model category structure [3, Section II.3], that A is almost free, i.e. At ∼= S`(Vt) for all t ≥ 1.
Furthermore, the composite Vt ⊆ IAt → QAt to the indecomposablesmodule is an isomorphism.We now form a decreasing
filtration of A:

Fs = (IA)s.

For A almost free,

E0s A = Fs/Fs+1 = (IA)
s/(IA)s+1 ∼= S`,s(QA).

Applying homotopy gives a spectral sequence

E1s,tA = πtE
0
t A ∼= πtS`,s(QA) H⇒ πtA (1.7)

with differentials

dr : Ers,tA→ Ers+r,t−1. (1.8)

This is called Quillen’s spectral sequence.

Theorem 1.11. For a simplicial augmented `-algebra A there is a spectral sequence of algebras

E1As,t = S`,s(HQ∗ (A))t H⇒ πtA

with the following properties:

(1) The spectral sequence converges if π0A ∼= `. In particular, Ers,tA = 0 for t < s for all r ≥ 1.
(2) For 1 ≤ r ≤ ∞ there are operations

δi : Ers,tA→ Er2s,t+iA 2 ≤ i ≤ t

of indeterminacy 2r − 1 with the following properties:
(a) If r = 1, then δi coincides with the induced operation S`,s(HQ∗ (A))t → S`,2s(HQ∗ (A))t+i.
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(b) If x ∈ ErA and 2 ≤ i < t then δi(x) survives to E2rA and
d2rδi(x) = δi(drx)
drδt(x) = xdrx

modulo indeterminacy.
(c) The operations on ErA are induced by the operations on Er−1A and the operations on E∞A are induced by the operations
on ErA for r <∞.

(d) The operations on E∞A are induced by the operations on π∗A.
(e) Up to indeterminacy, the operations on ErA satisfy the properties of Theorem 1.7.
Before we indicate a proof of this omnibus result, a word of explanation is needed. First, an element y ∈ Ers,tA is said to

be defined up to indeterminacy q provided y is a coset representitive for a particular element of Ers,tA/B
q
s,tAwhere

Bqs,tA ⊆ E
r
s,tA q ≥ r

is the `-module of elements of Ers,tAwhich survive to E
q
s,tA but have zero residue class.

Also, if A is almost free, and hence cofibrant as a simplicial augmented `-algebra, then
π∗(QA) ∼= HQ∗ (A).

Cf. [8, Section 1].
Proof. First, if A is almost free, we have a pairing

πt(S`,s(QA))⊗ πt ′(S`,s′(QA))
(µ∆)∗
→ πt+t ′(S`,s+s′(QA))

which gives a pairing

E1s,tA⊗ E
1
s′,t ′A→ E1s+s′,t+t ′A

and induces an algebra structure on the spectral sequence.
For (1), we simply note that if A is connected then S`,s(HQ∗ (A)) = 0 for t > s. Convergence now follows from standard

convergence theorems. Cf. [22].
For (2), we have a commutative diagram

C((IA)s)⊗F2 C((IA)
s)

ᾱt
−→ C((IA)s⊗F2(IA)

s) −→ C((IA)s⊗`(IA)s)
σ ↑ ↓ µ

C((IA)s)
αt
−→ C((IA)2s) = C((IA)2s)

where σ(u) = u⊗ u and ᾱt(a⊗ b) = ∆t(a⊗ b)+∆t−1(a⊗ ∂b). This induces a map

Θi : (IA)s → (IA)2s,

by again settingΘi(u) = αn−i(u)where n = deg u.
Let x ∈ Ers,tA. Then, modulo (IA)

s+1, x is represented by u ∈ (IA)s with the property that ∂u ∈ (IA)s+r . The class of u is not
unique, but may be altered by adding elements ∂b ∈ (IA)s with b ∈ (IA)s−r+1.
Define δi(x) ∈ Er2s,t+iA to be the residue class ofΘi(u). Since

∂Θi(u) = Θi(∂u) ∈ (IA)2s+2r 2 ≤ i < t,

and

∂Θt(u) = µ∆(u⊗ ∂u) ∈ (IA)2s+r .

Thus δi(x) is defined in Er2s,t+iA and survives to E
2rAwith d2rδi(x) = δi(drx) for 2 ≤ i < t . Also drδt(x) = xdrx. This gives us

(b).
Now we have a commuting diagram

πt((IA)s)
(Θi)∗
−→ πt+i((IA)2s)

↓ ↓

πtA
δi
−→ πt+iA

and an induced diagram

πt((IA)s)
(Θi)∗
−→ πt+i((IA)2s)

↓ ↓

πt((IA)s/(IA)s+1) −→ πt+i((IA)2s/(IA)2s+1)
↓∼= ∼=↓

S`,s(HQ∗ (A))t
δi
−→ S`,2s(HQ∗ (A))t+i

It is now straightforward to check (a), (c), (d), and (e). �
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2. Proof of Theorem C

The goal of this section will be to provide a proof of the Theorem C. This will involve a careful study of a certain map, the
character map, defined on the homotopy of of simplicial augmented algebras with finite André–Quillen homology, whose
non-triviality will give us Theorem C. In fact, in the process of analysing this character map, we will be able to establish
an upper bound on the top non-trivial degree of the André–Quillen homology in terms of the non-nilpotence of certain
operations acting on homotopy.

2.1. Nilpotency in homotopy

For fields of characteristic 2, the computation of π∗SF2 can be traced back to [15]. In particular, we will be interested in
two particular operations. First, we will note that for A ∈ sA`, π∗A is naturally a divided power algebra [12,14]. Therefore,
there is a divided square

γ2 : πnA→ π2nA.

There is also an operation

ϑ : πnA→ π2n−1A

which we call the André operation because of the role it played in [6]. In that paper, it is first demonstrated that Gulliksen’s
result [5] showing that the deviations and simplicial dimensions coincide for rational local rings, a result that establishes
Quillen’s conjecture for rational local rings, cannot be extended to prime characteristic settings. In the notion of [15],

ϑ = δn−1. (2.9)

A useful basic relation between the two operations is

ϑγ2 = 0. (2.10)

Lemma 2.1. Let W ∈ sV`, with char(`) = 2, and let n ∈ N be so that πjW 6= 0 implies n ≥ j ≥ 1. Then

(1) γ2 = 0 on π∗S`(W ) provided n = 1;
(2) ϑ = 0 on π∗S`(W ) provided n = 2.

Proof. By Corollary 1.4, it is enough to provide a proof for ` = F2. For n = 1, π∗S`(W ) is a free exterior algebra generated
by π1W , which has trivial γ2-action. For n = 2, π∗S`(W ) is a free divided power algebra generated by π∗W . Cf. [25]. Thus
π∗S`(W ) has trivial ϑ-action by relation (2.10). �

Given A ∈ sA` with char(`) = 2, we define A to be

(1) γ2-nilpotent provided that for each x ∈ π∗A there is an s > 0 such that γ s2(x) = 0 for and
(2) André nilpotent provided that for each x ∈ π∗A there is an s > 0 such that ϑ s(x) = 0.

Next, let R be a Noetherian ring and a let A be a simplicial commutative R-algebra with Noetherian homotopy such that
R→ π0A is a surjection. For p ∈ Spec(π0A)with char(k(p)) = 2, we call A

(1) γ2-nilpotent at p provided A(p) is γ2-nilpotent over k(p), and
(2) André nilpotent at p provided A(p) is André nilpotent over k(p).

Proposition 2.2. Let A be a simplicial commutative R-algebra with Noetherian homotopy and p ∈ Spec(π0A) such that
char(k(p)) = 2. Then

(1) A is γ2-nilpotent at p provided A is a homotopy 1-intersection at p;
(2) A is André-nilpotent at p provided A is a homotopy 2-intersection at p.

Proof. Both follow from the definitions and Lemma 2.1. �

2.2. Connected envelopes and the character map

We begin by providing a strategy for proving Theorem C. This will first involve reviewing the concept of connected
envelopes from [8]. We then construct the notion of a character map for connected simplicial augmented algebras with
finite André–Quillen homology and state a conjecture regarding this map whose validity implies Theorem C.
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Given A in sA`, which is connected, we define its connected envelopes to be a sequence of cofibrations

A = A(1)
j1
→ A(2)

j2
→ · · ·

jn−1
→ A(n)

jn
→ · · ·

with the following properties:
(1) For each n ≥ 1, A(n) is a (n− 1)-connected.
(2) For s ≥ n,

HQs A(n) ∼= H
Q
s A.

(3) There is a cofibration sequence

S`(HQn A, n)
fn
→ A(n)

jn
→ A(n+ 1).

Here we write, for B ∈ sA`, HQs (A) := Ds(A|`; `) and, for V ∈ V`, S`(V ,m) := S`(K(V ,m)). Existence of connected
envelopes is proved in [8, Section 2].
Note: Paul Goerss has pointed out that connected envelopes can also be constructed through a ‘‘reverse’’ decomposition via
collapsing skeleta on the canonical CW approximation.
Now, for A ∈ sA` connected, define the André–Quillen dimension of A to be

AQ-dim(A) = max{m ∈ N |HQm(A) 6= 0}.

Assume that n = AQ-dim A <∞. Then

A(n) ' S`(HQn (A), n).

Cf. [8, (2.1.3)]. Summarizing, we have

Proposition 2.3. For A ∈ sA` connected and AQ-dim A <∞ there is a natural map

φA : A→ S`(HQn (A), n),

where n = AQ-dim A, with the property that HQn (φA) is an isomorphism.

Now, assuming char(`) > 0, we noted that π∗B is naturally a divided power algebra. Given a divided power algebra
Λ in characteristic p, let J ⊂ Λ be the divided power ideal generated by all decomposables w1w2 . . . wr and γp(z) with
w1, w2, . . . , wr , z ∈ Λ≥1. Define the Γ -indecomposables to be

QΓΛ = Λ/J.

Given A ∈ sA` connected and n = AQ-dim A finite, we define the character map of A to be

ΦA = QΓ π∗(φA) : QΓ π∗A→ QΓ π∗(S`(HQn (A), n)).

Now, for B ∈ sA`, the action of the André operation ϑ on π∗B induces an action on QΓ π∗B by the relation (2.10) and the
fact that ϑ kills decomposables of elements of positive degree. Cf. [26, (8.9)].

Theorem 2.4. Let A ∈ sA` be connected with char(`) = 2 and HQ∗ (A) a non-trivial finite graded `-module. Then ΦA is non-
trivial.

Proof of Theorem C. Let n = AQ-dim B where B = A⊗L
R ` with ` = k(p). By Corollary 1.4 and [14, (3.5)], ϑ acts

non-nilpotently on every non-trivial element of QΓ π∗(S`(HQn (B), n)) if n ≥ 3. Therefore if π∗B is André nilpotent then
Theorem 2.4 implies that n ≤ 2. Thus B is a homotopy 2-intersection by [8, (2.2)].
Since HQ

∗
(B) ∼= HQ∗ (A(p)), if A is additionally γ2-nilpotent at p then A is a homotopy 1-intersection at p, as π∗A(p) is free

as a divided power algebra. �

The goal of the next subsection will be to provide a proof of Theorem 2.4.

2.3. Non-triviality of the character map

We now proceed to prove Theorem 2.4. We will in fact prove a more general theorem. Specifically:

Theorem 2.5. Let A be a simplicial augmented `-algebra (char(`) = 2) such that HQ
∗
(A) is finite graded as an `-module. Let

n = AQ-dim A and assume n ≥ 2. Then there exists x ∈ π∗A and y 6= 0 ∈ HQn (A) such that under the map

π∗φA : π∗A→ π∗S`(HQn (A), n)

we have

(π∗φA)(x) = αtn−2(y)

for some t ≥ 1.



J.M. Turner / Journal of Pure and Applied Algebra 213 (2009) 1224–1238 1235

With this result, we can provide the following:

Proof of Theorem 2.4. Assume n = AQ-dim A ≥ 3. Let y ∈ HQn (A), and x ∈ π∗A satisfy the properties of Theorem 2.5. By
Eq. (1.6), αtn−2(y) 6= 0 in QΓ π∗(S`(H

Q
n (A), n)) for all t ≥ 1. We conclude thatΦA(x) 6= 0.

If n ≤ 2, thenΦA is a surjection and, hence, non-trivial. �

Now, in order to prove Theorem 2.5 we will need to know something about the annihilation properties of homotopy
operations. Specifically, we will focus on composite operations of the form

θ(s, t) = δ2sδ2s−1 . . . δ2t+1 s > t

(where we set θ(t + 1, t) = δ2t+1 ).

Lemma 2.6. Let i ≥ 2 and t ≥ 1 be such that 2t < i. Then θ(s, t)δi = 0 for s� t.

Proof. Write i = 2t−1+nwith n ≥ 1. Note first that an application of the relation Theorem 1.5(3) shows that for any t ≥ 1,

δ2t+1δ2t+1 = δ2t+1δ2t+2 = 0.

We thus assume, by induction, that for any t and 0 < j < n, there exists s� t such that

θ(s, t)δ2t+j = 0.

By another application of the relation Theorem 1.5 (3), we have

δ2t+1δ2t+n =
∑
1≤r≤ n3

(
n+ r − 1
n− r

)
δ2t+1+n−rδ2t+r .

Notice that, for each such r , 2t+1 < 2t+1 + n− r < 2t+1 + n. Thus, by induction, we can find s� t + 1 so that

θ(s, t + 1)

 ∑
1≤r≤ n3

(
n+ r − 1
n− r

)
δ2t+1+n−rδ2t+r

 = 0.
We conclude that

θ(s, t)δ2t+n = θ(s, t + 1)δ2t+1δ2t+n = 0. �

Corollary 2.7. Let I = (i1, . . . , ik) be an admissible sequence and let t < k. Then θ(s, t)δI = 0 for s� t.

Proof. Since I is admissible, then

i1 ≥ 2i2 ≥ · · · ≥ 2k−1ik ≥ 2k > 2t .

Thus, by Lemma 2.6,

θ(s, t)δI = (θ(s, t)δi1)δi2 . . . δik = 0

for s� t . �

Proposition 2.8. Let A be a connected simplicial augmented `-algebra, char(`) = 2. In Quillen’s spectral sequence for A, let
y 6= 0 in E11,nA ∼= H

Q
n (A), n ≥ 2. Then there exists s ≥ 1 such that α

s
n−2(y) ∈ E

1
2s,n+2s+1−2

A survives to E∞A.

Proof. Choosem ≥ 1 and suppose αmn−2(y) survives to E
rA, r ≥ 1. By Theorem 1.11 (2) (a), we may assume that r ≥ 2m. Let

w = dr([αmn−2(y)]) ∈ E
r
2m+r,n+2m+1−3A by (1.8). By Theorem 1.11 (1),w = 0 provided n+2

m
−2 ≤ r . Thus if r ≥ n+2m−2

then the class of αmn−2(y) survives to E
∞A as all subsequent differentials will satisfy the same criterion.

Suppose next that r < n+ 2m − 2. Write n+ 2m − q = r with n ≥ q > 2. Assume, by induction, that if for somem the
class of αmn−2(y) survives to E

n+2m−j
2m,n+2m+1−2

A for q > j then there exists s � m such that the class of αsn−2(y) survives to E
∞A.

Again, letw = dr([αmn−2(y)]) ∈ E
r
2m+r,n+2m+1−3

A. Choose u ∈ E1
2m+r,n+2m+1−3

A to represent the classw. By Theorem 1.11 and
Proposition 1.3, we have

u =


∑
I,l

aI,lδI(xl)+
∑
J

bJzJ r = 2k − 2m, k > m;∑
J

bJzJ otherwise

where I = (i1, . . . , ik) and J = (j1, . . . , jr) are sequences with I admissible, aI,k, bJ ∈ `, and zJ = zj1zj2 . . . zjr+2m with
xk, zj1 , . . . , zjr+2m ∈ H

Q
∗
(A).
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First assume that r 6= 2k − 2m. Then dr([αmn−2(y)]) = [u] ∈ E
r
2m+r,n+2m+1−3A with u ∈ E

1
2m+r,n+2m+1−3A decomposable.

Note again that deg u > 2m. Thus, by Theorem 1.11 (2) (b), (c), and (e), d2r(δ2m+1 [α
m
n−2(y)]) = δ2m+1dr([α

m
n−2(y)]) =

δ2m+1 [u] = 0. Thus [α
m+1
n−2 y] survives to E

2r+1
2m+1,n+2m+2−2

A. Now, let 2r+1 = n+2m+1− j and recall that r = n+2m−q ≥ 2m.
Then

j = (n+ 2m+1)− (2n+ 2m+1 − 2q)− 1 = 2q− n− 1 = q− (n− q)− 1 < q.

Thus, by induction, there exists s� m such that [αsn−2(y)] survives to E
∞.

Now assume that r = 2k − 2m with k > m. By definitions of αn−2 and θ(m, t),

αmn−2(y) = θ(m, 0)(y).

By Theorem 1.11 (2) (b) and (c), for e > m

d2e−mr([θ(e, 0)y]) = θ(e,m)dr([θ(m, 0)(y)]) = θ(e,m)w.

By Theorem 1.11 (2) (c) and (e) and Theorem 1.7, θ(e,m)w is represented by∑
I,l

a2
e−m

I,l θ(e,m)δI(zl) modulo indeterminacy.

Note that 2m < deg u so we can assume there are no decomposables in our choice of representative for θ(e,m)w. As
indicated above, we have for each I = (i1, . . . , ik) that k > m. Thus, by Corollary 2.7, since the sum is finite, there exists
e� m such that

θ(e,m)δI = 0 for all I.

Thus d2e−mr([θ(e, 0)y]) = 0 modulo indeterminacy. Therefore [θ(e, 0)y] survives to E
2e−mr+1
2e,n+2e+1−2

A, so, by the previous case,
there exists s� e such that [αsn−2(y)] = [θ(s, 0)y] survives to E

∞. �

Proof of Theorem 2.5. Choose y ∈ HQn (A) ∼= E
1
1,nA and choose s ≥ 1 such that α

s
n−2(y) ∈ E

1A survives to E∞A, which exists
by Proposition 2.8. Under the induced map

Er(φA) : E1A→ ErS`(HQn (A), n)

we have

Er(φA)([αsn−2(y)]) = [α
s
n−2(y)]

for all∞ ≥ r ≥ 1. But, since

E1S`(HQn (A), n) ∼= E
∞S`(HQn (A), n),

we can conclude that E∞(φA)([αsn−2(y)]) 6= 0. Thus we can find a nontrivial x ∈ π∗A which is represented by α
s
n−2(y) in

E∞A such that (π∗φA)(x) = αsn−2(y) 6= 0. �

3. Proof of Theorem E

In order to get a handle on the Nilpotence Conjecture, we will need more technical aspects of commutative algebra and
a deeper analysis of the chains of a simplicial commutative algebra of characteristic 2.
In order to uncover nilpotence behavior in the homotopy of a simplicial commutative R-algebra, we will need to focus

more carefully at local behavior and seek to strip out aspects that minimally contribute to the behavior of the cotangent
complex.

Proposition 3.1. Suppose A is a simplicial commutative R-algebra with R→ π0A a surjection and let p ∈ Spec R with residue
field `. Then there exists a local ring (R′,m), a simplicial commutative R′-algebra A′, and a homotopy commutative diagram

R
η
−→ A

φ ↓ ↓ ψ

R′
η′

−→ A′
(3.11)

with the following properties:

(1) φ is a complete intersection homomorphism;
(2) depth(m) = 0;
(3) D∗(A|R; `) ∼= D∗(A′|R′; `);
(4) η′ induces a surjection of local rings η′

∗
: R′ → π0A′;

(5) If A has finite Noetherian homotopy then A′ has finite Noetherian homotopy.
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Proof. Let x1, . . . , xr be a maximal R-subsequence of a minimal generating set for p. We define

R′ = Rp/(x1, . . . , xr).

Then m = q/(x1, . . . , xr)q has depth 0 since it contains only zero divisors. Furthermore, the composite R → Rp → R′ is a
complete intersection homomorphism by definition. Cf. [4].
Now, let A′ = A⊗L

R R
′. Then

D∗(A|R; `) ∼= D∗(A⊗L
R R
′
|R′; `) = D∗(A′|R′; `)

which follows from flat base change [13, (2.4)]. Applying π0 to the map R′ → A⊗L
R R
′ gives the map R′ ∼= R⊗R R′ →

π0(A)⊗R R′ which is a surjection. Thus R′ → π0A′ is a surjection.
Finally, if A has finite Noetherian homotopy then, by [3, Section II.6], there is a Kunneth spectral sequence

E2s,t = Tor
R
s (πtA, R

′) H⇒ πs+tA′.

Since R → R′ is a complete intersection homomorphism, fdR R′ < ∞. Thus π∗A′ will be a finite module over π0A′ ∼=
(π0A)⊗R R′. �

We will call a diagram (3.11) satisfying the conditions (1)–(5) above a local homotopy reduction for A.
Next, let A be a simplicial commutative F2-algebra and let (C(A), ∂) be the associated chain complex. The following is

proved in [12,15].

Proposition 3.2. The shuffle map ∆ : C(A)⊗F2 C(A) → C(A⊗F2 A) induces a divided power algebra structure on C(A).
Specifically, for each k ∈ Z+, there is a function γk : C(A)n → C(A)kn satisfying:

(1) γ0(x) = 1 and γ1(x) = x
(2) γh(x)γk(x) =

(
h+k
h

)
γh+k(x)

(3) γk(x+ y) =
∑
r+s=k γr(x)γs(x)

(4) γk(xy) = 0 for k ≥ 2 and x, y ∈ C(A)≥1
(5) γk(xy) = xkγk(y) for x ∈ C(A)0 and y ∈ C(A)≥2
(6) γk(γ2(x)) = γ2k(x)
(7) ∂γk(x) = (∂x)γk−1(x)
(8) u ∈ C(A)n a cycle then, for [u] ∈ πnA, δn([u]) = [γ2(u)].

Let A→ B be a map of simplicial commutative F2-algebras and ρ : C(A)→ C(B) the induced map of chain complexes.
Then for u ∈ C(A)n and all n > i ≥ 0

ρ(αi(u)) = αi(ρ(u))

where αi = Θn−i. Recall (1.4) that ϑ = α1.

Lemma 3.3. Let A→ B be a map of simplicial commutative F2-algebras and suppose πsA = 0 for s� 0. Let u ∈ C(A)n, n ≥ 3,
such that ρ(∂u) = 0. Then ρ(u) is a cycle in C(B) and ϑ r([ρ(u)]) = 0 in π∗(B) for r � 0 provided γ r2 (∂u) = 0 in C(A) for
r � 0.

Proof. First, in C(A), we have, by an induction using the formulas forΘi from Section 2.2, that

∂ϑ r(u) = γ r2 (∂u).

Since γ r2 (∂u) = 0 for r � 0 and Hs(C(A)) = 0 for s� 0, it follows that ϑ
r(u) is a boundary in C(A) for r � 0. We conclude

that ϑ r([ρ(u)]) = [ρ(ϑ r(u))] = 0 in π∗(B). �

Corollary 3.4. Let A→ B be a level-wise surjection of simplicial commutative F2-algebras such that γ2 acts locally nilpotently
on (∂C(A)) ∩ ker ρ and πsA = 0 for s� 0. Then B is André nilpotent.

Proof. Given x ∈ πnB with n ≥ 3, let w ∈ C(B)n be a cycle representitive for x and choose u ∈ C(A) such that ρ(u) = w.
Then ρ(∂u) = 0 and γ r2 (∂u) = 0 for r � 0 by assumption. Thus ϑ

r(x) = 0 for r � 0 by Lemma 3.3. �

Proof of Theorem E. Let A be a cofibrant simplicial commutative R-algebra with finite Noetherian homotopy, R → π0A a
surjection, and R a Cohen–Macaulay ring of characteristic 2. Assume further that Ds(A|R;−) = 0 for s � 0, as a functor of
π0A-modules. Note thatAhas an induced simplicialF2-algebra structure. Now, choose a p ∈ Spec(π0A) and a local homotopy
reduction, (R′,m)→ A′, of A at p, which exists by Proposition 3.1. We then have, by Proposition 3.1, [17], and [27, Section 5],
that (R′,m) is a Cohen–Macaulay ring of depth zero and, hence, locally Artin.
We will now show that A′ is André nilpotent at p. Let ` = k(p) (so that char(`) = 2). Let B = A′⊗L

R′ ` = A
′
⊗R′ `. Then

C(B) ∼= C(A′)⊗R′ ` ∼= C(A′)/mC(A′). (3.12)
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Thus ρ : C(A′)→ C(B) is a surjection and ker ρ = mC(A′). Since R is locally Artinian,

ms = 0 s� 0. (3.13)

Cf. [27, 2.3]. Let a, b ∈ m and let x, y ∈ C(A′) of degrees≥ 2. By Proposition 3.2 (3) and a straightforward induction,

γ r2 (ax+ by) = a
2r γ r2 (x)+ b

2r γ r2 (y) modulo decomposables.

Thus, by (3.13) and Proposition 3.2 (4), γ r2 (ax+ by) = 0 for r � 0. Hence, by a further induction, γ2 acts locally nilpotently
on mC(A′). Therefore, by Corollary 3.4, B is André nilpotent. Finally,

B = A′⊗L
R′ `
∼= (A⊗R R′)⊗R′ ` ∼= A⊗R ` ∼= A(p)

so A(p) is André nilpotent. �
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