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Abstract

This paper contains several shrinking theorems for decompositions of 4-dimensional manifolds.
Let f :M→X be a closed, cell-like mapping of a 4-manifoldM onto a metric spaceX and letY be
a closed subset ofX such thatX−Y is a 4-manifold andY is locally simply co-connected inX. The
main result states thatf can be approximated by homeomorphisms ifY is a 1-dimensional ANR.
The techniques of the proof also show thatf can be approximated by homeomorphisms in caseY

is an arbitrary 0-dimensional closed subset. Combining the two results gives the same conclusion in
caseY contains a closed, 0-dimensional subsetC such thatY −C is a 1-dimensional ANR.

The construction in the paper also gives a proof of a taming theorem for 1-dimensional ANRs.
 2001 Elsevier Science B.V. All rights reserved.

Keywords:Cell-like mapping; 4-dimensional manifold; Codimension 3; Shrinking theorem; Locally
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1. Introduction

An important problem in the topology of manifolds is the problem of understanding
cell-like images of manifolds. This study began with the work of Moore in dimension two
and continued with the work of Bing in dimension three. In studying cell-like images of
n-manifolds,n> 5, a fundamental tool is a marvelous recognition criterion for detecting
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manifolds. It is provided by Edwards’ Cell-like Approximation Theorem [6], which assures
that such an image space is a genuine manifold if it is finite-dimensional and has a minimal
general position feature known as the Disjoint Disks Property.

No comparable recognition criterion is known for 4-manifolds, but we take a step in
that direction here. One of the ingredients in the proof of Edwards’ result is a 1-LCC
Shrinking Theorem, first conjectured by Cannon [2]: iff :M→X is a cell-like mapping
defined on ann-manifold andX contains a closed(n − 3)-dimensional subsetY such
thatX − Y is ann-manifold andY is 1-LCC embedded inX (the term is defined later),
thenf is a near-homeomorphism (that is,f can be approximated, arbitrarily closely, by
homeomorphisms). In particular, the 1-LCC Shrinking Theorem implies thatX is ann-
manifold homeomorphic toM. Our main result is the following special case of the 1-LCC
Shrinking Theorem in dimension 4.

1-LCC Shrinking Theorem for ANRs . Letf :M→X be a closed, cell-like mapping of
a 4-manifoldM onto a metric spaceX and letY be a closed subset ofX. If

(1) X− Y is a 4-manifold,
(2) Y is 1-LCC inX, and
(3) Y is a 1-dimensional ANR,

thenf is a near-homeomorphism(andX is a 4-manifold).

The analogous theorem in high dimensions is true without the hypothesis thatY is
an ANR, but we do not know whether the 4-dimensional theorem is valid without that
hypothesis. The precise hypothesis that is actually needed in the proof is a version of
local simple connectivity. That hypothesis is satisfied by compacta that are not necessarily
ANR’s. For example, any 0-dimensional set also satisfies the necessary hypothesis. Hence
the proof has the following corollary. The corollary can also be proved by other techniques
and is well known to experts in the field. It seems, however, that it has not previously
appeared in print.

Corollary 1. Let f :M → X be a closed, cell-like mapping of a4-manifoldM onto a
metric spaceX and letY be a closed subset ofX. If

(1) X− Y is a 4-manifold,
(2) Y is 1-LCC inX, and
(3) Y is 0-dimensional,

thenf is a near-homeomorphism(andX is a 4-manifold).

Combining the two results gives the following slightly better corollary.

Corollary 2. Let f :M → X be a closed, cell-like mapping of a4-manifoldM onto a
metric spaceX and letY be a closed subset ofX. If

(1) X− Y is a 4-manifold,
(2) Y is 1-LCC inX, and
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(3) Y contains a closed,0-dimensional subsetC such thatY − C is a 1-dimensional
ANR,

thenf is a near-homeomorphism(andX is a 4-manifold).

As a by-product we obtain a proof for a special case of another result due to Edwards,
still unpublished [7], called the 1-LCC Taming Theorem. This theorem shows that the
local homotopy condition (the 1-LCC condition) that characterizes “tameness” in high-
dimensional manifolds has the same effect in dimension 4. Specifically, for a 1-dimensional
compact setY in a PL 4-manifoldM, Y is 1-LCC embedded inM if and only if Y has
embedding dimension 1. The latter means that for eachε > 0 there exists anε-regular
neighborhoodN of some 1-complex such that IntN ⊃ Y . Embedding dimension 1 is a
true tameness condition in this setting because, for example, two homotopic embeddings
of Y in M are ambient isotopic if both images have embedding dimension 1. Our methods
establish this tameness result for 1-dimensional ANRs.

1-LCC Taming Theorem for ANRs. If for i > 1, Yi is a 1-dimensional ANR and is a
1-LCC embedded, closed subset of a PL4-manifoldM, thenY =⋃∞i=1Yi has embedding
dimension1.

For several years we believed the techniques used here would prove the full strength
1-LCC Shrinking Theorem in dimension 4; however, the present manuscript should be
taken as an indication of the unsettled nature of that result.

2. Definitions, notation, and preliminary lemmas

All manifolds are assumed to be separable. A compact subsetA of a manifoldM is said
to be acell-like setif A can be deformed to a point in any neighborhood of itself. It is
well-known that cell-likeness is a topological property. A mapf :M→X is said to be a
cell-like mappingif f−1(x) is a nonempty cell-like subset ofM for everyx ∈X.

Supposef :M→X is a closed, cell-like mapping of a 4-dimensional manifoldM onto
a metric spaceX. We will used to denote the metric onM andρ to denote the metric on
X. We useN(f ) to denote thenondegeneracy set off ; i.e.,

N(f )= {x ∈M | {x} 6= f−1(f (x))
}
.

A subsetY of a metric spaceX is said to belocally 1-co-connected inX, abbreviated as
1-LCC inX, if for eachy ∈ Y and neighborhoodU of y there exists another neighborhood
V of y, V ⊂U , such that each map∂B2→ V −Y can be extended to a mapB2→U −Y .

Measuring closeness.Since we are not assuming that eitherM orX is compact, closeness
must be measured by a majorant functionε(x) > 0 rather than by a numberε > 0. All
majorant functionsε :X→ (0,∞) andδ :M→ (0,∞) are assumed to be continuous (even
where this is not explicitly stated). Iff,g :M→X, the statementρ(f,g) < ε means that,
for everyx ∈M, bothρ(f (x), g(x)) < ε(f (x)) andρ(f (x), g(x)) < ε(g(x)). A subset
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Z ⊂X has diameter less thanε if diamZ < ε(x) for everyx ∈ Z. (Soρ(f,g) < ε if and
only if diam{f (x), g(x)}< ε for everyx ∈M.) A homotopyµt :M→X is anε-homotopy
if the track of each point has diameter< ε.

Now suppose thatf :M → X is a closed cell-like mapping and that, in addition,X
contains a closed subsetY such thatX − Y is a 4-manifold. The following lemma allows
us to approximatef by another cell-like mapping whose nondegeneracy set is contained
in the preimage ofY .

Lemma 2.1. Supposef :M→ X is a closed, cell-like mapping of a4-manifoldM onto
a metric spaceX and that, in addition,X contains a closed subsetY such thatX − Y is
a 4-manifold. Then for everyε :X→ (0,∞) there exists a cell-like mappingg :M→ X

such that
(1) g|g−1(X− Y ) is a homeomorphism,
(2) g−1(Y )= f−1(Y ),
(3) g|g−1(Y )= f |f−1(Y ), and
(4) ρ(f,g) < ε.

Proof. This follows from Corollary 2.5 of [1]. 2
As a consequence of Lemma 2.1, there is no loss of generality in assuming, in the

statement of the main theorem, thatN(f )⊂ f−1(Y ). If, in addition,Y is 1-dimensional,
we can choose a pointx ∈M − f−1(Y ) and we may then replace the manifoldM in the
statements of the theorems with the manifoldM − {x}. By [8, Theorem 8.2],M − {x}
has a PL manifold structure. Thus we will assume henceforth that the manifoldM in the
statements of our theorems is a PL 4-manifold.

Definition. SupposeP is a polyhedron which is a closed subset ofM andδ :M→ (0,∞).
A δ-regular neighborhood ofP is a subpolyhedronV of M such thatV is a regular
neighborhood ofP and the regular neighborhood collapseV ↘ P induces aδ-homotopy
of V .

The fact thatY is 1-dimensional means thatY can be approximated by 1-dimensional
polyhedra. The approximating polyhedra may be lifted toM via the CE mapf . The next
lemma spells out how we will make use of that fact.

Lemma 2.2. Supposef :M→ X is a closed, cell-like mapping of a4-manifoldM onto
a metric spaceX and thatX contains a closed,1-dimensional subsetY such thatX − Y
is a 4-manifold. Then for everyε :X→ (0,∞) there exist an open neighborhoodU of
f−1(Y ), a 1-dimensional polyhedronP ⊂U , and a homotopyµt :U→M such that

(1) µ0(x)= x for everyx ∈U ,
(2) µ1(x) ∈ P for everyx ∈U ,
(3) µt |P is the identity for everyt , and
(4) f ◦µt is anε-homotopy.
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Proof. SinceX is a finite-dimensional cell-like image of a manifold, it is an ANR; hence
there existsδ :X→ (0,∞) such that for any spaceS and any two mapsh0, h1 :S→ X

satisfyingρ(h0, h1) < 2δ, h0 andh1 areε-homotopic; furthermore, the homotopy can be
required to be stationary at alls ∈ S for which h0(s)= h1(s). To obtainP , start with aδ-
open (relative toX) coverW of Y ; apply 1-dimensionality ofY to refineW to another open
coverW ′ of Y by connected sets, no three of which intersect; and identify the 1-complex
P ′ corresponding to the nerve ofW ′. Set

U ′ =
⋃

W ′∈W ′
W ′

andU = f−1(U ′). In the next paragraph we describe how to produce an embedding
λ :P ′ → U and, simultaneously, a retractionr :U→ P = λ(P ′) satisfyingρ(f ◦r, f ◦ ι) <
2δ (whereι denotes inclusionι :U ↪→ M). Hence,f ◦ r andf ◦ ι areε-homotopic via
a homotopyHt fixing P pointwise. Lifting properties of cell-like maps (cf. [3, Theo-
rem 16.7] for a proof in the compact case) ensureHt can be approximately lifted to a
homotopyµt :U→M with the desired properties.

Assume no element ofW ′ is contained in the union of the others. For eachW ′ ∈W ′
selectv ∈ f−1(W ′) not belonging to the preimage of any otherW ′′ ∈ W ′; for each
intersecting pairW ′,W ′′ ∈W ′ choose an arca(W ′,W ′′) ⊂ f−1(W ′ ∪ W ′′) joining the
selected points. After a general position adjustment, the union of all sucha(W ′,W ′′) will
be a copyP of P ′. Require that the closures of the variousf−1(W ′ ∩W ′′) inM be pairwise
disjoint. Tietze’s Extension Theorem yields a retraction off−1(W ′ ∩W ′′)∪ a(W ′,W ′′) to
a(W ′,W ′′). For fixedW ′ ∈W ′, the unionPW ′ of all a(W ′,W ′′),W ′′ variable, is a compact
absolute retract, so the retraction partially defined on (a closed subset of)f−1(W ′) extends
to a retractionf−1(W ′)→ PW ′ , and the compilation of these piecewise defined retractions
produces the desiredr :U→ P . 2

A second important consequence of the fact thatY is 1-dimensional is thatY has
enough codimension so that 1-dimensional polyhedra can be pushed offY . In fact we
need the stronger property that 1-dimensional polyhedra can be pushed off the preimage of
a neighborhood ofY via a controlled homotopy.

Lemma 2.3. Supposef :M→X is a closed, cell-like mapping of a4-manifoldM onto a
metric spaceX and thatX contains a closed,1-dimensional subsetY such thatX − Y is
a 4-manifold. Then for everyε :X→ (0,∞) and every neighborhoodU of f−1(Y ) there
exists an open neighborhoodV of f−1(Y ) such that ifK is any1-dimensional polyhedron
in M then there exists a homotopyλt :K→M such that

(1) λ0(x)= x for everyx ∈K,
(2) λ1(x) ∈M − V for everyx ∈K,
(3) λt |K ∩ (M −U) is the identity for everyt , and
(4) f ◦ λt is anε-homotopy.

Proof. The techniques are standard, so we merely sketch the proof. LetK1 be the 1-
skeleton of a triangulation ofM whose mesh is small relative toε. It suffices to prove
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the lemma for the special caseK =K1; i.e., to find a neighborhoodV such thatK1 can be
pushed offV with a controlled homotopy. (In the general case, first use general position to
pushK intoK1 and then apply the homotopy ofK1 to complete the push ofK off V .)

Use the fact thatX is a 4-dimensional generalized manifold andY is 1-dimensional to
approximatef |K1 by a mapf1 :K1→ X − Y . SinceX − Y is a 4-manifold,f1 may be
approximated by an embeddingf2. BecauseX is an ANR, there is a small homotopy from
f |K1 to f2. The fact thatf is cell-like allows that homotopy to be lifted toM. DefineV
to be the preimage underf of a neighborhood ofY that missesf2(K1). 2

If, in addition, Y is 1-LCC, then 2-dimensional polyhedra may be pushed off the
preimage ofY .

Lemma 2.4. Supposef :M→X is a closed, cell-like mapping of a4-manifoldM onto a
metric spaceX and thatX contains a closed,1-dimensional subsetY such thatX − Y is
a 4-manifold. Then for everyε :X→ (0,∞) and every neighborhoodU of f−1(Y ) there
exists an open neighborhoodV of f−1(Y ) such that ifK is any2-dimensional polyhedron
in M then there exists a homotopyλt :K→M such that

(1) λ0(x)= x for everyx ∈K,
(2) λ1(x) ∈M − V for everyx ∈K,
(3) λt |K ∩ (M −U) is the identity for everyt , and
(4) f ◦ λt is anε-homotopy.

Proof. The proof is essentially the same as that of the previous lemma. The one difference
is that the 1-LCC property must be used to approximate a map from a 2-dimensional
polyhedron intoX by one that maps intoX− Y . 2

Finally, there is a point in the proof at which we needY to be an ANR. The last lemma in
this section spells out how that property will be used. The key point in the lemma is the fact
that the sameε′ works for all i. We will also make use of the fact that any 0-dimensional
closed set satisfies the conclusion of the lemma.

Lemma 2.5. SupposeX is a metric ANR andY is a closed subset ofX such thatY is
locally simply connected. For everyε :X→ (0,∞) there existε′ :X→ (0,∞) and a
nested sequence{U ′i } of neighborhoods ofY in X such that

⋂
U ′i = Y and any loop in

U ′i of diameter less thanε′ bounds a disk inU ′i−1 of diameter less thanε.

Proof. Given ε :X→ (0,∞), use the fact thatY is an ANR to chooseε1 :X→ (0,∞)
such that any loop inY of diameter less thanε1 bounds a singular disk of diameter less
thanε. Defineε′ = ε1/3. Then choose a nested sequence of neighborhoods{U ′i } of Y in
X such that there is anε′-deformation retraction ofU ′i to Y in U ′i−1. It is clear thatε′ and
{U ′i } satisfy the conclusions of the lemma.2
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3. Proof of the Main Lemma

The objective of this section is to prove the following theorem. A sequence of
applications of Theorem 3.1 will be used to establish the 1-LCC Shrinking Theorem.

Theorem 3.1. Supposef :M→ X is a closed, cell-like mapping of a PL4-manifoldM
onto a metric spaceX and thatX contains a closed,1-dimensional ANRY such that
N(f ) ⊂ f−1(Y ) and Y is 1-LCC in X. Then for everyε :X→ (0,∞) and for every
δ :M→ (0,∞) there exist a cell-like mapg :M→ X, a 1-dimensional polyhedronP in
M, and aδ-regular neighborhoodV ofP such thatN(g)⊂ g−1(Y )⊂ V andρ(f,g) < ε.

We useI to denote the closed unit interval[0,1] andπ :M × I →M to denote the
projection map.

Main Lemma. Supposef :M→ X and Y ⊂ X are as in Theorem3.1. Then for every
ε :X→ (0,∞) and for everyδ :M → (0,∞) there exist an open neighborhoodU of
N(f ), a closed1-dimensional polyhedronP ⊂ M, a δ-regular neighborhoodV of P ,
and a homeomorphismh :M × I→M × I such that

(1) h(x,0)= (x,0) for everyx ∈M,
(2) h(x,1) ∈ V for everyx ∈U , and
(3) f ◦ ht is anε-homotopy, whereht :M→M is defined byht (x)= π(h(x, t)).

Proof of Theorem 3.1 (assuming the Main Lemma). LetU ,P , V , andh be as in the
conclusion of the Main Lemma. Notice thath1 :M→M is a homeomorphism. Thus we
can defineg by g = f ◦ h−1

1 . Now N(g) = h1(N(f )), soN(g) ⊂ h1(U) ⊂ V . Since
ρ(f,f ◦ h1) < ε, we also haveρ(f ◦ h−1

1 , f ) < ε. Henceρ(f,g) < ε. 2
The idea of the proof of the Main Lemma. The remainder of this section is devoted to
the proof of the Main Lemma. The idea is to use a handle cancelling argument similar to
that in the proof of the Controlledh-cobordism Theorem [8, Theorem 7.2A] to construct a
special product structure onM × I . We will find a neighborhoodU of N(f ) and a regular
neighborhoodV of a 1-dimensional polyhedronP and then construct the product structure
to have two properties: first, any fiber that starts out inU × {0} must end inV × {1} and,
second, the projection of each fiber intoX must be small. Thus there are two forms of
control that must be maintained at all times during the argument: the first ensures that
fibers move towardsP and the second ensures that each fiber has small image inX.

Although it is possible to apply a 4-dimensional Controlledh-cobordism Theorem, we
prefer to work out the proof by hand, explaining how to cancel handles of various indices.
The reason for doing this is that it is just as difficult to explain how to construct the
controlled deformations needed in the hypotheses of the Controlledh-cobordism Theorem
as it is to explain how to cancel the handles. In addition, we think the proof is geometrically
clearer if we explain how to construct the product structure directly.
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The logical structure of the proof. Rather than spell out all theε’s andδ’s before hand,
we will start the construction at the beginning and work through it. As we go, we will
highlight the conditions that must be met in order to achieve the necessary control. This
is not the strictly logical way in which to present the proof, but we believe it is the best
way to present the geometric ideas that support the proof. In order to produce the strict
logical version of the proof, one would have to make a first pass through the proof noting
all the conditions that must be satisfied and then go back to the beginning of the proof and
construct the regionsRi , below, in such a way that all these conditions are satisfied.

Construction of the regionsRi . Fix n (a large positive integer to be specified later). We
will construct a finite sequenceR0,R1, . . . ,Rn of regions inM × I with R0⊃R1⊃R2⊃
· · · ⊃Rn. EachRi , i > 0, will consist of two parts:

(1) Ui−1× [0,1/(i + 1)) for some open neighborhoodUi−1 of N(f ), and
(2) {(x, t) ∈M × I | 1/(i + 1) 6 t 6 1 andx ∈ Φit (Vi)} whereΦit is a PL isotopy of

M such thatΦit is the identity for 06 t 6 1/(i + 1) andVi is the interior of a thin
regular neighborhood of a 1-dimensional polyhedronPi ⊂Ui .

The first part is called thethick partof Ri while the second part is called thethin part of
Ri . The 2-dimensional polyhedron

Ci =
{
(x, t) ∈M × I | 1/(i + 1)6 t 6 1 andx ∈Φit (Pi)

}
is called thecore of the thin part ofRi . Notice that the core of the thin part is 2-
dimensional andM × I is 5-dimensional, so 2-dimensional polyhedra inM × I can be
general positioned offCi . Note too thatRi ∩ (M × {1})= Φi1(Vi)× {1}, which is a thin
regular neighborhood of the 1-dimensional polyhedronΦi1(Pi)×{1}. The various isotopies
Φit will all move points approximately the same amount, limited by a specified function of
the initially givenε andδ.

Begin withR0 =M × I . To get started, letU0 denote the preimage underf of the ε-
neighborhood ofY in X. Then apply Lemma 2.2 to obtain an open neighborhoodU1 of
N(f ), a 1-dimensional polyhedronP1⊂U1, and a homotopyµ1

t :U1→U0 which pushes
U1 into P1 in a controlled way. LetV1 be the interior of a thin regular neighborhood ofP1

in U1 and set

R1=U0× [0, 1
2)∪ V1× [12,1].

The isotopyΦ1
t is the identity.

We next explain how to constructR2. Apply Lemma 2.2 again to obtain a smaller
neighborhoodU2 of N(f ), a 1-dimensional polyhedronP2 ⊂ U2, and a homotopy
µ2
t :U2→ U1 that pushesU2 into P2 in a controlled way. SinceP2 is 1-dimensional and
M is 4-dimensional, there is a PL isotopyφ2

t :M→M such thatφ2
t |P2 is close toµ1

t |P2.
We may assume thatφ2

t is the identity for 06 t 6 1
3 and thatφ2

t = φ2
1 for 1

2 6 t 6 1. The
track ofµ1

t is contained inU0, so we may also assume thatφ2
t |M −U0 is the identity. Set

Φ2
t =Φ1

t ◦ φ2
t . (SinceΦ1

t is the identity,Φ2
t = φ2

t .) TakingV2 to be the interior of a thin
regular neighborhood ofP2, we can define

R2=U1× [0, 1
3)∪

{
(x, t) ∈M × I | 1

3 6 t 6 1 andx ∈Φ2
t (V2)

}
.
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Fig. 1.

The regionsR1 andR2 are pictured in Fig. 1.
The construction ofR3 is similar. By Lemma 2.2 there exist a neighborhoodU3 of

N(f ), a 1-dimensional polyhedronP3 ⊂ U3, and a homotopyµ3
t :U3→ U2 that pushes

U3 intoP3 in a controlled way. Again,µ2
t |P3 can be approximately covered by a PL isotopy

φ3
t :M→M such thatφ3

t is the identity for 06 t 6 1/4, is constant fort > 1/3, and is the
identity outsideU1; with appropriate controls onµ2

t andφ3
t , the compositeΦ3

t =Φ2
t ◦ φ3

t

will not move points ofM much more thanΦ2
t does. TakeV3 to be the interior of a thin

regular neighborhood ofP3. Then we can defineR3 as follows.

R3=U2× [0, 1
4)∪

{
(x, t) ∈M × I | 1

4 6 t 6 1 andx ∈Φ3
t (V3)

}
.

The construction is continued inductively. It results inn + 1 regionsR0,R1, . . . ,Rn. In
later statements it will be convenient to haveRj defined for every integerj . Hence we
defineRj =R0 for j < 0 andRj = ∅ for j > n.

Constructing the homeomorphismh. Start with thin (closed) collarsC0 and C1 of
M × {0} andM × {1}, respectively, inM × I . Then take a handle decomposition of the
remainder,M × I − (C0 ∪ C1). The handle decomposition contains handles of indices 0,
1, 2, 3, 4, and 5. We useH to denote the collection of handles,Wi to denote the union of
C0 and all handles of index6 i, andWj to denote the union ofC1 and all handles of index
> j . Let

∂+Wi = ∂Wi −
(
M × {0}) and ∂+Wj = ∂Wj − (M × {1}).

Note that∂+Wi = ∂+Wi+1. The diameter of the handles inH should be small relative to
the distance between the frontiers of the regionsRi . In particular, make the handles so
small that ifH is a handle andH ∩ Ri 6= ∅ for somei, thenH ⊂ Ri−1. Observe that for
each handleH ∈H there exists ani such thatH ⊂Ri−1−Ri+1.
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Fig. 2.

We will use the handle decomposition to construct a new product structure onM × I .
This product structure serves as the image ofh :M×I→M×I and thus implicitly defines
h. In the proof below, the handles will be absorbed, one at a time, into the collarsC0 and
C1. At the end of this procedure there will be no handles left and so the collarsC0 andC1

will exactly coverM × I and their union will define a product structure onM × I . This
product structure will be the one we seek provided we maintain size control during the
construction. As mentioned earlier, there are two kinds of control to be considered.

The first kind of control is meant to ensure that fibers that start nearN(f ) end inV1.
This will be accomplished by requiring that at each step of the proof there is an integerk

such that
(a) if H ∈H andH ∩Ri 6= ∅, thenH ⊂Ri−k , and
(b) if α is a fiber arc in the product structure of eitherC0 orC1 and ifα ∩ Ri 6= ∅, then

α ⊂Ri−k .
Note that the two conditions above make sense even ifk > i.

The collars and the handle decomposition have been chosen so thatk = 1 satisfies these
conditions at the beginning of the proof. As we work through the proof, we will see that
the value ofk must increase. This will happen only a finite number of times, so at the end
of the proof there will still be a finite numberk with the two properties listed above. Thus,
at the end of the proof, the union of the two collars will define a product structure with the
property that ifα is a fiber arc in the product structure and ifα ∩Ri 6= ∅, thenα ⊂ Ri−2k .
In particular, ifα ∩ (Ui × {0}) 6= ∅, thenα ⊂ Ri−2k and soα ∩ (M × {1}) is a point in
Φi−2k

1 (Vi−2k). We choosen� 2k so that any fiber that begins inUn × {0} will end in
V1× {1}.

The second kind of control is control inX. We require that, at each stage of the proof,
diamf (π(H)) and diamf (π(α)) are small inX for every handleH and for every fiber
arcα in the product structure of eitherC0 or C1. This is true at the beginning of the proof
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simply because each handle and each collar arc is small inM×I . During the proof both the
handles and the collar arcs will grow in size (as measured inM× I ), so it will be necessary
to impose additional conditions on the construction of the regionsRi in order to control
the size of the projections inX. After each step of the proof the necessary conditions will
be highlighted.

Cancelling 5-handles.Let H 5 be a 5-handle inH. There exists ani such thatH 5⊂ Ri
butH 5 6⊂Ri+1. It follows thatH 5∩Ri+k+1= ∅. Letβ1 be a vertical arc fromH 5 straight
up to a levelUi−1×{s} that is higher than the thick part ofRi+k+1. Then use the homotopy
µi−1
t to find an arcβ2 in Ui−2× {s} that joins the endpoint ofβ1 to a point directly below

the thin part ofRi−1. By general position, we may assume thatβ2 misses the thin part of
Ri+k+1. Finally, letβ3 be an arc from the endpoint ofβ2 that follows the thin part ofRi−1

up toM×{1}. In this way we construct an arcβ = β1∗β2∗β3 such thatβ ⊂Ri−1−Ri+k+1

andβ joins a point ofH 5 to a point ofM × {1}. Use general position to homotopeβ off
the cores of the handles of index6 3 and off the cocores of the handles of index> 4 so
thatβ ⊂ ∂+W4 = ∂+W3. This will increase the number of regionsβ can intersect, but by
at mostk regions in each direction; thusβ ⊂Ri−1−k −Ri+2k+1. From the point of view of
the top of the cobordism,H 5 looks like a 0-handle. Useβ to introduce a small cancelling
handle pair(H 4,H 3). From the point of view of the top of the cobordism the new handles
have indices 1 and 2, but from the point of view of the bottom of the cobordism they have
indices 4 and 3. The new 4-handleH 4 geometrically cancelsH 5 in the sense that their
union is a 5-cell attached toC1 along a face. We absorb this 5-cell intoC1. This removes
H 5 andH 4 fromH. The net effect is to trade the 5-handleH 5 for the new 3-handleH 3.

Size control The new handleH 3 introduced in the handle trade spills across more regions
than did the original handles and the same is true of the fiber arcs in the new collarC1.
Specifically,H 3⊂ Ri−1−k − Ri+2k+1, so we must replace the oldk by a newk which is
3 · (oldk)+ 2. We now havek = 3 · 1+ 2= 5. All the objects in the previous paragraph
are small inM × I except for the arcβ . But β1 projects to a point inX, while β2 follows
the track of a point underµi−1

t andβ3 follows the track of some point underΦi−1
t . Hence

each of the three projects to a small arc inX.

Cancelling 0-handles.Let H 0 be a 0-handle inH. There exists ani such thatH 0⊂ Ri
butH 0 6⊂Ri+1. It follows thatH 0∩Ri+k+1= ∅. Choosex ∈ ∂H 0. Construct an arcβ3 in
Ri − Ri+k+1 joining x to a pointx ′ ∈ Ui−1 × {s}. (Hereβ3 can either be vertical, ifx is
belowUi−1 × {s}, or lie in the track of some point underΦit .) Choosey ∈ Ui−1 − Ui
so thatf (π(x ′)) and f (y) are close. Specify a vertical arcβ1 from (y,0) to a level
Ui−1×{s} ⊂Ri higher than the thick part ofRi+k+1. Finally, letβ2 be an arc inUi−1×{s}
joining (y, s) to x ′. By general position we may assume thatβ2 missesRi+k+1. The path
β = β1 ∗ β2 ∗ β3 joins x to M × {0}, and it can be chosen so thatβ ⊂ Ri−1 − Ri+k+1

andf (π(β)) is small inX. Use the collar structure to pushβ out of C0 ∪ C1 and then
use general position to pushβ into ∂+W1. This leavesβ ⊂ Ri−2k−1− Ri+3k+1. Useβ to
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introduce a new(1,2)-handle pair and then absorbH 0 and the new 1-handle intoC0. In
this wayH 0 is traded for a new 2-handle.

Size control The newk is 5 · (oldk)+ 2. Thusk = 27. The arcβ has a small projection
intoX. There is one new form of size control needed in order that the arcβ2 exist and have
small projection inX.

Additional requirement on the construction of regionsThe neighborhoodsUi must be
chosen to satisfy the following additional requirement.

(AR1) Any pointx ′ ∈Ui−1 may be joined by a pathβ in Ui−1 to a pointy ∈Ui−1−Ui
in such a way thatf (β) is small inX.

Remark. One convenient way to achieve (AR1) is to incorporate it into the proof of
Lemma 2.2. Using the facts thatY is 1-dimensional andf is cell-like, we can build the
1-dimensional polyhedronP so thatP ⊂ U − f−1(Y ). This refinement in Lemma 2.2
would allow us to chooseUi so thatUi ∩ Pi−1 = ∅. Then the arcβ is simply an initial
segment of the track ofx ′ under the homotopyµi−1. Lemma 2.3 can also be used.

Cancelling 4-handles.LetH 4 be a 4-handle inH. As before, there exists ani such that
H 4 ⊂ Ri butH 4 6⊂ Ri+1; henceH 4 ∩ Ri+k+1 = ∅. Let α be the cocore ofH 4. Thenα
is an arc beginning and ending on∂+W4. But H no longer contains any 5-handles, so
W4 =W5 andα begins and ends on∂C1. For each endpoint ofα, add the corresponding
collar arc inC1. The result is a new arĉα which begins and ends onM × {1} and satisfies
α̂ ⊂ Ri−k − Ri+2k+1. We claim that there is a controlled homotopy that pushesα̂ up
to the top ofM × I , keeping the endpoints of̂α fixed. To accomplish this, first push
α̂ vertically so that it lies entirely in one levelM × {s}, a little above the thick part of
Ri+2k+1, together with the thin part ofRi−k . Then use the homotopyµi−k−1

t in the level
M × {s} to pull it into the thin part ofRi−k . Next push the arc up through the thin part
of Ri−k , moving parallel to the core ofRi−k . By general position we may assume that
the tracks of the last two homotopies miss the thin part ofRi+2k+1. The track of the
homotopy forms a singular diskD ⊂ Ri−k−1 − Ri+2k+1. PushD out of the two collars;
this leavesD ⊂ Ri−2k−1−Ri+3k+1. Finally, use general position to pushD off the cores
of the 1- and 2-handles and off the cocores of the 4- and 3-handles. After performing all
these homotopies we haveD ⊂ ∂+W2= ∂+W3 andD ⊂Ri−3k−1−Ri+4k+1. Now useD
(desingularized) to introduce a new(2,3)-handle pair and cancelH 4 together with the new
3-handle by absorbing them intoC1. This has the effect of tradingH 4 for a new 2-handle.

Size control The diskD has small size inX because it is formed using the homotopies
µi−kt andΦi−kt . The newk is 7 · (oldk)+ 2. Thusk = 191.

Cancelling 1-handles.LetH 1 be a 1-handle and choosei such thatH 1⊂ Ri −Ri+k+1.
Letα be the core ofH 1; thenα is an arc joining two points of∂C0. Add toα the two collar
arcs inC0 corresponding to the endpoints ofα. The result is an arĉα ⊂ Ri−k −Ri+2k+1

joining two points in(Ui−k−1 − Ui+2k)× {0}. Push the arĉα parallel to the thin part of
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Ri−k into a level(Ui−k−1− Vi+2k+1)× {s} a little above the thick part ofRi+2k+2. Then
use the fact thatY is 1-dimensional to find a homotopy ofα̂ in that level that pushes
α̂ off Ui+2k+1 × {s} and keeps the endpoints fixed. Finally, push the arc straight down
into M × {0}. The track of the juxtaposition of these three homotopies forms a diskD.
By general position, we may assume that this disk misses the thin part ofRi+2k+2. Thus
D ⊂Ri−k−1−Ri+2k+2. PushingD off the collars leavesD ⊂Ri−2k−1−Ri+3k+2. Pushing
D into ∂+W2 leavesD ⊂Ri−3k−1−Ri+4k+2. UseD to introduce a new(2,3)-handle pair.
The new 2-handle cancelsH 1, so the two can be absorbed into the collarC0. This entire
procedure has the net effect of tradingH 1 for a 3-handle.

Size control The newk is 7 · (old k)+ 4. Thusk = 1341. The diskD has small size in
X as long as we impose the following additional requirements on the construction of the
regionsRi .

Additional requirement on the construction of regionsIn order for the diskD, above, to
satisfyf (π(D)) is small inX, we must add another requirement on the construction of the
regionsRi .

(AR2) If α is an arc inUi−k−1 such that the endpoints ofα are inUi−k−1−Ui+2k , then
there is a homotopy ofα, rel endpoints, to an arcβ ⊂ Ui−k−2− Ui+2k+1 such
that the homotopy is small inX.

This condition can be achieved by use of Lemma 2.3.

Cancelling 2- and 3-handles.At this point, our handle decompositionH contains only
handles of indices 2 and 3, attached toC0. For the remainder of the proof it will be
convenient to work with the dual handle decomposition,H∗, which also consists only
of 2- and 3-handles, but attached toC1. We will useW∗2 to denote the union ofC1

and all the 2-handles inH∗ and W∗3 to denoteW∗2 union the 3-handles ofH∗. Let
∂+W∗2 = ∂W∗2 − (M × {1}). In the 4-manifold∂+W∗2 there are two collections of 2-
spheres: the belt spheres for the 2-handles (the B-spheres) and the attaching spheres for
the 3-handles (the A-spheres). We would like to change the handle decomposition so that
each A-sphere intersects exactly one B-sphere and the two intersect transversely in one
point. Of course we must do this while maintaining size control.

In order to complete the proof, we must analyze the boundary homomorphism

∂ :H3(W
∗
3 ,W

∗
2 )→H2(W

∗
2 ,C1).

The groupH3(W
∗
3 ,W

∗
2 ) is free Abelian with the 3-handles as generators and the group

H2(W
∗
2 ,C1) is free Abelian with the 2-handles as generators. SinceM × I is a product,

∂ must be an isomorphism. We need to prove that∂ is an isomorphism with geometric
control in the sense of [9]. The control space isX× I . In order to define geometric module
structures onH3(W

∗
3 ,W

∗
2 ) andH2(W

∗
2 ,C1), we must define a control mapc :M × I →

X× I . First definer :M× I → I by definingr to be equal toi/n on the frontier ofRi and
then using the Tietze Extension Theorem to extendr to a continuous map of all ofM × I
into I such thatr(Ri−Ri+1)⊂ [i/n, (i+1)/n] for eachi. Then definec :M× I→X× I
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by c(x)= (f (π(x)), r(x)). Notice that this one control map captures both kinds of control
that we need: ifc(x) andc(y) are close inX × I , thenf (π(x)) is close tof (π(y)) in X
and there must bei andj with |i − j | small relative ton such thatx, y ∈ Ri −Rj .

The remainder of the proof consists of two parts. First we will show that for everyδ :X×
I → (0,∞), we can construct the regionsRi and the handle decompositionH∗ in such a
way that∂ is aδ-isomorphism in the sense of [9]. Once this is accomplished, we apply [9,
Theorem 8.4] to show that∂ can be deformed to a geometric isomorphism. This means
that the handle decomposition can be adjusted so that∂ is represented algebraically by the
identity matrix, and the A-spheres and the B-spheres have good algebraic intersections. In
particular, each A-sphere has algebraic intersection number 1 with one of the B-spheres
and algebraic intersection number 0 with all the others. Furthermore, the intersections are
controlled in the sense that the excess geometric intersection points can be paired off so
that each pair has a singular Whitney disk whose projection intoX × I is small. The
final step is to apply the Controlled Disk Embedding Theorem [8, Theorem 5.4] to get
embedded Whitney disks. The proof is then complete because the Whitney trick can be
used to remove excess points of intersection between the A-spheres and the B-spheres and
then the handles can be cancelled in pairs.

Diagonalizing the boundary homomorphism. We must show that for anyδ :X × I →
(0,∞), the construction can be done in such a way that∂ is a δ-isomorphism. Since∂
is obviously an isomorphism, this means that we must prove that both∂ and∂−1 areδ-
homomorphisms.

If H 3 is a 3-handle and∂(H 3)= n1H
2
1 + · · ·+ njH 2

j , thenH 3 must intersect eachH 2
i .

The first coordinates ofc(H 3) andc(H 2
i ) will be close because the diameter off (π(H))

is small for every handleH ∈H∗. TheI -coordinates ofH 3 andH 2
i will differ by at most

3k/n. Thus we can make∂ a δ-homomorphism for anyδ by simply choosingn to be large
relative tok.

LetH 2 be a 2-handle. There exists ani such thatH 2⊂ Ri−Ri+k . We define a homotopy
ψt which pushesH 2 up to the top level without pushing it intoRi+k . The homotopy
ψt :M × I→M × I is defined by

ψt (x, s)=
{
(x, s) if s > t ,
(Φi+kt (x), t) if s < t.

Notice thatψt deformsM × I toM × {1} and that it moves points parallel to the thin part
of Ri+k . In particular, ifz is any point in the complement ofRi+k , then the entire track of
z underψt missesRi+k . Consider the track ofH 2 underψt . We can adjustψt |H 2 so that
it consists of a finite sequence of handle slides, each slide being a slide ofH 2 over one of
the 3-handles. This allows us to writeψ(H 2× I)=m1H

3
1 + · · ·+mjH 3

j , where eachH 3
`

is a 3-handle which missesRi+2k . Thus

∂(m1H
3
1 + · · · +mjH 3

j )=H 2

or

∂−1(H 2)=m1H
3
1 + · · · +mjH 3

j .
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This almost gives us what we need. It does show that∂−1 is small in theX coordinate
of the control spaceX × I since the homotopyψ projects to a small homotopy inX. The
vertical push also satisfiesψ((Ri−Ri+1)×I)⊂ (M×I)−Ri+1, so the homotopyψ only
decreases coordinates in theI direction. Thus the equations above show that∂−1 does not
increaseI coordinates by more thank/n. In order to show that∂−1 does not decreaseI
coordinates by much, we construct a second deformation retraction ofM × I toM × {1}
which has that property. Fix ani such thatH 2⊂Ri butH 2 6⊂Ri+1. In the construction of
Ri there was a controlled homotopyµit which pushesUi into Pi , keepingPi fixed. Define
ξt :Ri→ Ri−1 to be the homotopy which doesµi−1

t on each level of the thick part ofRi
during the first half of the time interval and then deformation retracts the thin part ofRi−1

up toM×{1} during the second half of the interval. Notice thatf ◦π ◦ ξt is small inX and
that ξt (Ri)⊂ Ri−1 for everyt . Just as above, this allows us to write∂−1(H 2) as a linear
combination of 3-handles such that for each 3-handleH 3

j in the sum, the second coordinate

of c(H 3
j ) is greater than or equal tor(H 2)− (k + 1)/n. Thus we conclude that∂−1 does

not decreaseI coordinates by much either and hence∂−1 can be made aδ-homomorphism
for anyδ.

Controlled disk embedding. All that remains in order to complete the proof is to use the
Whitney trick in the middle level∂+W∗2 to separate the A-spheres and the B-spheres. In
the preceding step of the proof we saw that for each A-sphere there is a B-sphere such that
the two spheres have algebraic intersection number 1 and all other algebraic intersection
numbers between A- and B-spheres are zero. Furthermore, any excess intersection points
can be paired off so that each pair has a Whitney loop whose image inX × I is small.
Each of these Whitney loops must bound a small singular Whitney disk. This imposes an
additional requirement on the construction of theRi . Each loop can be pushed vertically
into a level in the thick part of anRi , so the following condition will give what we need.

(AR3) If α :S1→ Ui is a map such thatf (α(S1)) is small inX, thenα extends to
ᾱ :B2→ Ui−1 such that the diameter off (ᾱ(B2)) is small inX.

Remark. It is at this point in the proof that the hypothesis thatY is an ANR is crucial.
In condition (AR3), “small” means small relative to the originalε in the statement of the
Main Lemma. Since all the isotopiesΦit move points approximately the same amount, it
is not possible to make the A- and B-spheres that lie inRi get progressively smaller asi
increases. Instead their sizes are all controlled by the sameε which must be chosen and
fixed at the beginning of the proof when the first regionR1 is constructed. SinceY is an
ANR, it satisfies the hypotheses of Lemma 2.5. Hence that lemma can be used to achieve
(AR3).

We now want to use the Whitney trick to make the geometric intersections match
the algebraic intersection numbers. In order to do that we must find controlled, framed,
embedded Whitney disks for the excess intersection points of the A-spheres and the B-
spheres. This part of the proof is exactly the same as the corresponding part of the usual
proof of the Controlledh-cobordism Theorem which can be found on pages 110 and
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111 of [8]. We have completed the portion of the proof corresponding to the first two
paragraphs starting in the middle of p. 110. The remainder of the proof consists of four
parts: First we must construct small immersed transverse (unframed) spheres for the A-
spheres and the B-spheres separately. (See the last full sentence on the bottom of p. 110.)
Second, as noted on the bottom of p. 110 and the top of p. 111, the unframed transverse
spheres can be used to construct small framed transverse spheres and then immersed
Whitney disks for the extra points of intersection. (The details of the uncontrolled
version of this argument are given on pp. 104–106 of [8].) Third, the embedded disks
must be constructed by an application of the Controlled Disk Embedding Theorem [8,
Theorem 5.4]. Finally, the Whitney trick is used to remove all the excess intersection
points.

After the excess intersection points have been removed the A-spheres and the B-spheres
will intersect in pairs but will have no other points of intersection in∂+W∗2 . This means that
the 2-handles and the 3-handles in the handle decomposition will cancel in pairs. Hence
we can absorb all the handles into the collars and arrive at the desired controlled product
structure onM × I .

Thus the proof of the Main Lemma will be complete once we verify two things:
the A-spheres and the B-spheres separately have controlled transverse spheres, and the
hypotheses of the controlled disk embedding theorem are satisfied.

The existence of transverse spheresLet a be one of the A-spheres. Thena is the attaching
sphere of a 3-handleH 3∗ ∈H∗. Dually, we can viewH 3∗ as a 2-handleH 2 ∈H. LetD be
a 2-disk in∂H 2 parallel to the core ofH 2. ThenD intersectsa in exactly one point and
∂D ⊂ ∂C0. Form a larger diskD′ by adding toD the product annulus that∂D spans in
C0. ThenD′ still intersectsa in exactly one point and∂D′ ⊂ (Ui−k−1−Ui+2k)× {0} for
somei. Form a transverse sphere fora by taking the union ofD′ and a singular disk in
(Ui−k−2−Ui+2k+3)×{0} spanned by∂D′. In order to make this transverse sphere a subset
of ∂+W∗2 , we must push it into∂C0−M × {0} and then out of the attaching regions of the
2-handles. Note that these operations force us to increase the size ofk. Specifically, the
newk is 7· (old k)+ 3.

In a similar way we can construct a transverse sphere for each of the B-spheres. Ifb is a
B-sphere, thenb is the belt sphere of a 2-handleH 2∗ ∈H∗. Thus a disk in∂H 2∗ parallel to
the core ofH 2∗ intersectsb in exactly one point and has its boundary in∂C1. We can add an
annulus inC1 to form a disk whose boundary is a loop in(Vi−k−Vi+2k+1)×{1}. This loop
bounds a singular disk inVi−k−1 by the argument given above under “diagonalizing the
boundary homomorphism” (where it was shown that∂−1 does not increase theI coordinate
much). The fact thatVi+2k+1 has a 1-dimensional spine allows us to use a general position
adjustment to make the disk disjoint fromVi+2k+1. The union of the two disks is the
transverse sphere we need.

In order to control the sizes of these transverse spheres for the A-spheres we need the
Ri to satisfy the following additional requirement.
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Additional requirement on the construction of regionsIn order for the transverse spheres
constructed above to be small inX×I, we must impose one additional requirement on the
construction of the regionsRi .

(AR4) If α :S1→ Ui−k−1−Ui+2k+2 is a map such thatα extends toα′ :B2→Ui−k−1

with the diameter ofα′(B2) small, thenα extends tōα :B2→ Ui−k−2−Ui+2k+3

such that the diameter off (ᾱ(B2)) is small inX.
The existence of such an extensionᾱ follows from Lemma 2.4.

The hypotheses of the Controlled Disk Embedding Theorem are satisfiedThere are
two hypotheses: the control map must have a kind of(δ,1)-connectedness property
and the immersed Whitney disks must haveδ-algebraically transverse spheres withδ-
algebraically trivial intersections. The fact that the immersed Whitney disks satisfy the
algebraic hypothesis is automatic in our situation. The uncontrolled proof of this is found
on p. 105 of [8]. As is noted on p. 111 of [8], this construction is really a controlled
construction. Thus the immersed Whitney disks haveδ-algebraically transverse spheres
with δ-algebraically trivial intersections.

The control mapc :M × I → X × I fails to be(δ,1)-connected overX × I , since it
is not surjective. However, for any loopα in M × I whose image underc is small,α
bounds a singular diskD whose image underc is also small. This follows from (AR3).
This property is close enough to(δ,1)-connectedness to allow the proof of the Controlled
Disk Embedding Theorem in [8] to go through.2

4. Proofs of the shrinking and taming theorems

Proof of the 1-LCC Shrinking Theorem for ANRs. Apply Theorem 3.1 recursively to
obtain a sequence{gi} of cell-like, surjective mappingsM→X as well as sequences{Pi}
of 1-dimensional polyhedra inM and {Vi} of regular neighborhoods such thatVi is a
(1/i)-regular neighborhood ofPi andN(gi) ⊂ g−1

i (Y ) ⊂ Vi . Impose controls to insure
{gi} converges to a cell-like mapg which is within ε of f and is 1–1 overX − Y , with
motion at later stages restricted so severely thatN(g) ⊂ g−1(Y ) ⊂ Vi for eachi. Then
g−1(Y ) has embedding dimension 1, by definition. Edwards’s 1-dimensional Shrinking
Theorem [5] (cf. [3, Theorem 23.2]) implies thatg (and, therefore,f ) can be approximated
within preassignedε by a homeomorphismM→X, as required. 2
Proof of Corollary 1. The proof of the corollary is the same as the proof of the 1-LCC
Shrinking Theorem for ANRs. The only point in the proof at which the ANR hypothesis
was needed was in the application of the Controlled Disk Embedding Theorem. The fact
thatY is 0-dimensional is sufficient to achieve Additional Requirement (AR3), so the proof
can be completed.2
Proof of Corollary 2. Application of the 1-LCC Shrinking Theorem for ANRs overX−C
yields thatX−C is a 4-manifold. Due to the hereditary nature of the 1-LCC condition,C

itself is 1-LCC inX. An application of Corollary 1 gives the desired result.2
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Proof of the 1-LCC Taming Theorem for ANRs. It suffices to check that eachYi has
embedding dimension 1 [4, Proposition 1.1(4)]. Fixε > 0 and apply Theorem 3.1 to
id :M→M, with ε/2 andY = Yi , to obtain a cell-like mappingg :M→M and a close
regular neighborhoodV of a 1-dimensional polyhedronP with IntV containingg−1(Yi).
By Lemma 2.1 we may assume thatg is a (small) homeomorphism. Thus we see thatg(V )

is a small regular neighborhood ofg(P ) with Intg(V )⊃ Yi . 2
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