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Abstract

This paper contains several shrinking theorems for decompositions of 4-dimensional manifolds.
Let f: M — X be a closed, cell-like mapping of a 4-manifalfi onto a metric spac& and letY be
a closed subset of such thatX — Y is a 4-manifold and’ is locally simply co-connected i&. The
main result states that can be approximated by homeomorphism¥ ifs a 1-dimensional ANR.
The techniques of the proof also show thfatan be approximated by homeomorphisms in dase
is an arbitrary O-dimensional closed subset. Combining the two results gives the same conclusion in
caseY contains a closed, 0-dimensional subSetuch thatr — C is a 1-dimensional ANR.

The construction in the paper also gives a proof of a taming theorem for 1-dimensional ANRs.
0 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important problem in the topology of manifolds is the problem of understanding
cell-like images of manifolds. This study began with the work of Moore in dimension two
and continued with the work of Bing in dimension three. In studying cell-like images of
n-manifolds,n > 5, a fundamental tool is a marvelous recognition criterion for detecting
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manifolds. Itis provided by Edwards’ Cell-like Approximation Theorem [6], which assures
that such an image space is a genuine manifold if it is finite-dimensional and has a minimal
general position feature known as the Disjoint Disks Property.

No comparable recognition criterion is known for 4-manifolds, but we take a step in
that direction here. One of the ingredients in the proof of Edwards’ result is a 1-LCC
Shrinking Theorem, first conjectured by Cannon [2]fifM — X is a cell-like mapping
defined on am-manifold andX contains a closed@: — 3)-dimensional subset such
that X — Y is ann-manifold andY is 1-LCC embedded iX (the term is defined later),
then f is a near-homeomorphism (that is,can be approximated, arbitrarily closely, by
homeomorphisms). In particular, the 1-LCC Shrinking Theorem implies Xhist an n-
manifold homeomorphic td/. Our main result is the following special case of the 1-LCC
Shrinking Theorem in dimension 4.

1-LCC Shrinking Theorem for ANRs. Let f: M — X be a closed, cell-like mapping of
a4-manifoldM onto a metric spac& and letY be a closed subset &f. If

(1) X —Y is a4-manifold,

(2) Yis1-LCCinX, and

(3) Y is al-dimensional ANR,
then f is a near-homeomorphisand X is a4-manifold.

The analogous theorem in high dimensions is true without the hypothesi¥’ tisat
an ANR, but we do not know whether the 4-dimensional theorem is valid without that
hypothesis. The precise hypothesis that is actually needed in the proof is a version of
local simple connectivity. That hypothesis is satisfied by compacta that are not necessarily
ANR'’s. For example, any 0-dimensional set also satisfies the necessary hypothesis. Hence
the proof has the following corollary. The corollary can also be proved by other techniques
and is well known to experts in the field. It seems, however, that it has not previously
appeared in print.

Corollary 1. Let f: M — X be a closed, cell-like mapping of &manifold M onto a
metric spaceX and letY be a closed subset &f. If

(1) X —Y is a4-manifold,

(2) Yis1l-LCCinX, and

(3) Y is O-dimensional,
then f is a near-homeomorphisand X is a4-manifold.

Combining the two results gives the following slightly better corollary.

Corollary 2. Let f:M — X be a closed, cell-like mapping of &manifold M onto a
metric spaceX and letY be a closed subset &f. If

(1) X —Y is a4-manifold,

(2) Yis1l-LCCinX, and
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(3) Y contains a closed)-dimensional subsef such thatY — C is a 1-dimensional
ANR,
then f is a near-homeomorphisand X is a4-manifold.

As a by-product we obtain a proof for a special case of another result due to Edwards,
still unpublished [7], called the 1-LCC Taming Theorem. This theorem shows that the
local homotopy condition (the 1-LCC condition) that characterizes “tameness” in high-
dimensional manifolds has the same effect in dimension 4. Specifically, for a 1-dimensional
compact set’ in a PL 4-manifoldM, Y is 1-LCC embedded in/ if and only if Y has
embedding dimension 1. The latter means that for eashO there exists am-regular
neighborhoodv of some 1-complex such that INtD> Y. Embedding dimension 1 is a
true tameness condition in this setting because, for example, two homotopic embeddings
of Y in M are ambient isotopic if both images have embedding dimension 1. Our methods
establish this tameness result for 1-dimensional ANRs.

1-LCC Taming Theorem for ANRs. If for i > 1, Y; is a 1-dimensional ANR and is a
1-LCC embedded, closed subset of adinanifold M, thenY = J;2, ¥; has embedding
dimensionl.

For several years we believed the techniques used here would prove the full strength
1-LCC Shrinking Theorem in dimension 4; however, the present manuscript should be
taken as an indication of the unsettled nature of that result.

2. Definitions, notation, and preliminary lemmas

All manifolds are assumed to be separable. A compact subeéa manifoldM is said
to be acell-like setif A can be deformed to a point in any neighborhood of itself. It is
well-known that cell-likeness is a topological property. A mgpM — X is said to be a
cell-like mappingf f~1(x) is a nonempty cell-like subset &1 for everyx € X.

Supposef : M — X is a closed, cell-like mapping of a 4-dimensional manifédcbnto
a metric spac&. We will used to denote the metric o andp to denote the metric on
X. We useN (f) to denote thevondegeneracy set ¢f; i.e.,

N(f)={xeM|{x}# Yo}

A subsetY of a metric spac« is said to bdocally 1-co-connected ik, abbreviated as
1-LCCin X, iffor eachy € Y and neighborhood of y there exists another neighborhood
V of y, V c U, such that each majpB? — V — Y can be extendedtoam#s — U — Y.

Measuring closenessSince we are not assuming that eitior X is compact, closeness
must be measured by a majorant functigw) > O rather than by a number> 0. All
majorant functions : X — (0, co) ands : M — (0, co) are assumed to be continuous (even
where this is not explicitly stated). If, ¢: M — X, the statemena( f, g) < € means that,
for everyx € M, bothp(f(x),g(x)) <e(f(x)) andp(f(x), g(x)) < e(g(x)). A subset
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Z C X has diameter less thanif diamZ < (x) for everyx € Z. (Sop(f, g) < ¢ if and
only if diam{ f (x), g(x)} < ¢ for everyx € M.) Ahomotopyu, : M — X is ane-homotopy
if the track of each point has diameters.

Now suppose thaf : M — X is a closed cell-like mapping and that, in addition,
contains a closed subsBEtsuch thatX — Y is a 4-manifold. The following lemma allows
us to approximatg’ by another cell-like mapping whose nondegeneracy set is contained
in the preimage of .

Lemma 2.1. Supposef : M — X is a closed, cell-like mapping of &4manifold M onto
a metric spaceX and that, in addition X contains a closed subs&tsuch thatX — Y is
a 4-manifold. Then for every: X — (0, co) there exists a cell-like mapping: M — X
such that

(1) glg~X(X —Y) is a homeomorphism,

(2) g7t =71,

(3) glg™ ()= f1f~*(¥), and

(4) p(fig) <e.

Proof. This follows from Corollary 2.5 of [1]. O

As a consequence of Lemma 2.1, there is no loss of generality in assuming, in the
statement of the main theorem, thét f) ¢ f~1(Y). If, in addition, Y is 1-dimensional,
we can choose a pointe M — f~1(Y) and we may then replace the manifdifiin the
statements of the theorems with the maniféfd— {x}. By [8, Theorem 8.2]M — {x}
has a PL manifold structure. Thus we will assume henceforth that the manffahdthe
statements of our theorems is a PL 4-manifold.

Definition. SupposeP is a polyhedron which is a closed subsetpainds : M — (0, o).
A §-regular neighborhood ofP is a subpolyhedrorV of M such thatV is a regular
neighborhood of? and the regular neighborhood collapge\, P induces a-homotopy
of V.

The fact thatY is 1-dimensional means th#tcan be approximated by 1-dimensional
polyhedra. The approximating polyhedra may be lifted4wia the CE mapf. The next
lemma spells out how we will make use of that fact.

Lemma 2.2. Supposef : M — X is a closed, cell-like mapping of &4manifold M onto
a metric spaceX and thatX contains a closedl-dimensional subsét such thatX — Y
is a 4-manifold. Then for every: X — (0, co) there exist an open neighborhodd of
f~1(v), al-dimensional polyhedro® c U, and a homotopy, : U — M such that

(1) po(x)=x foreveryx € U,

(2) pi(x) e P foreveryx e U,

(3) | P is the identity for every, and

(4) f opu, is ane-homotopy.
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Proof. SinceX is a finite-dimensional cell-like image of a manifold, it is an ANR; hence
there existss: X — (0, oo) such that for any spacg and any two mapgég, 71:S — X
satisfyingp (ho, h1) < 28, ho andh aree-homotopic; furthermore, the homotopy can be
required to be stationary at alle S for which ho(s) = h1(s). To obtainP, start with as-
open (relative to() covernV of Y; apply 1-dimensionality of to refine)V to another open
coverW' of Y by connected sets, no three of which intersect; and identify the 1-complex
P’ corresponding to the nerve &Y. Set

v=(J W

wew’

andU = f~X(U’). In the next paragraph we describe how to produce an embedding
)1 P’ — U and, simultaneously, a retractienU — P = A(P’) satisfyingo(for, fot) <
25 (where: denotes inclusion: U < M). Hence,f o r and f o ¢ are e-homotopic via
a homotopyH, fixing P pointwise. Lifting properties of cell-like maps (cf. [3, Theo-
rem 16.7] for a proof in the compact case) enshfecan be approximately lifted to a
homotopyu, : U — M with the desired properties.

Assume no element 0f)’ is contained in the union of the others. For eathe W'
selectv € f~1(W’) not belonging to the preimage of any othBt’ € W'; for each
intersecting paif’, W” € W’ choose an ara(W’, W”) c f~Y(W’ U W”) joining the
selected points. After a general position adjustment, the union of allsggh W) will
be a copyP of P’. Require that the closures of the variotist (W’ N W”) in M be pairwise
disjoint. Tietze's Extension Theorem yields a retractiorfoft (W N W) Ua(W’, W”) to
a(W', W"). For fixedW’ e W, the unionPy of all a(W’, W”), W” variable, is a compact
absolute retract, so the retraction partially defined on (a closed subgetafly’) extends
to a retractionf ~1(W’) — Py, and the compilation of these piecewise defined retractions
produces the desired U — P. 0O

A second important consequence of the fact thais 1-dimensional is that has
enough codimension so that 1-dimensional polyhedra can be push&d bfffact we
need the stronger property that 1-dimensional polyhedra can be pushed off the preimage of
a neighborhood of via a controlled homotopy.

Lemma 2.3. Supposef : M — X is a closed, cell-like mapping of&¢amanifoldM onto a
metric spaceX and thatX contains a closedl-dimensional subsét such thatX — Y is
a 4-manifold. Then for every: X — (0, oo) and every neighborhoot! of f~1(Y) there
exists an open neighborhodtof f~1(Y) such that ifK is any1-dimensional polyhedron
in M then there exists a homotopy: K — M such that

(1) ro(x) =x foreveryx € K,

(2) A1(x) e M — V for everyx € K,

(3) MK N (M — U) is the identity for every, and

(4) f oA, isane-homotopy.

Proof. The techniques are standard, so we merely sketch the proofk{dte the 1-
skeleton of a triangulation o#f whose mesh is small relative to It suffices to prove
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the lemma for the special cage= K1; i.e., to find a neighborhood such thatk'; can be
pushed off’ with a controlled homotopy. (In the general case, first use general position to
pushK into K1 and then apply the homotopy &f to complete the push € off V)

Use the fact thak is a 4-dimensional generalized manifold ands 1-dimensional to
approximatef|K1 by a mapf1: K1 — X — Y. SinceX — Y is a 4-manifold,f1 may be
approximated by an embeddirfg. BecauseX is an ANR, there is a small homotopy from
f1K1 to f2. The fact thatf is cell-like allows that homotopy to be lifted . Define V
to be the preimage undgrof a neighborhood of that missesf2(K1). O

If, in addition, Y is 1-LCC, then 2-dimensional polyhedra may be pushed off the
preimage oft.

Lemma 2.4. Supposef : M — X is a closed, cell-like mapping of&¢manifoldM onto a
metric spaceX and thatX contains a closedl-dimensional subsét such thatX — Y is
a 4-manifold. Then for every: X — (0, co) and every neighborhootd of f~1(Y) there
exists an open neighborhodtof £ ~1(Y) such that ifK is any2-dimensional polyhedron
in M then there exists a homotopy: K — M such that

(1) Ao(x)=x foreveryx € K,

(2) A1(x) e M — V for everyx € K,

(3) MK N (M — U) is the identity for every, and

(4) f oA, isane-homotopy.

Proof. The proof is essentially the same as that of the previous lemma. The one difference
is that the 1-LCC property must be used to approximate a map from a 2-dimensional
polyhedron intaX by one that mapsint®d — Y. O

Finally, there is a point in the proof at which we neétb be an ANR. The last lemma in
this section spells out how that property will be used. The key pointin the lemma is the fact
that the same’ works for alli. We will also make use of the fact that any 0-dimensional
closed set satisfies the conclusion of the lemma.

Lemma 2.5. SupposeX is a metric ANR and’ is a closed subset of such thatY is
locally simply connected. For ever: X — (0, c0) there existe’: X — (0,00) and a
nested sequend#/;} of neighborhoods of in X such that( U/ =Y and any loop in
Ul.’ of diameter less thas' bounds a disk irUlLl of diameter less thas.

Proof. Givens: X — (0, 00), use the fact that is an ANR to choose1: X — (0, 00)
such that any loop irY of diameter less tham bounds a singular disk of diameter less
thane. Defines’ = £1/3. Then choose a nested sequence of neighborhd@gdsf v in

X such that there is asf-deformation retraction olf]i/ toYin U{,l- Itis clear thate’ and
{U]} satisfy the conclusions of the lemmar
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3. Proof of the Main Lemma

The objective of this section is to prove the following theorem. A sequence of
applications of Theorem 3.1 will be used to establish the 1-LCC Shrinking Theorem.

Theorem 3.1. Supposef : M — X is a closed, cell-like mapping of a PA-manifold M
onto a metric spac& and thatX contains a closed]l-dimensional ANRY such that
N(f) c f~X¥) andY is 1-LCC in X. Then for eveng: X — (0,00) and for every
3: M — (0, o0) there exist a cell-like map: M — X, a 1-dimensional polyhedrow® in
M, and as-regular neighborhood’ of P such thatN (g) c g~(Y) c V andp(f, g) < ¢.

We use! to denote the closed unit intervid, 1] andx : M x I — M to denote the
projection map.

Main Lemma. Supposef:M — X andY C X are as in Theoren3.1. Then for every
e:X — (0,00) and for everys: M — (0, 00) there exist an open neighborhodd of
N(f), a closedl-dimensional polyhedro® c M, a §-regular neighborhoodv of P,
and a homeomorphism: M x I — M x I such that

(1) A(x,0) = (x,0) for everyx € M,

(2) h(x,1) eV foreveryx € U, and

(3) f ohyisane-homotopy, wheré, : M — M is defined by, (x) = 7w (h(x, 1)).

Proof of Theorem 3.1 (assuming the Main Lemma). Lét,P, V, andh be as in the
conclusion of the Main Lemma. Notice thiat: M — M is a homeomorphism. Thus we
can defineg by g = f o hy*. Now N(g) = h1(N(f)), S0 N(g) C h1(U) C V. Since
p(f, foh1) <&, wealso have(f o hIl, f) <e.Hencep(f,g) <e. O

The idea of the proof of the Main Lemma. The remainder of this section is devoted to
the proof of the Main Lemma. The idea is to use a handle cancelling argument similar to
that in the proof of the Controllel-cobordism Theorem [8, Theorem 7.2A] to construct a
special product structure ol x 1. We will find a neighborhood of N(f) and a regular
neighborhood’ of a 1-dimensional polyhedrah and then construct the product structure
to have two properties: first, any fiber that starts ouVix {0} must end inV x {1} and,
second, the projection of each fiber inkomust be small. Thus there are two forms of
control that must be maintained at all times during the argument: the first ensures that
fibers move toward® and the second ensures that each fiber has small image in
Although it is possible to apply a 4-dimensional Controlledobordism Theorem, we
prefer to work out the proof by hand, explaining how to cancel handles of various indices.
The reason for doing this is that it is just as difficult to explain how to construct the
controlled deformations needed in the hypotheses of the Contipledbordism Theorem
as it is to explain how to cancel the handles. In addition, we think the proof is geometrically
clearer if we explain how to construct the product structure directly.
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The logical structure of the proof. Rather than spell out all the€s andé’s before hand,

we will start the construction at the beginning and work through it. As we go, we will
highlight the conditions that must be met in order to achieve the necessary control. This
is not the strictly logical way in which to present the proof, but we believe it is the best
way to present the geometric ideas that support the proof. In order to produce the strict
logical version of the proof, one would have to make a first pass through the proof noting
all the conditions that must be satisfied and then go back to the beginning of the proof and
construct the regiong;, below, in such a way that all these conditions are satisfied.

Construction of the regionsR;. Fix n (a large positive integer to be specified later). We
will construct a finite sequendgy, R1, ..., R, of regionsinM x I with Rg D> R1 D R2 D
-+ D R,. EachR;, i > 0, will consist of two parts:
(1) U;_1 x [0,1/(i + 1)) for some open neighborhodd _; of N(f), and
(2 {(x,t)eM xI|1/(i+1) <t<1landx € ®!(V;)} whered! is a PL isotopy of
M such thatd] is the identity for 0< r < 1/(i + 1) andV; is the interior of a thin
regular neighborhood of a 1-dimensional polyhedRorr U;.
The first part is called ththick partof R; while the second part is called tit@n part of
R;. The 2-dimensional polyhedron

Ci={(x,neMxI|1/(i+1)<t<landxe® (P)}

is called thecore of the thin part of R;. Notice that the core of the thin part is 2-
dimensional and/ x I is 5-dimensional, so 2-dimensional polyhedraMinx I can be
general positioned off’;. Note too thatR; N (M x {1}) = cpi(Vi) x {1}, which is a thin
regular neighborhood of the 1-dimensional polyhedbqP;) x {1}. The various isotopies
@; will all move points approximately the same amount, limited by a specified function of
the initially givene ands.

Begin with Rg = M x I. To get started, let/g denote the preimage undgrof the -
neighborhood ot in X. Then apply Lemma 2.2 to obtain an open neighborhdpaf
N(f), a 1-dimensional polyhedraPy C U1, and a homotopy.!: U1 — Up which pushes
Uj into P1 in a controlled way. Le¥; be the interior of a thin regular neighborhoodRf
in Uy and set

R1=Uo x [0,3)U V1 x [3,1].

The isotopy® is the identity.

We next explain how to constru@t,. Apply Lemma 2.2 again to obtain a smaller
neighborhoodU, of N(f), a 1-dimensional polyhedro®, C Uz, and a homotopy
/,Ltz: U, — U that pushed/, into P; in a controlled way. Sincé, is 1-dimensional and
M is 4-dimensional, there is a PL isotopy : M — M such thaip?| P is close tou}| P,.
We may assume tha{? is the identity for 0< r < % and thatp? = ¢? for 3 <t < 1. The
track ofu[1 is contained inJp, so we may also assume tI?¢§t|M — Up is the identity. Set
@2 = ol o p?. (Sinced} is the identity,®? = ¢?2.) Taking V> to be the interior of a thin
regular neighborhood af,, we can define

Ry=U1 x[0, ) U{(x,0) e M x I |3 <t<1landx e d?(Va)}.
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1/2—
R, //
1/3 —

- —
U,

Fig. 1.

The regionsk1 and R are pictured in Fig. 1.

The construction ofR3 is similar. By Lemma 2.2 there exist a neighborhdagl of
N(f), a 1-dimensional polyhedroRs c Us, and a homotopy:: Us — U, that pushes
Usinto Psin a controlled way. Agairu,z| P3 can be approximately covered by a PL isotopy
q>,3 :M — M such that¢>t3 is the identity for 0< 7 < 1/4, is constant for > 1/3, and is the
identity outsidel/1; with appropriate controls op? and¢?, the composited® = @2 o ¢3
will not move points ofM much more than(b,2 does. Také/z to be the interior of a thin
regular neighborhood af3. Then we can defin@3 as follows.

Re=Uzx [0, HU{(x,neMx1|}<r<1landx e 3(Va)}.

The construction is continued inductively. It resultsnin- 1 regionsRg, R1, ..., R,. In
later statements it will be convenient to haRe defined for every integej. Hence we
defineR; = Ro for j <0 andR; =@ for j > n.

Constructing the homeomorphism 4. Start with thin (closed) collar€o and C1 of

M x {0} and M x {1}, respectively, inM x I. Then take a handle decomposition of the
remainderM x I — (Co U C1). The handle decomposition contains handles of indices 0,
1, 2, 3, 4, and 5. We usK to denote the collection of handle#; to denote the union of
Co and all handles of index i, andW/ to denote the union af; and all handles of index

> j. Let

LW, =0W; — (M x {0}) and o, W/ =W/ — (M x {1}).

Note thatd, W; = 3, Wi*1. The diameter of the handles # should be small relative to
the distance between the frontiers of the regi@sin particular, make the handles so
small that if H is a handle and? N R; # ¢ for somei, thenH C R;_1. Observe that for
each handlé? € H there exists ansuch thatd C R;_1 — R;41.
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1/2—
R; 4//
1/3 —

1/4 —

R
2 R3

U,

Fig. 2.

We will use the handle decomposition to construct a new product structubé ern .
This product structure serves as the image:o¥f x I — M x I and thus implicitly defines
h. In the proof below, the handles will be absorbed, one at a time, into the c6faaad
C1. At the end of this procedure there will be no handles left and so the colfgand C;
will exactly coverM x I and their union will define a product structure dhx 7. This
product structure will be the one we seek provided we maintain size control during the
construction. As mentioned earlier, there are two kinds of control to be considered.

The first kind of control is meant to ensure that fibers that start végr) end in V.

This will be accomplished by requiring that at each step of the proof there is an iteger
such that

(@) if He HandH N R; # @, thenH C R;_, and

(b) if « is a fiber arc in the product structure of eitl@yor C; and ifa N R; # ¢, then

o C Ri_.
Note that the two conditions above make sense ever-if.

The collars and the handle decomposition have been chosen 4o-tHasatisfies these
conditions at the beginning of the proof. As we work through the proof, we will see that
the value ofk must increase. This will happen only a finite number of times, so at the end
of the proof there will still be a finite numbérwith the two properties listed above. Thus,
at the end of the proof, the union of the two collars will define a product structure with the
property that ifx is a fiber arc in the product structure andif R; # ¢, thena C R; .

In particular, ifa N (U; x {0}) # @, thena C R;_y and soa N (M x {1}) is a point in
dbfz"(Vi,Zk). We choose: > 2k so that any fiber that begins i, x {0} will end in
Vi x {1).

The second kind of control is control iXi. We require that, at each stage of the proof,
diamf (x(H)) and diany (7 («)) are small inX for every handleH and for every fiber
arca in the product structure of eith&lp or C1. This is true at the beginning of the proof
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simply because each handle and each collar arc is sm#lbiry . During the proof both the
handles and the collar arcs will grow in size (as measurdd in7), so it will be necessary
to impose additional conditions on the construction of the reginis order to control
the size of the projections iK. After each step of the proof the necessary conditions will
be highlighted.

Cancelling 5-handles.Let H?® be a 5-handle if{. There exists an such that{® c R;
but H® ¢ R; ;1. It follows that H> N R;41+1 = ¥. Let B1 be a vertical arc fron# ® straight
upto alevelU;_1 x {s} thatis higher than the thick part & ;1. Then use the homotopy
Mﬁ_l to find an args, in U;_» x {s} that joins the endpoint g8 to a point directly below
the thin part ofR;_1. By general position, we may assume tfiatmisses the thin part of
Ri+x+1. Finally, let B3 be an arc from the endpoint gf that follows the thin part oR; _1
uptoM x {1}. In this way we construct an afc= B1* 2%z suchthap C R;—1— Rjtx+1
andg joins a point of H° to a point of M x {1}. Use general position to homotopeoff

the cores of the handles of index3 and off the cocores of the handles of index so
that 8 c 9, W* = 3, Wa. This will increase the number of regiofiscan intersect, but by

at mostk regions in each direction; thsC R;—1—x — R;+2k+1. From the point of view of
the top of the cobordisn/® looks like a 0-handle. Usg to introduce a small cancelling
handle pait H*, H3). From the point of view of the top of the cobordism the new handles
have indices 1 and 2, but from the point of view of the bottom of the cobordism they have
indices 4 and 3. The new 4-handi&* geometrically cancel#/® in the sense that their
union is a 5-cell attached 161 along a face. We absorb this 5-cell inf@. This removes
H® and H* from H. The net effect is to trade the 5-handi@ for the new 3-handléi®.

Size control The new handléf2 introduced in the handle trade spills across more regions
than did the original handles and the same is true of the fiber arcs in the newqpllar
Specifically,H3 C Ri—1-k — Ri+2k+1, SO we must replace the okdby a newk which is

3 (oldk) + 2. We now havé = 3- 1+ 2= 5. All the objects in the previous paragraph
are small inM x I except for the ar@. But 81 projects to a point irX, while g, follows

the track of a point under:~* andgs follows the track of some point under’ ~1. Hence
each of the three projects to a small arcin

Cancelling 0-handles.Let H° be a 0-handle ift{. There exists an such thatd° c R;
but HO ¢ R; 1. It follows that HO N R;x4+1 = #. Choosex € dHC. Construct an args in
R; — Ri+x+1 joining x to a pointx’ € U;_1 x {s}. (HereBs can either be vertical, if is
below U;_1 x {s}, or lie in the track of some point und&¥.) Choosey € U;_1 — U;
so that f(w(x’)) and f(y) are close. Specify a vertical agy from (y,0) to a level
U;_1 x {s} C R; higher than the thick part @®; ;1. Finally, letg2 be an arc irU; _1 x {s}
joining (y, s) to x’. By general position we may assume tjgatmissesR; ;+1. The path
B = B1* B2* B3 joinsx to M x {0}, and it can be chosen so th&tC R;—1 — R;+i+1
and f((B)) is small in X. Use the collar structure to pughout of Co U C1 and then
use general position to pughinto 9, Wi. This leave8 C R;_2r—1 — Ri+3r+1. UseB to
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introduce a new1, 2)-handle pair and then absof® and the new 1-handle intBg. In
this way HY is traded for a new 2-handle.

Size control The newk is 5- (oldk) + 2. Thusk = 27. The arc8 has a small projection
into X. There is one new form of size control needed in order that thgeexist and have
small projection inX.

Additional requirement on the construction of regionshe neighborhood#&; must be
chosen to satisfy the following additional requirement.
(AR1) Any pointx’ € U;—_1 may be joined by a patp in U;_1 to a pointy € U;_1 — U;
in such a way thay (8) is small inX.

Remark. One convenient way to achieve (AR1) is to incorporate it into the proof of
Lemma 2.2. Using the facts thatis 1-dimensional and is cell-like, we can build the
1-dimensional polyhedro® so thatP c U — f~1(Y). This refinement in Lemma 2.2
would allow us to choosé&; so thatU; N P;_1 = @. Then the arg3 is simply an initial
segment of the track of under the homotopy’~1. Lemma 2.3 can also be used.

Cancelling 4-handles.Let H* be a 4-handle irH{. As before, there exists arsuch that
H*C R; but H* ¢ R; 11, henceH* N R;1x+1 = ¥. Let « be the cocore oH*. Thena

is an arc beginning and ending @q W4. But H no longer contains any 5-handles, so
Wa = Ws anda begins and ends oiC1. For each endpoint af, add the corresponding
collar arc inC1. The result is a new ar which begins and ends ovf x {1} and satisfies

& C Ri—x — Riy2r+1. We claim that there is a controlled homotopy that pushesp

to the top of M x I, keeping the endpoints @& fixed. To accomplish this, first push
a vertically so that it lies entirely in one levéll x {s}, a little above the thick part of
Ri+2k+1, together with the thin part aR;_x. Then use the homotop);/,'_"_1 in the level

M x {s} to pull it into the thin part ofR;_;. Next push the arc up through the thin part
of R;_x, moving parallel to the core oR;_;. By general position we may assume that
the tracks of the last two homotopies miss the thin parRpfy1. The track of the
homotopy forms a singular disk C R;_x—1 — Ri;+2¢+1. PushD out of the two collars;
this leavesD C R;_2—1 — Ri+3r+1. Finally, use general position to pughoff the cores

of the 1- and 2-handles and off the cocores of the 4- and 3-handles. After performing all
these homotopies we havec 9, Wy = 0 w3andD C Ri_3—1 — R+ 454+1. Now useD
(desingularized) to introduce a ne@; 3)-handle pair and cancél* together with the new
3-handle by absorbing them iny . This has the effect of trading* for a new 2-handle.

Size control The diskD has small size ik because it is formed using the homotopies
wi=F and®! =% The newk is 7- (oldk) + 2. Thusk = 191.

Cancelling 1-handles.Let H! be a 1-handle and choossuch thatH! ¢ R; — Riyx41.
Leta be the core off1; thena is an arc joining two points afCo. Add toa the two collar
arcs inCop corresponding to the endpoints®f The result is an ar@ C R;—x — Rit+2r+1
joining two points in(U;_x—1 — U;+2;) x {0}. Push the ar& parallel to the thin part of
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Ri_i into a level(U;_r—1 — Vit2r+1) x {s} a little above the thick part aR;2r12. Then

use the fact that is 1-dimensional to find a homotopy &f in that level that pushes

a off U411 x {s} and keeps the endpoints fixed. Finally, push the arc straight down
into M x {0}. The track of the juxtaposition of these three homotopies forms amdisk

By general position, we may assume that this disk misses the thin p&ft.gf.,. Thus

D C Ri_;-1— Rit2r+2. PushingD off the collars leave® C R;_2t—1— R;j+3¢+2. Pushing

D into 94 Wp leavesD C R;_3¢—1— Rit4r+2. UseD to introduce a new?2, 3)-handle pair.

The new 2-handle cancelg?, so the two can be absorbed into the colfar This entire
procedure has the net effect of tradifd for a 3-handle.

Size control The newk is 7- (old k) + 4. Thusk = 1341. The diskD has small size in
X as long as we impose the following additional requirements on the construction of the
regionsr;.

Additional requirement on the construction of regionis order for the diskD, above, to
satisfy f (7w (D)) is small inX, we must add another requirement on the construction of the
regionsr;.
(AR2) If ¢ isan arc inU;_x—1 such that the endpoints afare inU; _x_1 — U; 2, then
there is a homotopy af, rel endpoints, to an ag C U;_x—2 — U;12¢+1 Such
that the homotopy is small i% .
This condition can be achieved by use of Lemma 2.3.

Cancelling 2- and 3-handles.At this point, our handle decompositidi contains only
handles of indices 2 and 3, attacheddg. For the remainder of the proof it will be
convenient to work with the dual handle decompositidff, which also consists only
of 2- and 3-handles, but attached @. We will use W to denote the union o€y
and all the 2-handles if{* and W3 to denoteW; union the 3-handles ot{*. Let
0L W3 =0W5 — (M x {1}). In the 4-manifoldo, W3 there are two collections of 2-
spheres: the belt spheres for the 2-handles (the B-spheres) and the attaching spheres for
the 3-handles (the A-spheres). We would like to change the handle decomposition so that
each A-sphere intersects exactly one B-sphere and the two intersect transversely in one
point. Of course we must do this while maintaining size control.

In order to complete the proof, we must analyze the boundary homomorphism

3: Ha(Wi, W3) — Ha(W3, Cy).

The groupHs(W3, W) is free Abelian with the 3-handles as generators and the group
H(W3, C1) is free Abelian with the 2-handles as generators. Siice I is a product,

d must be an isomorphism. We need to prove thas an isomorphism with geometric
control in the sense of [9]. The control spac&ix 7. In order to define geometric module
structures onHz(W3, W3) and Ho(W;, C1), we must define a control mag M x I —

X x I. Firstdefine-: M x I — I by definingr to be equal té/n on the frontier ofR; and
then using the Tietze Extension Theorem to exteima continuous map of all o x 7

into 7 such thak (R; — R;+1) C [i/n, (i +1)/n] foreachi. Thendefineg: M x I — X x I
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by ¢(x) = (f (7w (x)), r(x)). Notice that this one control map captures both kinds of control
that we need: it:(x) andc(y) are close inX x I, then f(x(x)) is close tof (r(y)) in X
and there must beand j with |i — j| small relative tor such thatx, y € R; — R;.

The remainder of the proof consists of two parts. First we will show that for évexyx
I — (0, 00), we can construct the regio®s and the handle decomposititi* in such a
way thatd is as-isomorphism in the sense of [9]. Once this is accomplished, we apply [9,
Theorem 8.4] to show that can be deformed to a geometric isomorphism. This means
that the handle decomposition can be adjusted sdtlsatepresented algebraically by the
identity matrix, and the A-spheres and the B-spheres have good algebraic intersections. In
particular, each A-sphere has algebraic intersection number 1 with one of the B-spheres
and algebraic intersection number 0 with all the others. Furthermore, the intersections are
controlled in the sense that the excess geometric intersection points can be paired off so
that each pair has a singular Whitney disk whose projection }te 7 is small. The
final step is to apply the Controlled Disk Embedding Theorem [8, Theorem 5.4] to get
embedded Whitney disks. The proof is then complete because the Whitney trick can be
used to remove excess points of intersection between the A-spheres and the B-spheres and
then the handles can be cancelled in pairs.

Diagonalizing the boundary homomorphism. We must show that for any: X x I —
(0, 00), the construction can be done in such a way tha a §-isomorphism. Since
is obviously an isomorphism, this means that we must prove thatbatid 9~ ares-
homomorphisms.

If H3is a3-handle and(H®) =n1H? +---+n;H?, thenH® must intersect each?.
The first coordinates af( H3) andc(Hl.z) will be close because the diameter oz (H))
is small for every handléf € H*. TheI-coordinates off* and H#? will differ by at most
3k/n. Thus we can make a s-homomorphism for any by simply choosing: to be large
relative tok.

Let H? be a 2-handle. There existsiasuch thatd? c R; — R;+«. We define a homotopy
¥, which pushesH? up to the top level without pushing it int®;,;. The homotopy
Y M x I — M x [ is defined by

(x,.s) if s >1,
@**x), 1) ifs<t.

Notice thaty, deformsM x I to M x {1} and that it moves points parallel to the thin part
of Riyx. In particular, ifz is any point in the complement &; ¢, then the entire track of

z undery, missesR; . Consider the track of/2 undery,. We can adjustMH2 so that

it consists of a finite sequence of handle slides, each slide being a slié @fer one of
the 3-handles. This allows us to wrige(H? x I) =m1H; + - - +m; H?, where eactH}

is a 3-handle which misse&® ;. Thus

Wt(X,S)Z{

d(miHP 4 +m;H?) = H?
or

0" H?) =miHP+ -+ mH}.
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This almost gives us what we need. It does show &dtis small in theX coordinate
of the control spac& x I since the homotopy projects to a small homotopy k. The
vertical push also satisfigs((R; — Ri+1) x I) C (M x I) — R;+1, S0 the homotopy only
decreases coordinates in theirection. Thus the equations above show thak does not
increasel coordinates by more thakyn. In order to show thaé—1 does not decrease
coordinates by much, we construct a second deformation retractibh>ofl to M x {1}
which has that property. Fix ansuch that/2 c R; but H2 ¢ R, 1. In the construction of
R; there was a controlled homotom? which pushed/; into P;, keepingP; fixed. Define
& R; — R;_1 to be the homotopy which doeu;_1 on each level of the thick part d¥;
during the first half of the time interval and then deformation retracts the thin p&t af
up toM x {1} during the second half of the interval. Notice thfat 7 o & is small inX and
that; (R;) C Ri_1 for everyt. Just as above, this allows us to write1(H?) as a linear
combination of 3-handles such that for each 3-hamtﬁén the sum, the second coordinate
of c(H/-S) is greater than or equal iqH2) — (k + 1)/n. Thus we conclude that~! does

not decreasé coordinates by much either and hercé can be made &homomorphism
for anys.

Controlled disk embedding. All that remains in order to complete the proofis to use the
Whitney trick in the middle leveb, W3 to separate the A-spheres and the B-spheres. In
the preceding step of the proof we saw that for each A-sphere there is a B-sphere such that
the two spheres have algebraic intersection number 1 and all other algebraic intersection
numbers between A- and B-spheres are zero. Furthermore, any excess intersection points
can be paired off so that each pair has a Whitney loop whose imagexin/ is small.
Each of these Whitney loops must bound a small singular Whitney disk. This imposes an
additional requirement on the construction of e Each loop can be pushed vertically
into a level in the thick part of aR;, so the following condition will give what we need.

(AR3) If a:S* — U; is a map such thaf («(S1)) is small in X, thena extends to

@ : B2 — U;_1 such that the diameter ¢f(@(B?)) is small inX.

Remark. It is at this point in the proof that the hypothesis ttvats an ANR is crucial.

In condition (AR3), “small” means small relative to the origiraih the statement of the

Main Lemma. Since all the isotopi@ move points approximately the same amount, it

is not possible to make the A- and B-spheres that li®;irget progressively smaller ds
increases. Instead their sizes are all controlled by the gawi@ch must be chosen and

fixed at the beginning of the proof when the first regi®nis constructed. Sincg is an

ANR, it satisfies the hypotheses of Lemma 2.5. Hence that lemma can be used to achieve
(AR3).

We now want to use the Whitney trick to make the geometric intersections match
the algebraic intersection numbers. In order to do that we must find controlled, framed,
embedded Whitney disks for the excess intersection points of the A-spheres and the B-
spheres. This part of the proof is exactly the same as the corresponding part of the usual
proof of the Controlled:-cobordism Theorem which can be found on pages 110 and



18 M. Bestvina et al. / Topology and its Applications 110 (2001) 3—20

111 of [8]. We have completed the portion of the proof corresponding to the first two
paragraphs starting in the middle of p. 110. The remainder of the proof consists of four
parts: First we must construct small immersed transverse (unframed) spheres for the A-
spheres and the B-spheres separately. (See the last full sentence on the bottom of p. 110.)
Second, as noted on the bottom of p. 110 and the top of p. 111, the unframed transverse
spheres can be used to construct small framed transverse spheres and then immersed
Whitney disks for the extra points of intersection. (The details of the uncontrolled
version of this argument are given on pp. 104-106 of [8].) Third, the embedded disks
must be constructed by an application of the Controlled Disk Embedding Theorem [8,
Theorem 5.4]. Finally, the Whitney trick is used to remove all the excess intersection
points.

After the excess intersection points have been removed the A-spheres and the B-spheres
will intersectin pairs but will have no other points of intersectiod iri; . This means that
the 2-handles and the 3-handles in the handle decomposition will cancel in pairs. Hence
we can absorb all the handles into the collars and arrive at the desired controlled product
structure onM x 1.

Thus the proof of the Main Lemma will be complete once we verify two things:
the A-spheres and the B-spheres separately have controlled transverse spheres, and the
hypotheses of the controlled disk embedding theorem are satisfied.

The existence of transverse spheré®ta be one of the A-spheres. Theiis the attaching
sphere of a 3-handI& 2 € #*. Dually, we can viewH? as a 2-handlé{? € H. Let D be
a 2-disk ind H? parallel to the core off2. ThenD intersects: in exactly one point and
9D C dCo. Form a larger diskD’ by adding toD the product annulus thatD spans in
Co. ThenD’ still intersectsz in exactly one pointand D’ C (U;—x—1 — Ui+21) x {0} for
somei. Form a transverse sphere foiby taking the union o>’ and a singular disk in
(Ui —j—2 — Ui+2k+3) x {0} spanned by D’. In order to make this transverse sphere a subset
of 9, W5, we must push itintd Co — M x {0} and then out of the attaching regions of the
2-handles. Note that these operations force us to increase the diz&pécifically, the
newk is 7- (old k) + 3.

In a similar way we can construct a transverse sphere for each of the B-sphérissa If
B-sphere, thet is the belt sphere of a 2-handt? € H*. Thus a disk i) HZ parallel to
the core ofHf2 intersects in exactly one point and has its boundaryii;. We can add an
annulusinCj to form a disk whose boundary is aloop(ii —x — Vi42¢+1) x {1}. This loop
bounds a singular disk i;_x_1 by the argument given above under “diagonalizing the
boundary homomorphism” (where it was shown that does not increase thecoordinate
much). The fact thaV; ;21 has a 1-dimensional spine allows us to use a general position
adjustment to make the disk disjoint froM2¢+1. The union of the two disks is the
transverse sphere we need.

In order to control the sizes of these transverse spheres for the A-spheres we need the
R; to satisfy the following additional requirement.
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Additional requirement on the construction of regionis order for the transverse spheres
constructed above to be smallix |, we must impose one additional requirement on the
construction of the regiona;.

(AR4) If o: ST — U;_j_1 — Ujror42 is @amap such that extends tar’ : B2 — U;j_x_1
with the diameter of’ (B?) small, thenr extends t@ : B> — U;_x_2 — U; 12143
such that the diameter gf(@(B?)) is small inX.

The existence of such an extenswifollows from Lemma 2.4.

The hypotheses of the Controlled Disk Embedding Theorem are satiSfteste are
two hypotheses: the control map must have a kind(&fl)-connectedness property
and the immersed Whitney disks must haralgebraically transverse spheres wéth
algebraically trivial intersections. The fact that the immersed Whitney disks satisfy the
algebraic hypothesis is automatic in our situation. The uncontrolled proof of this is found
on p. 105 of [8]. As is noted on p. 111 of [8], this construction is really a controlled
construction. Thus the immersed Whitney disks héadgebraically transverse spheres
with §-algebraically trivial intersections.

The control map: M x I — X x [ fails to be (s, 1)-connected oveX x I, since it
is not surjective. However, for any loap in M x I whose image under is small, o
bounds a singular disk whose image undar is also small. This follows from (AR3).
This property is close enough {6, 1)-connectedness to allow the proof of the Controlled
Disk Embedding Theorem in [8] to go throught

4. Proofs of the shrinking and taming theorems

Proof of the 1-LCC Shrinking Theorem for ANRs. Apply Theorem 3.1 recursively to
obtain a sequendg;} of cell-like, surjective mappings — X as well as sequencés; }

of 1-dimensional polyhedra i and {V;} of regular neighborhoods such thdt is a
(1/i)-regular neighborhood oP; and N(g;) C gi_l(Y) C V;. Impose controls to insure
{gi} converges to a cell-like map which is withineg of f and is 1-1 ovelX — Y, with
motion at later stages restricted so severely ftig)  g~1(Y) c V; for eachi. Then

g~ 1(Y) has embedding dimension 1, by definition. Edwards’s 1-dimensional Shrinking
Theorem [5] (cf. [3, Theorem 23.2]) implies thafand, thereforef) can be approximated
within preassigned by a homeomorphism — X, as required. O

Proof of Corollary 1. The proof of the corollary is the same as the proof of the 1-LCC
Shrinking Theorem for ANRs. The only point in the proof at which the ANR hypothesis
was needed was in the application of the Controlled Disk Embedding Theorem. The fact
thatY is O-dimensional is sufficient to achieve Additional Requirement (AR3), so the proof
can be completed. O

Proof of Corollary 2. Application of the 1-LCC Shrinking Theorem for ANRS ov&r C
yields thatX — C is a 4-manifold. Due to the hereditary nature of the 1-LCC conditibn,
itself is 1-LCC inX. An application of Corollary 1 gives the desired resulta
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Proof of the 1-LCC Taming Theorem for ANRs. It suffices to check that each has
embedding dimension 1 [4, Proposition 1.1(4)]. kix- 0 and apply Theorem 3.1 to
id: M — M, with ¢/2 andY = Y;, to obtain a cell-like mapping: M — M and a close
regular neighborhoo# of a 1-dimensional polyhedroR with Int V containingg=(Y;).
By Lemma 2.1 we may assume tlzais a (small) homeomorphism. Thus we see $@f)

is a small regular neighborhood gfP) with Intg(V) > Y;. O
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