
Calvin University Calvin University 

Calvin Digital Commons Calvin Digital Commons 

University Faculty Publications University Faculty Scholarship 

1-1-2005 

A geometric characterization: Complex ellipsoids and the A geometric characterization: Complex ellipsoids and the 

Bochner-Martinelli kernel Bochner-Martinelli kernel 

Michael Bolt 
Calvin University 

Follow this and additional works at: https://digitalcommons.calvin.edu/calvin_facultypubs 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Bolt, Michael, "A geometric characterization: Complex ellipsoids and the Bochner-Martinelli kernel" (2005). 
University Faculty Publications. 457. 
https://digitalcommons.calvin.edu/calvin_facultypubs/457 

This Article is brought to you for free and open access by the University Faculty Scholarship at Calvin Digital 
Commons. It has been accepted for inclusion in University Faculty Publications by an authorized administrator of 
Calvin Digital Commons. For more information, please contact dbm9@calvin.edu. 

https://digitalcommons.calvin.edu/
https://digitalcommons.calvin.edu/calvin_facultypubs
https://digitalcommons.calvin.edu/university_scholarship
https://digitalcommons.calvin.edu/calvin_facultypubs?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.calvin.edu/calvin_facultypubs/457?utm_source=digitalcommons.calvin.edu%2Fcalvin_facultypubs%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dbm9@calvin.edu


Illinois Journal of Mathematics
Volume 49, Number 3, Fall 2005, Pages 811–826
S 0019-2082

A GEOMETRIC CHARACTERIZATION: COMPLEX
ELLIPSOIDS AND THE BOCHNER-MARTINELLI KERNEL

MICHAEL BOLT

Abstract. Boas’ characterization of bounded domains for which the
Bochner-Martinelli kernel is self-adjoint is extended to the case of a

weighted measure. For strictly convex domains, this equivalently char-
acterizes the ones whose Leray-Aı̌zenberg kernel is self-adjoint with re-
spect to weighted measure. In each case, the domains are complex linear
images of a ball, and the measure is the Fefferman measure. The Leray-
Aı̌zenberg kernel for a strictly convex hypersurface in Cn is shown to be

Möbius invariant when defined with respect to Fefferman measure.

1. Introduction

For a smooth, strictly pseudoconvex domain in complex Euclidean space,
Kerzman and Stein constructed in [8] a Cauchy-Fantappiè kernel that can be
used for computing and proving regularity for the Szegő projection. In one
dimension, their kernel is the usual Cauchy kernel; see also their paper [9].
Their method works in part because there is a cancellation of singularities
that occurs when the Cauchy-Fantappiè kernel is subtracted from its adjoint.
Therefore, the kernel closely resembles the Szegő kernel.

This partly motivates the problem of determining geometric conditions un-
der which there is complete cancellation when a kernel is subtracted from
its adjoint. This involves choices for both the kernel as well as a measure
on the boundary. Typically, the measure is the surface area measure ob-
tained by identifying Cn ∼= R

2n. For this measure, Boas proved in [2] that
the Bochner-Martinelli kernel is self-adjoint for a continuously differentiable
bounded domain if and only if the domain is a ball.

Here we extend that result about the Bochner-Martinelli kernel to the case
of a weighted measure.

Theorem 1. For a continuously differentiable domain Ω ⊂⊂ Cn, there
is a positive measure on ∂Ω for which the Bochner-Martinelli transform is
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812 MICHAEL BOLT

self-adjoint if and only if Ω is the image of a ball under a complex linear map.

Theorem 1 follows from an analogous characterization of real ellipsoids.
The following proposition is proved in Section 4.

Proposition 1. For a continuously differentiable domain Ω ⊂⊂ RN with
normal vector 〈ν1, · · · , νN 〉, there is a positive continuous function h defined
on ∂Ω with h(x)

∑
νj(x)(xj − uj) = h(u)

∑
νj(u)(uj − xj) for all x, u ∈ ∂Ω

if and only if Ω is the image of a ball under a linear map.

Next, restricting to twice differentiable convex domains in Cn, we also
characterize the domains whose Leray-Aı̌zenberg kernel is self-adjoint with
respect to weighted measure. By the Leray-Aı̌zenberg kernel we mean the
Cauchy-Fantappiè kernel that is constructed using supporting hyperplanes.

Theorem 2. For a strictly convex domain Ω ⊂⊂ Cn, there is a positive
measure on ∂Ω for which the Leray-Aı̌zenberg transform is self-adjoint if and
only if Ω is the image of a ball under a complex linear map.

In each case, the measure is the Fefferman surface measure, which he
constructed for strictly pseudoconvex domains in order for there to be a
biholomorphically invariant Szegő projection. (It is a consequence of The-
orem 1 that the Fefferman measure is defined for domains with self-adjoint
Bochner-Martinelli transform, since complex ellipsoids are strictly pseudo-
convex.) With respect to this measure, the Szegő projection and kernel sat-
isfy a transformation law for biholomorphic maps. We show that the Leray-
Aı̌zenberg kernel satisfies a similar transformation law for Möbius transforma-
tions. By a Möbius transformation we mean that after embedding Cn ↪→ CP

n

in the usual way, the map is linear with respect to the homogeneous coordi-
nates. Special cases are the complex linear maps of Cn.

Theorem 3. With respect to Fefferman surface measure, the Leray-Aı̌zen-
berg transform is Möbius-invariant. Its kernel satisfies

C1(z, w) = J
n/(n+1)
F (z) C2(F (z), F (w)) J n/(n+1)

F (w),

when F : Ω1 → Ω2 is a Möbius transformation and JF is its Jacobian deter-
minant.

It would be interesting to extend Theorem 1 to the case of a Lipschitz
domain. For this we point out [12], in which M. Lim showed that among
bounded Lipschitz domains the boundary integral operator associated to the
double layer potential of the Laplacian is self-adjoint only for a ball. There is
a close connection between the double layer potential of the Laplacian and the
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Bochner-Martinelli transform. So far the author has been unable to extend
Lim’s method to the situation of Propositions 1 or 2 .

There also remains the question of a local version of Theorem 1. That is,
for hypersurfaces M2n−1 ⊂ Cn, if the Bochner-Martinelli kernel is self-adjoint
with respect to a weighted measure, must M be contained in the Möbius image
of a sphere? It would be interesting to find a differential geometric proof along
the lines of the proof in [4], where the author characterized the hypersurfaces
for which the skew-hermitian part of the Bochner-Martinelli kernel is less
singular than usual. This result would also be an extension of Boas’ local
characterization of spheres and cylinders [3]. We include a proof for the case
of dimension one in Section 6.

The author thanks David E. Barrett for many helpful conversations during
the preparation of this paper, and for pointing out the Fefferman surface
measure. He also thanks the paper’s referee for many valuable suggestions,
including one that helped to strengthen and simplify the proof of Theorem 1.

2. The Bochner-Martinelli transform and vanishing condition

The Bochner-Martinelli and Leray-Aı̌zenberg kernels are special cases of
Cauchy-Fantappiè kernels. See Range [13] for a nice treatment of this larger
topic. For the two examples considered here we give only a brief summary.

Let Ω ⊂ Cn be a bounded domain with continuously differentiable bound-
ary whose outward pointing unit normal vector is N = Nw at w ∈ ∂Ω. The
Bochner-Martinelli kernel is defined by

K(z, w) =
(n− 1)!

2πn
Nw · (w − z)
|w − z|2n

for w ∈ ∂Ω, z 6= w,

where the dot product in the numerator means to sum the products of the
complex coordinates. If dσE is Euclidean surface measure, then the Bochner-
Martinelli transform is the operator f → Kf defined for f ∈ L2(∂Ω) by

Kf(z) = lim
ε ↓ 0

∫
w∈∂Ω
|z−w|>ε

f(w)K(z, w) dσE .

By the Calderón-Zygmund theory of singular integrals, the limit exists for
almost all z ∈ ∂Ω, and K is bounded on L2(∂Ω). Furthermore, the L2(∂Ω)
adjoint of K has kernel K(w, z), and K is self-adjoint in L2(∂Ω) if and only if
K(z, w) = K(w, z) for all z, w ∈ ∂Ω, z 6= w.

If one replaces Euclidean measure with the weighted measure h−1dσE for
some positive continuous function h on the boundary, then with respect to
the new measure the transform has kernel h(w)K(z, w). Furthermore, K is
self-adjoint if and only h(w)K(z, w) ≡ h(z)K(w, z). This holds precisely when

(1) h(w)Nw · (w − z) = h(z)Nz · (z − w) for all w, z ∈ ∂Ω.
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We now establish the following proposition as a consequence of Proposition 1.
(Proposition 1 is proved in Section 4.) Theorem 1 then follows immediately.

Proposition 2. For a continuously differentiable domain Ω ⊂⊂ C
n,

there is a positive continuous function h defined on ∂Ω with h(w)Nw ·(w−z) =
h(z)Nz ·(z−w) for all w, z ∈ ∂Ω if and only if Ω is the image of a ball under
a complex linear map.

Proof of Proposition 2. For the proof of the easier direction, that is, if Ω is
a complex ellipsoid then there is a positive continuous function h so that (1)
is satisfied, see Section 6. There we also establish the fact already mentioned
that the relevant measure for Theorems 1 and 2 is the Fefferman surface
measure.

To prove the other direction, we first express (1) using two real equations
by considering separately the real and imaginary parts. For this, identify
C
n ∼= R

2n by using real coordinates x = (x1, . . . , x2n) and u = (u1, . . . , u2n)
for w and z, with wj = xj + ixj+n and zj = uj + iuj+n. If the outward
pointing unit normal at x ∈ ∂Ω has real components νj = νj(x), then the
complex normal is N = 〈ν1 + iν1+n, . . . , νn + iν2n〉, and (1) can be written as

(2) h(x)
∑

j=1...2n

νj(x)(xj − uj) = h(u)
∑

j=1...2n

νj(u)(uj − xj)

and

(3) h(x)
∑

j=1...n

[νj(x)(uj+n − xj+n) + νj+n(x)(xj − uj)]

= h(u)
∑

j=1...n

[νj+n(u)(xj − uj) + νj(u)(uj+n − xj+n)],

for all x, u ∈ ∂Ω. If there is a function h defined on ∂Ω so that (2) holds, then
it follows from Proposition 1 that Ω must be an ellipsoid in R2n. Evidently,
conditions (2) and (3) are not affected by a translation. So using the first
part of the proof of Proposition 1, let us assume that Ω has defining function
r(x) =

∑
j,k aj,kxjxk +R, where aj,k = ak,j , R ∈ R and h = |∇r|. Then

h(x)νj(x) =
∂r

∂xj
(x) = 2

∑
k=1...2n

aj,kxk,

the second identity using the symmetry aj,k = ak,j . It follows that (3) can be
written as
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(4)
∑

j=1...n
k=1...2n

[aj,kxk(uj+n − xj+n) + aj+n,kxk(xj − uj)]

=
∑

j=1...n
k=1...2n

[aj+n,kuk(xj − uj) + aj,kuk(uj+n − xj+n)].

For the rest of the proof, we determine the conditions that (4) imposes on the
aj,k. Then, using these conditions, we show that r defines a complex ellipsoid.

Since we have arranged for the ellipsoid to be centered at the origin, each co-
ordinate axis intersects ∂Ω exactly twice. Let x = (0, . . . , xl, . . . , 0) be a point
of intersection with the lth coordinate axis, and let u = (0, . . . , um, . . . , 0) be a
point of intersection with the mth coordinate axis. Assume 1 ≤ l,m ≤ n. Ev-
idently xl, um 6= 0 since the origin is inside the ellipsoid. Since r(u) = r(−u),
it follows that the other point of intersection with the mth coordinate axis
is −u = (0, . . . ,−um, . . . , 0). Apply (4) twice, first for x, u ∈ ∂Ω, then for
x,−u ∈ ∂Ω. Then

al+n,l xl xl − am+n,l xl um = al+n,m um xl − am+n,m um um,

and

al+n,l xl xl + am+n,l xl um = −al+n,m um xl − am+n,m um um.

Subtracting these equations gives −2 am+n,l xl um = 2 al+n,m um xl, which
means am+n,l = −al+n,m since xl, um 6= 0. By the symmetry aj,k = ak,j , it
also follows that am+n,l = −am,l+n.

Next, let x = (0, . . . , xl, . . . , 0) be the same point of intersection with the
lth coordinate axis, but let u = (0, . . . , um+n, . . . , 0) be a point of intersection
with the (m + n)th coordinate axis. Assume 1 ≤ l,m ≤ n. Then um+n 6= 0,
and the other point of intersection with the (m+ n)th coordinate axis is −u.
As before, apply (4) twice, first for x, u ∈ ∂Ω, then for x,−u ∈ ∂Ω. Then

am,l xl um+n + al+n,l xl xl = al+n,m+n um+n xl + am,m+n um+n um+n,

and

−am,l xl um+n + al+n,l xl xl = −al+n,m+n um+n xl + am,m+n um+n um+n.

Subtracting these equations gives 2 am,l xl um+n = 2 al+n,m+n um+n xl. This
means am,l = al+n,m+n since xl, um+n 6= 0. So then also am,l = am+n,l+n.

Finally, we express the defining function for Ω in terms of the complex
coordinates wj = xj + ixj+n, and we show that Ω is a complex ellipsoid.
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Since xj = (wj + wj)/2 and xj+n = (wj − wj)/(2i), we find that

r(w) =
1
4

n∑
j,k=1

[aj,k (wj + wj)(wk + wk)− i aj+n,k (wj − wj)(wk + wk)

−i aj,k+n (wj + wj)(wk − wk)− aj+n,k+n(wj − wj)(wk − wk)] + R

=
1
4

n∑
j,k=1

[(aj,k − iaj+n,k − iaj,k+n − aj+n,k+n)wjwk

+ (aj,k − iaj+n,k + iaj,k+n + aj+n,k+n)wjwk

+ (aj,k + iaj+n,k − iaj,k+n + aj+n,k+n)wjwk

+ (aj,k + iaj+n,k + iaj,k+n − aj+n,k+n)wjwk] + R.

From the previous two paragraphs, aj+n,k = −aj,k+n and aj,k = aj+n,k+n, so
the wjwk and wjwk terms disappear. Evidently, what remains is

r(w) =
∑
j,k

(cj,kwjwk + cj,kwjwk) +R =
∑
j,k

(cj,k + ck,j)wjwk +R,

where cj,k = (aj,k − iaj+n,k + iaj,k+n + aj+n,k+n)/4. If bj,k = cj,k + ck,j , then
r(w) =

∑
j,k bj,kwjwk+R with bj,k = bk,j . Since Ω is assumed to be bounded,

this is the defining function for a complex ellipsoid. �

3. The Leray-Aı̌zenberg transform and vanishing condition

Now let Ω ⊂⊂ Cn be a strictly convex domain with twice differentiable
boundary. Let r be a defining function for Ω, so then Ω = {z : r(z) < 0}
with dr 6= 0 on ∂Ω. The Leray-Aı̌zenberg transform is the operator defined
for f ∈ L2(∂Ω) by

Cf(z) =
(

1
2πi

)n ∫
w∈∂Ω

f(w)
∂r(w) ∧ (∂∂r(w))n−1

(
∑
rj(w)(wj − zj))n

for z ∈ Ω,

where the derivatives in the denominator refer to the holomorphic derivatives
of r; i.e., rj = ∂r/∂wj . Similarly, rj = ∂r/∂wj . Leray [11] showed that C
reproduces holomorphic functions that extend continuously to the boundary.

Aı̌zenberg ([1], see also [10, p. 53]) extended this to the case of linearly
convex domains. These are domains for which the complex tangent space
never intersects the domain itself; so if T cw(∂Ω) = {w+v ∈ Cn :

∑
j rj(w)vj =

0}, then T cw(∂Ω) ⊂ Cn \Ω for all w ∈ ∂Ω. Related to this, Stanton [14] found
another representation for C and identified a connection between its kernel
and the complex Monge-Ampère equation. In Section 5, we use a similar
representation in order to prove Theorem 3.

Given the convexity condition, i−n∂r(w) ∧ (∂∂r(w))n−1 is a positive mul-
tiple of Euclidean surface measure. The reason it is a real multiple can be
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seen by taking its complex conjugate, noting that the wedge product is anti-
symmetric and dr = ∂r + ∂r = 0 when restricted to ∂Ω. The reason it is a
positive multiple is because of the convexity hypothesis. For this we refer to
Section 5 or to Stanton [14, Theorem 1].

Next, if (
∑
rj(w)(wj − zj))n = (

∑
rj(z)(zj −wj))n for all w, z ∈ ∂Ω, then∑

rj(w)(wj − zj) =
∑
rj(z)(zj − wj) for all w, z ∈ ∂Ω. To see this, one can

see from a Taylor expansion that

r(w) = r(z) +
∑
j

[rj(z)(wj − zj) + rj(z)(wj − zj)] +O(w − z)2

= r(z) +
∑
j

[rj(w)(wj − zj)− rj(z)(zj − wj)] +O(w − z)2.

So, a priori,
∑
rj(w)(wj−zj) =

∑
rj(z)(zj−wj)+O(|w−z|)2 for w, z ∈ ∂Ω.

Meanwhile, there is a one-parameter family of z ∈ ∂Ω for which z = w+λNw
(λ ∈ C), and for these z there is the estimate |

∑
rj(w)(wj − zj)| ≈ |w − z|.

Together, these observations show that
∑
rj(w)(wj−zj) and

∑
rj(z)(zj−wj)

cannot differ by a nontrivial nth root of unity, and this establishes the claim.
Working formally with the kernel, then, we find that C is self-adjoint with

respect to weighted measure on the boundary if and only if there is a positive
continuous function h so that

(5) h(w)
∑
j

rj(w)(wj − zj) = h(z)
∑
j

rj(z)(zj − wj) for all w, z ∈ ∂Ω.

The vector (r1(w), . . . , rn(w)) is a multiple of the normal vector Nw, so after
taking conjugates, this is the same condition as (1) for a possibly different
function h. Therefore, Theorem 2 also follows from Proposition 2.

We mention that the relevant measure in this case is not connected to h in
the same way as it was for the Bochner-Martinelli kernel. We also mention
that the orientation on Cn that is used here and in Section 5 corresponds to
the volume form dx1∧dy1∧ · · ·∧dxn∧dyn, whereas the complex structure in
Section 2 takes the real coordinates in an order compatible with the volume
form dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn. This notational difference is harmless.

4. Proof of Proposition 1

Before proving Proposition 1, we point out that if h(x)
∑
νj(x)(xj −uj) =

h(u)
∑
νj(u)(uj − xj) for all x, u ∈ ∂Ω, then the function h is unique up to a

constant multiple. This is because the condition can be rewritten as

h(x)
h(u)

=
∑
νj(u)(uj − xj)∑
νj(x)(xj − uj)

.

So the ratio h(x)/h(u) depends only on the geometry of ∂Ω at x and u, and
therefore, once the value of h is determined at one point, it is determined at
all other points as well.
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Then, for the easier direction of the proof we check that if Ω ⊂ RN is the
image of a ball under a linear map, there is a function h for which

(6) h(x)
∑
j

νj(x)(xj − uj) = h(u)
∑
j

νj(u)(uj − xj) for all x, u ∈ ∂Ω.

For this, take as a defining function for Ω

r(x) =
∑
j,k

aj,kxjxk +
∑
j

bjxj +R,

for constants aj,k = ak,j , bj , R ∈ R. (This is gotten by composing the usual
defining function for a ball directly with a linear map.) Define h on ∂Ω
according to h = |∇r|. Then h(x)νj(x) = rj(x), where rj = ∂r/∂xj , and we
find∑

j

rj(x)(xj − uj) =
∑
j,k

(aj,kxk + ak,jxk)(xj − uj) +
∑
j

bj(xj − uj)

= 2 r(x)− 2R−
∑
j

bj(xj + uj)−
∑
j,k

(aj,k + ak,j)xkuj .

Similarly,∑
j

rj(u)(uj − xj) = 2 r(u)− 2R−
∑
j

bj(uj + xj)−
∑
j,k

(aj,k + ak,j)ukxj .

Then, since r(x) = 0 = r(u) for x, u ∈ ∂Ω, it follows that
∑
j rj(x)(xj−uj) =∑

j rj(u)(uj − xj), and (6) is satisfied.
Proving the converse statement is harder, but it follows the argument that

Boas gave for the unweighted problem. The new idea is contained in the proof
of Lemma 1, where dilations are also used in order to identify coordinates in
which Ω is a ball.

The hypothesis is that there is a positive continuous function h on ∂Ω for
which (6) is satisfied, and we must show that Ω is the image of a ball under
a linear map. We first establish that if Ω is transformed to a new domain Ω′

by a translation, rotation, or dilation, then the hypothesis also holds on Ω′.
That is, there is a positive continuous function h′ on ∂Ω′ for which

(7) h′(x′)
∑
j

ν′j(x
′)(x′j − u′j) = h′(u′)

∑
j

ν′j(u
′)(u′j − x′j) for x′, u′ ∈ ∂Ω′,

where ν′(x′) is the unit normal at x′. We treat the cases separately:
(i) If Ω → Ω′ via x′ = x + a for fixed a ∈ RN , then ν′(x′) = ν(x). So if

h′ is defined by h′(x′) = h(x), then (7) follows readily from (6) since
x′ − u′ = x− u and u′ − x′ = u− x.

(ii) If Ω → Ω′ via x′ = Ax for an orthogonal transformation A, then
ν′(x′) = Aν(x). So if h′ is defined by h′(x′) = h(x), then (7) follows
from (6) since ν′(x′) · (x′ − u′) = Aν(x) · A(x − u) = ν(x) · (x − u),
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and likewise, ν′(u′) · (u′ − x′) = ν(u) · (u− x). Here, the dot product
means to sum the products of the real coordinates.

(iii) From (ii), it is enough to consider a dilation in the first real direction.
So take Ω → Ω′ via (x′1, x

′
2, . . . , x

′
N ) = (λx1, x2, . . . , xN ), for λ > 0.

Since ν′(x′) = 〈ν1(x)/λ, . . . , νN (x)〉/[ν1(x)2/λ2 + · · ·+ νN (x)2]1/2, we
define h′(x′) = h(x)[ν1(x)2/λ2 + · · · + νN (x)2]1/2. Then, (7) follows
from (6) since h′(x′)ν′(x′) · (x′−u′) = h(x)ν(x) · (x−u), and likewise,
h′(u′)ν′(u′) · (u′ − x′) = h(u)ν(u) · (u − x). Again, the dot product
means to sum the products of the real coordinates.

For Lemma 1, we use such transformations to bring Ω into a standard position.
Each such step involves introducing a new function h.

In general, let ej denote the usual Euclidean basis vector (0, . . . , 1, . . . , 0)
that has a 1 in the jth position and 0’s elsewhere.

Lemma 1. After a translation, and after making rotations and dilations
in RN , the points ±e1,+e2, . . . ,+eN lie in ∂Ω, the normal vectors at these
points are ±e1,+e2, . . . ,+eN , and h(±e1) = h(+e2) = · · · = h(+eN ).

Proof. Start by choosing a chord of maximal length that connects two
points in the boundary, and make a uniform dilation in all directions so that
this chord has length 2. Following a translation and rotation, we may assume
the coordinates are such that the endpoints of the chord are at ±e1. Since
the chord has maximal length, it follows that the unit normal at ±e1 is ±e1.

We first apply (6) using x = +e1, ν(x) = +e1 and u = −e1, ν(u) = −e1.
This leads to h(e1)(1)(1− (−1)) = h(−e1)(−1)(−1− 1). So h(e1) = h(−e1).

We then proceed by induction on k = 1, . . . , N . As the inductive hypothesis,
suppose that coordinates have been chosen so that points ±e1,+e2, . . . ,+ek
lie in ∂Ω and their respective unit normals are ±e1,+e2, . . . ,+ek. More-
over, suppose that h(±e1) = h(+e2) = · · · = h(+ek). The base case of the
induction (with k = 1) has already been established.

So suppose the inductive hypothesis is true for 1 ≤ k < N , and let b be
a point in ∂Ω that is maximally distant from the k-dimensional hyperplane
spanned by vectors e1, . . . , ek. Necessarily the normal vector at b is perpen-
dicular to this hyperplane, and after a rotation in the remaining directions
ek+1, . . . , eN , we may assume this vector is ek+1, and the point b can be ex-
pressed as b = (b1, . . . , bk+1, 0, . . . , 0). Following a dilation in the direction
ek+1, we may assume that bk+1 = 1. Notice that the rotation and dilation
only involve the remaining directions, and therefore preserve the inductive
hypothesis. That is, they preserve points ±e1, e2, . . . , ek ∈ ∂Ω, along with the
respective normal vectors ±e1, e2, . . . , ek, and the value of h at these points.
(See (ii) and (iii) above.) We therefore continue to call the domain Ω and the
associated function h.
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Now apply (6) twice, first using x = +e1, ν(x) = +e1 and u = b, ν(u) =
+ek+1, and then using x = −e1, ν(x) = −e1 and u = b, ν(u) = +ek+1. Then

h(+e1)(+1)(+1− b1) = h(b)(1)(1− 0),

and
h(−e1)(−1)(−1− b1) = h(b)(1)(1− 0).

If the two equations are added, one finds that h(b) = h(±e1), since h(+e1) =
h(−e1). Likewise, if the equations are subtracted, one finds that b1 = 0, since
h(+e1) = h(−e1) 6= 0.

So far, the argument already shows that if the inductive hypothesis holds
for k = 1, then it also holds for k = 2. So suppose k > 2, and continue with
the same argument. For 2 ≤ j < k, apply (6) using x = +ej , ν(x) = +ej and
u = b, ν(u) = ek+1. Then,

h(+ej)(1)(1− bj) = h(b)(1)(1− 0),

and as already h(b) = h(±e1) = h(ej) 6= 0, it follows that bj = 0. It then
follows that b = ek+1. Putting everything together, we have shown that
ek+1 ∈ ∂Ω, the normal vector there is ek+1, and h(ek+1) = h(±e1). So the
inductive hypothesis also holds for k + 1, and the lemma is proved. �

Lemma 2. The points −e2, . . . ,−eN then also lie in ∂Ω, their respective
normal vectors are −e2, . . . ,−eN , and h(±e1) = h(−e2) = · · · = h(−eN ).

Proof. For 2 ≤ k ≤ N , suppose the line spanned by ek also intersects ∂Ω
at the point c = (0, . . . , ck, . . . , 0). There is at least one such point c, and
then ck 6= 1. Suppose also that the outward pointing unit normal at c is
ν(c) = 〈ν1, . . . , νN 〉.

Then apply (6) twice, first using x = +e1, ν(x) = +e1 and u = c,
ν(u) = 〈ν1, . . . , νN 〉, and then using x = −e1, ν(x) = −e1 and u = c,
ν(u) = 〈ν1, . . . , νN 〉. Then,

h(+e1)(+1)(+1− 0) = h(c) [ν1(0− 1) + νk(ck − 0)]

and
h(−e1)(−1)(−1− 0) = h(c) [ν1(0 + 1) + νk(ck − 0)].

Since h(+e1) = h(−e1), adding the two equations gives h(e1) = h(c)νkck.
Since h(e1) 6= 0, this also means that νk, ck 6= 0. Subtracting the two equa-
tions gives 0 = h(c) · ν1, which means ν1 = 0 since h(c) 6= 0.

Next apply (6) using x = +ek, ν(x) = +ek and u = c, ν(u) = 〈ν1, . . . , νN 〉.
Then,

h(ek)(1)(1− ck) = h(c)νk(ck − 1).
As ck 6= 1, it follows that h(ek) = −h(c)νk, which together with h(e1) =
h(c)νkck from the previous paragraph, leads to −h(c)νk = h(c)νkck, since
h(ek) = h(e1). As h(c) 6= 0, and as νk 6= 0 from the previous paragraph, it
follows that ck = −1. So in fact, c = −ek ∈ ∂Ω.
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So suppose that 2 ≤ j ≤ N with j 6= k, and apply (6) using x = +ej ,
ν(x) = +ej and u = c = −ek, ν(u) = 〈0, ν2, . . . , νN 〉. Then,

h(+ej)(+1)(+1− 0) = h(−ek) [νj(0− 1) + νk(−1− 0)].

Since h(ej) = h(e1), this means h(e1) = h(−ek)(−νj − νk). But following the
previous paragraph, we already have h(e1) = −h(−ek)νk. So 0 = h(−ek)νj ,
and it follows that νj = 0 since h(−ek) 6= 0.

We conclude that νj = 0 for each 1 ≤ j ≤ N except j = k, and since
〈ν1, . . . , νN 〉 has unit length, we find that νk = ±1. Then, since h(e1) =
−h(−ek)νk, and since both h(e1) and h(−ek) must be positive, we conclude
first that νk = −1, and then h(−ek) = h(e1). So the lemma is proved. �

By the two lemmas, then, after making translations, rotations, and dila-
tions, the points ±e1, . . . ,±eN all lie in ∂Ω, their respective normal vectors
are ±e1, . . . ,±eN , and h(±e1) = · · · = h(±eN ). Now let x = (x1, . . . , xN ) be
an arbitrary point of ∂Ω, and suppose its normal vector is 〈ν1, . . . , νN 〉. Apply
(6) twice, first using x = x, ν(x) = 〈ν1, . . . , νN 〉 and u = +ej , ν(u) = +ej ,
and then using x = x, ν(x) = 〈ν1, . . . , νN 〉 and u = −ej , ν(u) = −ej . Then,

h(x) ν(x) · (x− ej) = h(+ej) (+ej) · (+ej − x),

and
h(x) ν(x) · (x+ ej) = h(−ej) (−ej) · (−ej − x),

where the dot product means to sum the products of the real coordinates.
Since h(−ej) = h(+ej), adding the equations gives h(x) ν(x) · x = h(ej).
Subtracting them gives h(x) ν(x) · ej = h(ej) ej · x, so h(x)νj = h(ej)xj .
Multiplying this last equation by xj and summing on 1 ≤ j ≤ N leads to
h(x) ν(x) · x = h(ej)x · x. But already h(x) ν(x) · x = h(ej) so then x · x = 1.
This means that x lies on the unit sphere; in fact, ∂Ω must be the unit sphere.
In these coordinates we also have ν(x) = x, so h(x) = h(ej) and h is constant.

Since Ω is a ball after making the transformations, then it must be an
ellipsoid before the transformations, and the proposition is proved.

5. Möbius invariance of the Leray-Aı̌zenberg kernel

In this section we prove Theorem 3. That is, if the Leray-Aı̌zenberg kernel is
defined with respect to Fefferman measure, then under Möbius transformation
it satisfies the same transformation law as the Szegő kernel, provided the Szegő
kernel is also defined with respect to Fefferman measure.

The Fefferman surface measure dσF for a convex domain Ω = {z : r(z) < 0}
can be defined as the measure on ∂Ω for which

dσF ∧ dr = −in 2−n+1J(r)1/(n+1)dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn
= −2 J(r)1/(n+1)dV,
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where J(r) is the Levi determinant

J(r) = −1 · det
(
r rk
rj rjk

)
.

We explain briefly why J(r) is positive, which is needed for J(r)1/(n+1) to
be well-defined. (See also Range [13, p. 288–289].) If Ω is strictly convex,
then the n × n matrix (rjk) is hermitian and has positive eigenvalues. At
any point w ∈ ∂Ω, one can make a unitary change of coordinates so that this
matrix is diagonalized at w and has positive entries along the diagonal. In
these coordinates, one can compute directly that J(r) is positive at w so long
as dr 6= 0. This is true for any point w ∈ ∂Ω, so J(r) > 0 on ∂Ω.

Any constant multiple of dσF will also be an invariant surface measure.
Here, the constant was chosen so that the measure coincides with the Eu-
clidean surface measure for a sphere as well as the arclength measure in di-
mension one. Fefferman introduced this measure in [5, p. 259].

With respect to this measure, the Leray-Aı̌zenberg kernel is given by

C(z, w) =
(n− 1)!

2πn
J(r)n/(n+1)(w)

(
∑
rj(w)(wj − zj))n

.

This follows since then

C(z, w) dσF ∧ dr = − (n− 1)!
πn

J(r)(w) dV
(
∑
rj(w)(wj − zj))n

,

and
1

(2πi)n
∂r(w) ∧ (∂∂r(w))n−1

(
∑
rj(w)(wj − zj))n

∧ dr =
1

(2πi)n
∂r(w) ∧ ∂r(w) ∧ (∂∂r(w))n−1

(
∑
rj(w)(wj − zj))n

.

The last expressions are equal, as ∂r∧∂r∧ (∂∂r)n−1 = −(2i)n(n−1)!J(r)dV .
Stanton proved an identity equivalent to this one in [14, Theorem 1], for
instance. We remark that the last identity also shows

dr ∧ (i−n∂r ∧ (∂∂r)n−1) = 2n(n− 1)! J(r) dV,

so i−n∂r ∧ (∂∂r)n−1 is a positive multiple of surface measure, since J(r) > 0.
This fact was mentioned in Section 3.

We are then able to prove Theorem 3, that is, under Möbius transforma-
tions, the Leray-Aı̌zenberg kernel satisfies the transformation law

(8) C1(z, w) = J
n/(n+1)
F (z) C2(F (z), F (w)) J n/(n+1)

F (w).

For the Szegő kernel (defined with respect to Fefferman measure) this trans-
formation law is proved in Hirachi [6, (4.1)].

The proof uses the following facts. Suppose F = (f1, . . . fn) : Cn → C
n is a

Möbius transformation with f j = gj/gn+1 (1 ≤ j ≤ n), gj(w) = aj,1w1 + · · ·+
aj,nwn + aj,n+1 (1 ≤ j ≤ n+ 1), and det(aj,k) = 1. Recall that JF = detF ′.
Then,
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(a) J(r ◦ F )(z) = J(r)(F (z)) · |JF (z)|2,

(b) JF (z) = (1/gn+1(z))n+1,

(c)
∑

(r ◦ F )j(w)(wj − zj)
=
∑
rj(F (w))(f j(w)− f j(z))gn+1(z)/gn+1(w).

Only (b) and (c) require that F is a Möbius transformation; (a) is also true for
general biholomorphic maps. The statement of (a) seems to be well-known,
though the author is unaware of a convenient reference for it. Its proof follows
by first expressing the chain rule in the matrix form(

r ◦ F (r ◦ F )k
(r ◦ F )j (r ◦ F )jk

)
=
(

1 0
0 f lj

)(
r rm
rl rlm

)(
1 0
0 fm

k

)
,

then taking determinants of both sides. (In this equation, all subscripts refer
to derivatives.) For (b),

JF (z) = det
(
∂f j

∂zk

)
=

1
gnn+1

det
(
aj,k − an+1,k

gj
gn+1

)
=

1
gnn+1

det
(
aj,k − an+1,k gj/gn+1 0
an+1,k 1

)
=

1
gnn+1

det
(
aj,k gj/gn+1

an+1,k 1

)
=

1
gn+1
n+1

det
(
aj,k gj
an+1,k gn+1

)
=

1
gn+1
n+1

(
aj,k aj,n+1

an+1,k an+1,n+1

)
=

1
gn+1(z)n+1

.

For (c),∑
k=1...n

(r ◦ F )k(w)(wk − zk)

=
∑

j,k=1...n

rj(F (w)) gn+1(w)−1 [aj,k − an+1,k gj(w)/gn+1(w)] (wk − zk)

=
∑

j=1...n

rj(F (w)) gn+1(w)−1

[
gj(w)− gj(z)− [gn+1(w)− gn+1(z)]

gj(w)
gn+1(w)

]
=

∑
j=1...n

rj(F (w)) gn+1(w)−1 [gn+1(z) gj(w)/gn+1(w)− gj(z)]

=
∑

j=1...n

rj(F (w))(f j(w)− f j(z))gn+1(z)/gn+1(w).

Proof of (8). So suppose that F : Ω1 → Ω2 is a Möbius transformation,
Cj is the Leray-Aı̌zenberg kernel for Ωj , and r is a defining function for Ω2.
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Then r ◦ F is a defining function for Ω1, and

C1(z, w) · 2πn/(n− 1)! =
J(r ◦ F )n/(n+1)(w)

(
∑

(r ◦ F )j(w)(wj − zj))n

=
J(r)n/(n+1)(F (w)) · |JF (w)|2n/(n+1)

(
∑

(r ◦ F )j(w)(wj − zj))n

=
J(r)n/(n+1)(F (w))

(
∑
rj(F (w))(f j(w)− f j(z)))n

· gn+1(w)n

gn+1(z)n
· |JF (w)|2n/(n+1)

= J
n/(n+1)
F (z) · J(r)n/(n+1)(F (w))

(
∑
rj(F (w))(f j(w)− f j(z)))n

· J n/(n+1)
F (w)

= J
n/(n+1)
F (z) C2(F (z), F (w)) J n/(n+1)

F (w) · 2πn/(n− 1)!.

This establishes (8), so Theorem 3 is proved. �

6. Examples

6.1. The image of a ball under a general complex linear map has defining
function

r(w) =
∑
j,k

aj,kwjwk +
∑
j

(bjwj + bjwj) +R,

for constants aj,k = ak,j , bj ∈ C and R ∈ R. This is gotten by composing the
defining function r̃(w) = |w − α|2 − 1 for a unit ball directly with a complex
linear map F , say F (w) = A · w for A ∈ Mn,n(C), so that r = r̃ ◦ F . Then,
for w, z ∈ ∂Ω,∑

j

rj(w)(wj − zj) = r(w)−
∑
j,k

aj,k wjzk −
∑
j

(bjwj + bjzj)−R

and ∑
j

rj(z)(zj − wj) = r(z)−
∑
j,k

aj,k zkwj −
∑
j

(bjzj + bjwj)−R.

Since r(w) = 0 = r(z) for w, z ∈ ∂Ω, it follows that
∑
rj(w)(wj − zj) =∑

rj(z)(zj − wj). Then (1) is satisfied provided h is defined by h = |∇r|,
since then 〈r1(w), . . . , rn(w)〉 = 1

2h(w)Nw.
Moreover, it follows that the Bochner-Martinelli transform is self-adjoint

with respect to the weighted measure h−1dσE where dσE is the Euclidean
surface measure. We claim that the weighted measure h−1dσE is a constant
multiple of the Fefferman measure. From the definition of h it follows that
(h−1dσE) ∧ dr is a constant multiple of dV . Moreover, a simple computation
shows J(r̃) is constant. So then J(r) is also constant, using (a) from the
previous section and the fact that F is linear. It then follows from the defining
expression for dσF that dσF ∧ dr is also a constant multiple of dV . From this
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we conclude that dσF is a constant multiple of h−1dσE , and this establishes
the claim.

Now consider the Leray-Aı̌zenberg kernel defined with respect to Fefferman
measure, as in Section 5. Then, using the remark from Section 3 about taking
nth roots, and since J(r) is constant, it follows that

C(z, w) ≡ C(w, z) if and only if
∑

rj(w)(wj − zj) ≡
∑

rj(z)(zj − wj).

So, for bounded convex domains, the Leray-Aı̌zenberg kernel too is self-adjoint
only for complex ellipsoids, and only when defined using Fefferman measure.

6.2. For n = 1, Theorem 1 says that the Cauchy transform is self-adjoint
if and only if Ω is a disc, and in this case the measure must be a (constant)
multiple of the arclength measure. This can also be proved directly using
Taylor expansions. For instance, suppose ∂Ω is three times differentiable
and z = z(s) gives ∂Ω an arclength parameterization. Let h = h(s) be a
differentiable function. The Cauchy transform with respect to the arclength
measure has kernel C(t, s) = (2πi)−1z′(s)/(z(s) − z(t)). So with respect to
the weighted measure h−1ds, the transform is self-adjoint if and only if

z′(s)h(s)
z(s)− z(t)

=
z′(t)h(t)
z(s)− z(t)

for s 6= t.

Using a Taylor expansion at the diagonal, one finds that

z′(s)h(s) (z(s)− z(t))− z′(t)h(t) (z(s)− z(t)) = h′(s)(t− s)2 + o(t− s)2,

so if the transform is self-adjoint, then h must be constant. In that case,
another expansion shows that

z′(s) (z(s)− z(t))− z′(t) (z(s)− z(t)) = −iκ′(s)(t− s)3/6 + o(t− s)3,

where κ(s) is the curvature of ∂Ω at z(s). So the Cauchy transform can only
be self-adjoint with respect to arclength measure, and only if the boundary
has constant curvature. This establishes the local version of Theorem 1 in the
case of dimension one.
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