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Chebyshev Approximation by Reciprocals of Polynomials 

on [O, 00) 

D. BRINK 

Calvin College, Grand Rapids, Michigan 49506 

G. D. TAYLOR* 

Department of Mathematics, Colorado State University, Fort Collins, CoIorado 80523 

Communicated by G. Meinardus 

1. INTRODUCTION 

Let C,[O, co) denote the class of all continuous real valued functions 
defined on [0, co) that vanish at co. Let ~~~~~ = SUPER If(x)1 and let 7r?r, 
denote the class of all algebraic polynomials of degree < IZ. Fix B(X) E C[O, oo), 
where B has at most a countable number of nonnegative zeroes {t”}, this set 
having no finite cluster point. Also, assume that there exists a positive 
integer N (assume that N is minimal) for which lim,,, (B(x)/XN) = 0. Set 

D,[O, co) = {f~ C,,[O, 00): f = B . g, with g E C[O, a) 
and g(x) > 0, for all x 3 0} (1) 

and 

B(IT, k) = /nB(s)lpJz(x): p E T, , n 3 1, k a positive integer, 

II . k > N, p(x) = f a,9 > 0 for I E [O, co) 
i=O 

with i ai2 = 1 and 01 real . 
I (59 

a=0 

We write (01, p) E B(n, k) whenever we are speaking about such a function 
in B(n, k). 

Functions in D,[O, co) are called oscillating decay-type functions and 
occur often in various branches of physics and chemistry. B(x) is the 

* Supported in part by AFOSR-72-2271. 
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“oscillation” factor and, in practice, it is often taken to be a polynomial. 
However, in the theory presented here, more genera1 functions such as 
B(X) = sin x are also permissible. 

In this paper, we study questions of best approximation of functions in 
D,,[O, co) by B(n, k). Thus, as usual, we call (a, p) E B(n, k) a best approxima- 
tion to f E D,[O, co) provided that I/f - otB/p” ~1 = inf{il f - ,8B;qL I/ : (8, q) E 
B(n, k)j. The motivation for this study comes from two sources. First, in [5], 
Mainardus, Reddy, Taylor, and Varga developed a Bernstein-type theory 
for this type of problem for the special case B(x) K 1 and f e C,[O, co) is 
the reciprocal of an entire function. However, no results concerning existence, 
characterization, and uniqueness were given in this study. In [8], Williams 
studied this problem for the special case of a finite interval; existence, 
characterization, and uniqueness results were given, as well as a modified 
multiple Remes exchange for calculating best approximations. However, 
the existence claim was incorrect and a deeper study of this particular 
question was given by Taylor and Williams [7]. 

The main result of our study is that the standard “alternation” theorem 
is only sufficient. Indeed, we show that there are two types of alternation 
that can occur, one of which is the standard alternation. Aside from this, 
we show that existence is answered here as in [7] and that uniqueness holds 
whenever best approximations exist. 

Finally, we would like to contrast this study with some results of Achieser 
[l]. In Chapter II of this book, the problem of finding best rational ap- 
proximations in R,“(- co, co) to functions f E C(-co, co) satisfying 
lim,,-,f(x) = lim,,,f(.u) (limit being finite) is studied. In this setting, the 
points at &cc are identified and a theory of best approximation including 
existence, alternation (standard form, with possibility that co may be an 
extreme point), and uniqueness are proved. Thus, in the theory given there, 
the results for a finite interval are essentially identical to the results for 
(-cfJ, a>. 

2. MAIN RESULTS 

We begin this section by proving an existence theorem similar to one given 
in [7]. 

THEOREM 1. Assume that the zeroes {t,} C [0, 00) of B(x) satisfy: 

(i) O~t,<t,+,,foraNv>l; 
(ii) limZeO+ 1 B(x)/9 1 = $-co, iftl = 0; 

(iii) lim s+t, 1 B(x)/@ - tJ2” j = + co, if t, > 0. 

Then, for all f E D,[O, co), there exist best approximations in B(n, k). 

640/16/z-4 
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Proof: Set E = dist(f, B(n, k)) and assume that f $ B(n, k). Since 
lim r-27) B(x)/x”” = 0, we can select 01 > 0 so that 11 (Y . B(x)/r”(x) Ij < (l/2) jlfil, 
where r(x) = (1/21/2) (x” + 1). This inequality and the fact that 
sgn(@x)/r”(x)) = sgnf(x) imply that //f - aB(x)/r”(x)ll ( Ilfl~. Now, 
select p, 0 < p < 1 such that IIf- CY. . -W)/rk(x)ll = P IIf% Thus, E G p llfll 
and we see that 0 is not a best approximation tof. Let ((01~~ , p,))z=r C B(n, k) 
satisfy 

lif- %dw/Pmk(X>lI G P llfll, m = 1, 2,... (3) 

and 

iyrn II f - 4G)/~m~(-~)Il = E. (4) 

Sincep,(x) > 0 for x 3 0 by assumption, inequality (3) implies that a, > 0. 
Let x,, E [0, co) be such that ) f(x,,)[ = jifii, then, (3) implies that 

, ~,, / < (1 t P) llfll cxo XV2 
I wkl)l ’ 

m = I, 2,.... 

where we have applied Cauchy’s inequality to I pJx,,)l. Thus, we may select 
a subsequence {(cx”, JIJ)~Z~ of ((am, pnz)}zZ1 for which (Y, - 01 2 0, pv + 
p E z,, , p(x) = cbO aixi, with C”= a 2 0 Z2 = 1 and the convergence of py to p 
is uniform on each compact subset of [0, XI). Now, at Z0 , where Z,, is chosen 
so that If( > p i/fll andp(&,) # 0, we have that If(Z,,) - otB(f,)/p”(f,)I = 
lim,,, lf($,) - c~,B(i$)/p/(~~)~ < E < p IIfll, implying that 01 > 0. Fix 
x E [0, co), then, 

Letting v + co and then taking the sup over all x E [0, co), gives 

Iif- cuB/p” jl < E. (5) 

Finally, we must show that p(x) > 0 for all x > 0 so that (a, p) E B(n, k). 
Now, (3) implies that p(x) > 0, whenever B(x) # 0. Thus, we must only 
show that p(tv) > 0 for all v > 1. Now, suppose that t, = 0 and p(0) = 0. 
Then, by (ii) we would have that lim,,, I &(x)/p”(x)1 = + co violating (5). 
Thus, p(0) > 0. Finally, suppose that p(tJ = 0 for some zero t, > 0 of 
B(x). Since p(x) > 0 for all x $ {tY} and {tY} has no finite cluster point, we 
must have that t, is an even-order zero of multiplicity >, 2. But this would 
then violate (5) because of assumption (iii). Hence, p(x) > 0 for x > 0 and 
thus, (a, p) E B(n, k) with 

jlf- ~rB/p~Ii = E. 
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Observe that for the best approximation (IX, p) E B(n, k), it may be possible 
that i%,,, sup 1 OL . B(x)/&x)I = E. Also, if B(x) = I, then Theorem 1 
guarantees the existence of best approximations to positive functions in 
C,[O, co) by elements of the form l/p, p E rn , p > 0 on [0, XI). 

Next, we wish to turn to the problem of characterizing best approximations. 
As usual, for a given fE D,[O, co) and (01, p) E B(n, k) we say that x E [O. cx)) 
is an extreme point for f (with respect to (a. p)) provided that I j(s) - 
uB(x)/p”(x)l = 11 f - (olB/p”)ll. Before proving our alternation theorem, 
we wish to give a simple example that shows that the standard alternation 
theorem is not a necessary condition for best approximations in this setting. 
Set B(x) Zy I, k = I, II = 2, and p(x) = x + 1. Dfine f~ C,,[O, co) by 
f(0) = 5/4,f(l) = 1/4,f(2) = 7/12,fis linear on [0,2] andf(x) = 7/12 e-(X-z) 
for x > 2. Note that the points x = 0, I, 2 are extreme points for f and 
llf- l/(x t I)11 = l/4. If there exists q(x) = ax2 + bx + c E B(2, 1) such 
that Iif- l/q 11 < IIS- l/(x + l)lI, then we must have 2/3 < c < I, (x = 0); 
a + b $ c 3 2, (x = I); and 6/5 < 4a + 2b + c < 3 (x = 2) and a $ 0. 
The only solution to this system of inequalities is q(x) = x + 1. Hence, 
x + 1 is the unique best approximation to f from B(2, 1) == RU2[0, 00). 
Yet, the standard theory for R,O[O, N] N > 0, requires the best approxi- 
mation to alternate on a set of at least four extreme points. Thus, the standard 
alternation theorem is not a necessary condition in this case. 

We now turn to proving our characterization theorem. For convenience, 
we change our normalization of elements of B(n, p) by writing a/p as l/q, 
where q = p/a whenever 01 f 0. Recall that one consequence of our existence 
theorem was that 0 is not a best approximation to any function in D,[O, co+ 
B(n, k). Thus, in what follows, we consider only nonzero elements of B(n, k). 
Also, we would like to point out that one could apply the asymptotic con- 
vexity theory of Meinardus and Schwedt [6] to this problem to arrive at the 
same result. However, we prefer to derive this result from first principles. 

THEOREM 2. Let f E D,[O, co) - B(n, k), f = B . g andp E B(n, k), p > 0 
on [0, a). Then, p is a best approximation to f if and only if one the following 
two conditions hold: 

(a) There exist points 0 < x1 < x2 < *.. < x,+~ at which 1 f(x,) - 
~(xJ/~Yx,~l = llf - B/P” II, i = I,..., n + 2 and sgn(g(x0 - I/pk(x2)) = 

-ssn(g(x,+d - l/pk(xi+,)), i = I,..., n + 1. 
(b) The degree ofp < n - 1 and there exist points 0 < x1 < ... < x,+~ 

at which I f(xi) - B(xJ/p’“(x,)l = I/f - B/pk I/, i = I,..., n + 1 and sgn( g(xl)- 
l/pk(x,)) = (- l)n+l-i. 

Proof. Set e(x) = f(x) - B(x)/pk(x) and E = I[ e(x)Il. Suppose that 
p E B(n, k) is a best approximation to f and that (a) does not hold. In this 
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event, we wish to prove that (b) must hold. We do this by deriving a series 
of contradictions. However, first note that the error curve e(x) = f(x) - 
B(x)/@(x) cannot be a constant since p(x) + E is in B(n, k) for sufficiently 
small E > 0. Now, let us suppose that there exists m < n points, x1 . . . . . x, , 
on which I e(xJ = E. i = l,..., m and 

wM-4 - l/P”(x,)) = --gn(g(xi+d - l/pk(x,+J), i = I,..., m - I 

hold with m maximal. Following the format of the corresponding argument 
in the classical problem of approximating with polynomials on a finite 
interval [4, p. 26-271, we select points {z$!!=!’ such that x, < z1 < x,+i , 
i = I,..., m - 1, e(z,) = 0, i = l,..., m - 1 and there are no alternations 
as defined in (b) in each of the intervals [q , zi+J, i = O,..., m - 1, where 
z, = 0 and z, 3 x, + I such that I f(x)/ < E/2 for all x > z, . 

Set v(x) = nzyr (x - 2,) and note that 8~ < n - 1. Now, modify p 
according to the following two cases. (i) Suppose that sgn(e(x,)/B(x,)) = - 1. 
In this case, set q(x) = p(x) t- E(X + l)+ln+l y(x). where E > 0 is chosen 
so that 

,~oaxl I ft.4 - %9l@(x)l < E. ,=, 

That such a choice for E exists is easily seen using essentially the compactness 
and continuity arguments for the corresponding argument in the classical 
polynomial approximation problem on a finite interval [4, p. 26-271. Now, 
for x 3 z, and observe that l/q(x) < I/p(x) and lim,,, 1 B(x)/qk(x)l = 0. 
Thus, there exists M 3 z, such that x 3 M implies 

I f(x) - WWWI -=c E/2. 

Also, on the interval [znz , M] we have that whenever B(x) # 0, 1 f(x) - 
B(x)/qk(x)l < E. Thus, by continuity, 

max if(x) - B(x)/q”(x)I < E. 
xq=,Ja 

Combining these results gives that 

Ilf- %” II -=c E, 

which is a contradiction. 
Now, consider (ii) sgn e(x,)/B(x,,) = + 1. In this case, set q(x) = 

p(x) + E(X + l)+, q(x) (x - z,), where (x + l)n-m is to be replaced by 1 
if n = m and E > 0 is chosen so that 

max j f(x) - B(x)/qYx)l (: E. 
XEP>Z”J 
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That it is possible to choose an E > 0 satisfying this requirement follows 
readily from the fact that on (zi , zi+r) i = O,..., m - 1, sgn(x + lPPL 
v(x) (x - zm)) = -sgn e(xJB(xi). Now, for x 3 z,,, , we have by our 
assumption that m is maximal, ] e(x)1 < E, although it could happen that 
iiiii,,, I e(x)1 = E. H owever, as in case (i), we have that lim,,, B(x)/q’“(x)=O 
and for x 3 z, , l/q(x) < I/p(x). Thus, once again 

Ilf- B/qk II -=c J% 

contradicting our hypothesis that p is a best approximation toffrom B(n, k). 
Thus, we must have at least n + 1 extremals, 0 < x1 < ... < .Y,+~ for which 
j e(x,)l = E i = I,..., n + 1 and sgn(g(xd - l/pk(x,)) = -sgn(g(x6+d - 
l/pk(x,+l)), i = I,..., PZ. Since we are assuming that (a) does not hold, we 
must have that there are exactly n + 1 such points. 

Now, let us show that 8~ < n - 1 also must be satisfied. Indeed, if 
ap = n, then, since p > 0 for all x E [0, co) we must have that the leading 
coefficient of p is positive. Now, let m 2 x,+~ be such that x > A4 implies 
j e(x)] < E/2. Such an M exists since lim,,, j e(x)1 = 0 as ap = n. Select 
(z,}F$’ such that z0 = 0, z,+~ = M, x, < zi < x,+~ , i = l,..., n, e(z<) = 0, 
i = l,..., IZ and there are no alternations as defined in (b) in [zi , zi+J, 
i = O,..., n. Set F(X) = ny=, (x - z,) and let E,, > 0 be chosen so that 
p(x) - q, 1 cp(x)l > 0 for x 3 0. Such an E,, can be shown to exist since 
8~ = n. Now, set q(x) = p(x) + CT(X), where / E I < Q, is chosen so that 
q(x) is a better approximation than p(x) to f. Indeed, sgn E = -sgn e(x,+,)/ 
B(x,+,) and j E j sufficiently small will guarantee that 

by the standard argument cited above. Next, select N such that N 3 zn+r 
and x 2 N implies I B(x)/@(x) - I E I v(x))” I ,< E/3 and I f(x)1 < E/3. 
Then, by possibly making I E 1 smaller, we can guarantee that 

and for x > N, 

I f(x) - aww G 2~13. 

Thus, [if - B/q” I/ < E and we have our desired contradiction, so that 
Q < IZ - 1 must hold. 

Finally, we wish to show that sgn(g(x,+,) - I/JJ~(x,+~)) = 1. If not, 
then the argument of case (i) above can be repeated to get our desired 
contradiction. Thus, we have proved the necessity part of the theorem. 

Now, let us turn to proving that both (a) and (b) are sufficient conditions 
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forp to be the best approximation toffrom B(n, k). Thus, assume that con- 
dition (a) is satisfied by p. In this case, p is not only the unique best approxima- 
tion to f from B(n, k); but in fact, p is the unique best approximation to f 
from B(n, k) on the closed interval [0, x,+.J by the results of Williams [8]. 

Thus, suppose that condition (b) holds and that there exists 4 E B(n, k) 
for which 

llf- B/q’” II G llf- B/P” Il. 

(We shall actually prove thatp is unique whenever (b) holds in our argument.) 
Thus, at the extreme points x1 ,..., x,+~, we have that 

(-l)n+l-i 
(P(&> - 4(x,)) t 0, i=l )...) n + 1. 

Using the standard zero counting argument (for uniqueness) [l, p. 56-571, 
we have that either aq = n or q = p as ap & n - 1. Thus, suppose that 
3q = n. Since 1) f - B/q” 1) < E, we must have that q(x) > 0 for all x >, 0, 
so that the leading coefficient of q is positive. Hence, there exists x,+~ > x,+~ 
at which q(xn+z) - P(x,+~) > 0. Adjoining x,,+~ to the set x1 ,..., x,+~ , we 
have that 

(-l)n+l-i 
(P(Xi) - 4(x& 2 0, i = I,..., n + 2. 

Once again, appealing to [I, p. 56-571, gives p = q. n 

COROLLARY 1. Best approximations from B(n, k) to functions of D,[O, co) 
are unique. 

Thus, we see that best approximations are characterized by two possible 
types of alternation. It should be noted that condition (a) of Theorem 2 
corresponds to the case when the approximation problem is equivalent 
to approximating the given function on some interval of the form [0, N], 
N sufficiently large. Also, Theorem 2 implies that for a given f E D,[O, co), 
one cannot expect the Remes algorithm to necessarily converge to a best 
approximation. This is so, since the Remes algorithm, without some sort of 
modification, will always find the best approximation on some interval of 
the form [0, N], N > 0. However, if one is fortunate in his choice of f(x), 
such as f(x) = e-” as used in [3], then the Remes algorithm will give the 
desired answer for N sufficiently large. 

In [2], theorems corresponding to a zero in the convex hull characterization, 
strong uniqueness and continuity of the best approximation operator are 
studied for the special case B(x) = 1. For example, if a best approximation 
p* E B(n, k) satisfies ap* < n - 1, then the best approximation operator 
need not be continuous at p*, for ap* = n, the operation is continuous at 
p* and for ap* = n - 1, this question is open. 
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