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In this paper the relationship between CE equivalence and shape equivalence for locally 

connected, l-dimensional compacta is investigated. Two theorems are proved. The first asserts 

that every path connected planar continuum is CE equivalent either to a bouquet of circles or to 

the Hawaiian earring. The second asserts that for every locally connected, l-dimensional continuum 

X there is a cell-like map of X onto a planar continuum. It follows that CE equivalence and 

shape equivalence are the same for the class of all locally connected, l-dimensional compacta. 

In addition, an example of Ferry is generalized to show that for every n z 1 there exists an 

n-dimensional, LC”-’ continuum Y such that Sh( Y) = Sh(S’) but Y is not CE equivalent to S’. 

AMS (MOS) Subj. Class.: Primary 54Cl0, 54F35, 57N35; 

Secondary 57NO5 

cell-like map shape equivalence compacta 
CE equivalence local connectivity 

Introduction 

Two finite dimensional compacta X and Y are said to be CE equivalent if there 

exists a third finite dimensional compactum Z and cell-like maps f: Z + X and 

g: 2 + Y. It is easily seen that this relationship induces an equivalence relation on 

the class of all finite dimensional compacta. In this paper we investigate the 

relationship between CE equivalence and shape equivalence in case the compacta 

X and Y are locally connected and l-dimensional. 

Ferry [4] has shown that homotopy equivalent compacta are always CE equivalent. 

In addition, every CE map of finite dimensional compacta is a shape equivalence 

[S]. Thus it was natural to ask whether CE equivalence and shape equivalence are 

the same for finite dimensional compacta, but Ferry [5] gave an example which 

shows that this is not the case. Let X denote the circle with a spiral attached as in 

Fig. 1. Then X is shape equivalent to S’ but X is not CE equivalent to S’. 

* Research partially supported by NSF grant no. MCS 8301680. 
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Fig. 1. Ferry’s example. 

Notice that X is l-dimensional and planar but is neither path connected nor 

locally connected. This raises the question of whether or not such an example could 

exist if X were path connected or locally connected. The following two theorems 

show that the answer is negative in the correct settings. 

Theorem 1.0. If X is a path connected planar continuum, then X is CE equivalent 

either to a finite bouquet of circles or to the Hawaiian earring. 

Corollary 1.1. Suppose X and Y are path connected planar continua. Then X and Y 

are CE equivalent if and only if X and Y are shape equivalent. 

Theorem 2.0. For every locally connected, l-dimensional continuum X there exists a 

CE map f : X + Y where Y is planar. 

Corollary 2.1. Suppose X and Y are locally connected, 1 -dimensional compacta. Then 

X and Y are CE equivalent if and only if X and Y are shape equivalent. 

While locally connected, l-dimensional continua are CE equivalent if and only 

if they are shape equivalent, the same is not true of locally connected continua in 

general. The following is a generalization of Ferry’s example. 

Example 3.0. For every n 3 1 there exists an n-dimensional, LC”-* continuum 

X = Rnf’ such that Sh(X) = Sh(S’) but X is not CE equivalent to S’. 

There are some questions left unanswered by the preceding results. Since the 

example is only locally connected through dimension n -2, it may be possible to 

generalize Corollary 2.1 to cover the locally (n - 1)-connected case. Specifically, if 

X and Y are n-dimensional, LC”-’ continua such that Sh(X) = Sh( Y), then are X 

and Y CE equivalent? Another question is whether or not an example like that in 

Example 1 could exist for l-UV continua. 

We collect below some of the definitions and notation which will be used in the 

remainder of this paper. A compacturn is compact metric space and a continuum is 

a connected compactum. A map f: X + Y is cell-like (or CE) if f is a surjection 
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and f’(y) has the shape of a point for each y E Y. We assume that the reader is 

familiar with the fundamentals of shape theory (as contained in [3], for example). 

A space X is LCk, k 2 0, if for every x E X and for every neighborhood U of x 

there exists a neighborhood V of x in U such that each map of Sk into V is 

null-homotopic in U. We remark that a compactum is LC” if it is locally connected. 

A bouquet of circles is the wedge of a finite number of disjoint copies of S’. The 

Hawaiian earring is the locally connected planar continuum which is the union of 

the circles C,, = {(x, y)lx’+ (y - l/n)‘= l/n’}, n = 1, 2,3,. . . 

1. Planar continua 

Before beginning the proof of Theorem 1.0 we review a standard definition. 

Suppose X is a continuum in the plane R* and U is a component of lF%‘- X. A point 

x in the frontier of U, Fr( U), is accessible from U if there exists an arc A c U u {x} 

which has x as an endpoint. It is easy to see that the set of accessible points is 

dense in the frontier of U. 

Proof of Theorem 1.0. Suppose X = R2 is path connected. Let U. be the unbounded 

component of R*- X and let U,, U,, . . . be the bounded components. We will 

assume that there are infinitely many components U, and prove that X is CE 

equivalent to the Hawaiian earring. If there were only finitely many components, 

a similar proof would show that X is CE equivalent to a bouquet of circles. 

For each i 2 0, pick a point a, E Fr( U,) which is accessible from U,. Let A, be an 

arc in X from a, to a,. Let B, be an arc in X from a, to a, and let b2 be the last 

point of B2 which lies in A,. We define A, to be the arc which is constructed by 

following A, from a,, to b2 and then following B, from b? to a?. Now let B, be an 

arc in X from a0 to u3 and let b3 be the last point of B, which lies in A, u A,. Then 

A, is defined to be the arc which is constructed by following either A, or A, 

(whichever contains b3) from a, to b3 and then following B, to u3. This construction 

is continued inductively and results in a sequence A,, A,, A3, . . of arcs with the 

following two properties: A, joins a, to ui and no Ai crosses over an A,. 

We next describe how to thicken X up along each of the arcs A, to form a new 

planar continuum Z. This continuum Z will have the property that there are cell-like 

maps f: Z + X and g : Z + H, where H is the Hawaiian earring. 

Since a, is accessible from U,, and a, is accessible from U,, we can extend A, 

to an arc A, which contains A, in its interior such that 2, n X = A, and 2, c A, u 

U,u U, . By the Schoenflies theorem, A, is locally flat and so there exists an 

embedding h, : 2, x [0, l] + R’ such that h,(x, 0) = x for every x E A,. Let p, : R2+ R2 

be a cell-like map which has the arcs h,({x} x [0, 11) as its only nontrivial point 

inverses and has its support in a small neighborhood of h,(A, x [0, 11). Notice that 

X, =pl’(X) is a path connected continuum and that there is a natural one-to-one, 

onto map F,: (X -A,) u A, x [0, l] + X,. The map is natural in that F,(x) = p;‘(x) 
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for x E X -A, and p, F,( a, t) = a for (a, t) E A, x [0, 11. Also notice that the compact 

subset X, - h,(A, x (0, 1)) is connected and has one complementary domain fewer 

than X does in the sense that 

K’( U”) u U4 x (091)) u Pl’( U,) 

is a connected open subset of the complement of X, - h,(A, x (0, 1)). See Fig. 2. 

Since A, does not cross A,, there is an arc A,c X, - F,(A, x (0, 1)) such that 

p,(iTz) = A,. Extend Ai, a little into the open sets p;‘( U,) and p;‘( U,) and find an 

embedding h, : A, x [2,3] + R2 such that h?(x, 2) = x for every x E A?. Let pr : R’+ R’ 

be a cell-like map which shrinks out the arcs h7({x}x[2, 31) and let X,=py’(X,). 

As before, there is a naturally defined map F2: (X -(A, u A,))u (A, x [0, l] u 

A, x [2,3]) + X2. This map is one-to-one on each of the components of its domain 

and F,(A, x (0, 1)) n F2(A2 x (2,3)) = 8. By making the diameter of the fibers h,({x} x 

[2,3]) small we can make F,](X-(A, u A2))u (A, x[O, 11) as close to F,](X- 

(A, u A,)) u (A, x [0, 11) as we like. 

“0 

a0 
ai !a "1 

X 

Fig. 2. 

This construction is now continued inductively. We construct the cell-like map 

p3 by thickening up A, and define a natural map 

F,: (X -(A, u A,u AA)) u (A, x [O, 11 u A2 x [‘A 31 C-J A, x [4,51) + X3 

as before. The construction is done in such a way that the sequence {F,} converges 

to an embedding on X -U A, and on A, x [2j - 2,2j - l] for each j and so that 

lim n-cr F,(Y,) = fim,+, F,(y2) if and only if there exists an n such that F,,(y,) = 

Fn(y2). Let F:(X-UA,)u(U(A,x[2i-2,2i-l]))+R be defined by F(x)= 

lim n-u F,,(x). Define Z=F((X-UA,)u(U(A,x[2i-2,2i-11))). 

To complete the proof we .must define cell-like maps f: Z--f X and g: Z + H. 

Define f as follows: for z E F( X -U A,), define f(z) = F-‘(z) and for z = F( a, f), 

(a, t) E A, x [2i -2,2i- 11, define f(z) = a. This map will be well defined and con- 

tinuous if {F,} is constructed carefully. Each f’(x) is a point for x E X -U A, and 

f’(x) is an arc if XE A, for some i. Specifically, f’(x) = u {F,({x} x 

[2i - 2,2i - I]) 1 x E A,}, which is an arc. Thus f is a cell-like map. 

We define g by specifying the point preimages. There are two kinds. First, each 

arc of the form F(A, x {t}), t E (2i-2,2i - l), is mapped to a point by g. There is 
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only one preimage of the second kind: 

.Z,,=Z-UF(A,x(2i-2,2i-1)). 

This last set is cell-like because it is a connected subset of the plane which does 

not separate the plane. (The construction of Z was specifically designed to make 

enough channels in Z so that Z,, does not separate R’.) We must check that g(Z) = H. 

This is so because g(Z,,) is a point and each of the sets F(A, x [2i -2,2i- 11) is 

mapped onto a loop at g(Z,,). The diameter of these loops decreases because we 

thicken up the arcs A, by smaller and smaller amounts. 0 

Proof of Corollary 1.1. Let X and Y be path connected, planar continua. It is a 

standard result that if X and Y are CE equivalent, then X and Y are shape 

equivalent [8]. (By a theorem of Kozlowski, this is true even if the connecting 

compacturn in the CE equivalence is infinite dimensional [3, Theorem 10.4.51.) 

Alternatively, a proof preferred by the referee is to use the Vietoris-Begle Theorem 

to conclude that H’(X) = fi’( Y), to apply duality to see that iR-X and R2- Y 

have the same number of components, and to invoke Borsuk’s classification of 

planar shapes [l] to certify that X and Y are shape equivalent. 

Conversely, suppose X and Y are shape equivalent. By Theorem 1.0, X is CE 

equivalent to X, and Y is CE equivalent to Y, where each of X, and Y, is either 

a bouquet of circles or the Hawaiian earring. But Sh(X) = Sh( Y) implies that 

Sh(X,) = Sh( Y,) which, in turn, implies that X, = Y, and so X and Y are CE 

equivalent. 0 

2. Locally connected l-dimensional continua 

This section contains the proofs of Theorem 2.0 and Corollary 2.1. We begin with 

some definitions and then prove a lemma which gives us a convenient inverse limit 

representation for a locally connected, l-dimensional continuum. The definitions 

are standard and can also be found in [7]. 

Let X be a compacturn. An open cover (Y of X is a finite collection of nonempty 

open sets whose union is all of X. The cover cy has order 4 n if no (n + 2) elements 

of cy have a point in common. Associated with any cover LY there is an abstract 

polyhedron N(N) called the nerve of (Y. The vertices of N(N) are the elements of 

N and the simplex spanned by a collection of vertices is in N(Q) if and only if the 

open sets corresponding to those vertices have nonempty intersection. There is a 

natural map r: X+ N(Q), called the harvcentric map, such that n(x) belongs to 

the interior of the unique simplex spanned by the collection of all elements from 
Q containing x. See [7, p. 701 for a definition of v. 

Lemma 2.2. Suppose X is a l-dimensional, locally connected continuum. Then for 

every open cover cy of X there exists a refinement /3 of (Y such that p has order ~1, 

each element of ,5 is connected, rr: X + N(P) is onto, and r ‘(v) is connected for 

each vertex v E N(p). 
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Proof. Begin with a refinement y of order G 1. Say y = {V,, V,, . . . , V,}. For each 

i, let core( V,) = Vi -I.J { V, Ij f i} = X -I._. { V, Ij # i}. By discarding redundant Vi’s, 

if necessary, we may assume that each core is nonempty. Then core( Vi) is compact 

and is precisely Y’( Vi/i). The strategy of the proof is to modify the open sets in y 

to make each core connected. This is done in three stages: first we make the total 

number of components of the cores finite, then we make each element of the cover 

connected, and finally we work on the cores one at a time to make each core have 

only one component. 

Let E = min{dist(core( V/i), X - V,)}. For each x E X there exists a compact, con- 

nected set C, such that x E int C, and diam( C,) <is. There are finitely many, 

C,, C2,.. , , C,, of these C, whose union covers X. We define Xi = u 

IC,lCjncore(V,)#P)) and U, = Vi-U {X, Jj # i}. The collection {X,} consists of 

pairwise disjoint compact sets with Xi c V,; moreover, {U,} covers X, since for x E V, 

either x lies in some X, in which case XE U, or x belongs to no X, in which case 

x E Ui. The cover { Ui} has the property that core( U,) = Xi. Clearly X, c core( U,). 

If XE U, -Xi, then x belongs to no core( I$). Thus XE Vi n V, for some k implying 

x is not in core( U!j. Observe that the total number of components of these cores 

is at most m. 

Now let p be the cover whose elements are components of elements of { Ui}. Then 

p is a refinement of (Y and has order ~1; we continue to denote the elements by 

U,. By again eliminating any redundant sets, we make p finite. We claim that each 

core is then nonempty and that the total number of components of the cores is still 

at most m. It is clear that each core is nonempty because if core( Ui) = 0 for some 

i, then we eliminate that Ui. In order to prove the claim that the total number of 

components of cores is still at most m, we consider a connected open set U, which 

is redundant. Then U, is covered by the open sets U, n U,, j f i. These sets are 

pairwise disjoint because the order of p is ~1 and a finite number cover U, by 

compactness. Thus, the fact that Uj is connected means that at most one U, n U, is 

nonempty; i.e. there exists an i such that U, is entirely contained in U, and U, 

intersects no other element of p. It must be the case that Cl( U,) n core( U,) # 0 since 

U, is connected. We can now see exactly what will happen to the cores when Uj is 

eliminated: they will all remain unchanged except for core( U,) which will be 

increased by having the connected set Cl( U,) added to it. The number of components 

of core( U,) will not increase when this happens because of the fact that Cl( U,) n 

core( U,) # 0. This completes the proof of the claim. 

Consider core( U,). Choose an arc A in U, such that core( U,) u A is connected. 

Now let W, = U, , and W, = U, -A for i 2 2. Then p’ = { W,} is again an order 1 

cover of X. As before, take components and eliminate redundancy. (The only type 

of redundancy which will occur at this point is that some components of U -A, 

i 2 2, may lie entirely inside U, and should therefore be discarded. This will increase 

the size of core( W,) but will not disconnect it.) Now p’ has the property that 

K’( W,) = core ( W,) is connected. We next move to W, and make its core connected, 

and then move to W,, etc. We need to check that this procedure will terminate in 
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a finite number of steps even though there may be more open sets in p than there 

were in p. It will, because, if core( ui) is not connected, then the total number of 

components of the cores is decreased by the operation of going from p to /3’. 

Specifically, the total number of components of the cores minus the number of cores 

will strictly decrease and will therefore reach 0 in a finite number of steps. 

We have now succeeded in making Y’(V) a nonempty connected set for each 

vertex VE N(P) and in making each element of p connected. If (T is a l-simplex 

in N(P) spanned by the vertices U and V, then U u V is connected and so is 

r( U u V). It follows that (T c T( U u V) and so 7~ is onto. 0 

Proof of Theorem 2.0. We will construct a sequence of covers (Y, , a,, . . . of X, PL 

maps J; : N(czi+,) + N((Y~), and PL CE maps Ai : N((Y~) + R*. This construction is 

done in such a way that A,f; is +homotopic to Ai+,, where {E,} is a sequence of 

positive numbers for which 1 e, < ~0. We then apply [9, Proposition 3.21 to conclude 

that {Ai} converges to a CE map f: X +f(X) c R*. (See also Fig. 3.) 

Fig. 3. 

Let (Y, be a cover of X which satisfies the conclusions of Lemma 2.2 and let 

r, : X + N(LY,) denote the barycentric map. Now N(cy,) is a connected l-dimensional 

polyhedron with a fixed triangulation; let A, denote a maximal tree in that triangula- 

tion. We define A,: N(cu,) +[w* by letting A,(A,) be a point and mapping the 

I-simplices in N((Y,) -A, onto loops in R* which meet only at the point A,(A,). 

Use K, to denote A ,( N( cr,)) = R* and let M, be a close regular neighborhood of K, . 

Now let cy2 be a refinement of (Y, which satisfies the conclusions of Lemma 2.2 

and has much smaller mesh. (Just how small the mesh should be will become 

apparent during the construction below.) Of course n2 denotes the barycentric map 

X+ N(a2). 

We define f, : N((Y*) + N((Y,) as follows. For each U E a2 pick a point u E U and 

define f, of the vertex U E N( az) byf,( U) = n,(u). This definesf, on all the vertices 
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of N((Y~). Now suppose (T is the simplex in (Ye joining the vertices U and V Extend 

f, to u by mapping u onto the shortest path in N(cr,) from f,(U) to f,( V). If the 

mesh of a2 is small enough, this shortest path will be well-defined. Notice that we 

can make r2f, be as close as we wish to r, by decreasing the mesh of LYE. This 

completes the definition off, . 

We next define a PL CE map h2: N(aZ) + M, . Notice that the fact that r;‘(V) 

is connected for each vertex V of N(c~,) implies that rr;‘( C) is connected for every 

connected subcomplex (of the natural triangulation) of N(cu,). [Hint: for a l-simplex 

(U, V)in N(cu,), rry,((U, V))=core(U)u(UnV)ucore(V),andeachcomponent 

of Ii n V meets either core(U) or core(V).] In particular, ry’(A,) is connected. 

Thicken rl’(A,) up to a connected open set WC X. By choosing the mesh of cr2 

sufficiently small, we can,make sure thatf,rr,(X - W) n A, = (4 and thus thatfi’(A,) 

is contained in the connected set rrJCl( W)). Let B, be a connected polyhedral 

neighborhood of r2(Cl( W)) in N((Y~). By taking W to be a close neighborhood of 

r;‘(A,) and taking the mesh of (Ye small, we can make f,( B2) be contained in an 

arbitrarily small neighborhood of A,. Let A2 be a maximal tree in B2. Define 

A2(A2) = h,(A,). Make A2 map the 1-simplices of B,-A, onto small disjoint open 

loops in n/r, attached to h,(A,). Consider a component C of N((Y?) - B2. We see 

that C is a finite l-complex with some nonseparating vertices removed. Let T be a 

tree in C which contains all the vertices of C. Since there is a l-simplex u of N((Y,) 

such that f,( C) c 0; we can define A,(T) to be the midpoint of the loop A,(u). Let 

A be an open l-simplex in C - T and let a and b denote the endpoints of A. If 

both a and b are in T, then AZ(A) is defined to be a small loop in M, based at 

A2( T). Otherwise, A,(A) is defined to be an arc in M, from A,(a) to A,(b). (There 

are two choices for this arc; choose the one which makes A21 Cl A homotopic to 

A,f, rel endpoints.) It is not difficult to make these arcs and loops disjoint except 

for their endpoints. This completes the definition of A2. We let K2 denote A,( N( cr2)) 

and take M2 to be a small regular neighborhood of K,. 

This procedure is now continued inductively. The next thing to do is to define 

LYE to be a cover whose mesh is much smaller than that of (Ye and then to define 

fz: N((Y~) + N( (Ye) in much the same way that f, was defined. In order to define 

Ax: N((Y~) + M,, we lift the nondegenerate point preimages of A2 to disjoint con- 

nected sets in N((Y~) and define A3 to take each of those connected sets to a point 

with a number of very small loops attached. Then A3 is extended to components of 

the rest of N((Y~). The result of this construction is an infinite sequence of covers 

and maps. 

A proof like the proof of Brown’s Theorem [2] can be used to show that X is 

homeomorphic to the inverse limit lim, {N(LYi),f;} provided the mesh of (Y, gets 

small fast enough. Furthermore, Ai+, has been constructed in such a way that A,J; 

is homotopic to Ai+, in M,. The diameter of the track of a point under the homotopy 

is no larger than the diameter of A,(u), where u is a simplex in N(LY,). Those 

diameters will decrease quickly enough so that [9, Proposition 3.21 applies to give 

the CE map f: X -f(X) c R* which we seek. 0 
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Proof of Corollary 2.1. Let X and Y be locally connected, l-dimensional compacta. 

If X and Y are CE equivalent then they are shape equivalent just as in the proof 

of Corollary 1.1. 

Conversely, suppose X and Y are shape equivalent. We first consider the case 

in which X and Y are connected. In that case we can apply Theorems. 1.0 and 2.0 

to conclude that X is CE equivalent to X, and Y is CE equivalent to Y, where 

each of X, and Y, is either a bouquet of circles or the Hawaiian earring. But 

Sh(X) = Sh( Y) implies Sh(X,) = Sh( Y,) which, in turn, implies that X, = Y,. Any 

locally connected compacturn has at most a finite number of components, so if X 

and Y are not connected we may apply the proof above to the components. 0 

Remark. Suppose X and Y are locally connected, l-dimensional continua which 

are shape equivalent. The proofs of Theorems 1.0 and 2.0 can actually be made to 

yield a sequence of spaces and cell-like maps connecting X and Y in which each 

space is locally connected and l-dimensional. Specifically, there is a sequence 

x-f(X)+Z,-x, = Y,tZ,+g( Y)’ Y 

in which each map is a CE map and each space is a locally connected, l-dimensional 

continuum. The spacesf(X) and g( Y) are those constructed in the proof of Theorem 

2.0 and obviously have the properties specified, while X, and Y, are both either 

bouquets of circles or Hawaiian earrings. Thus we need only check that Z, and Z2 

can be locally connected and l-dimensional. In general, the continua constructed 

in the proof of Theorem 1.0 will be 2-dimensional, but f(X) and g(X) are nice 

enough so that this can be avoided. Both contain many points which locally separate. 

(Each vertex of K, is such a point.) Thus, instead of thickening along a sequence 

of arcs {A;} as we did in the proof of Theorem 1.0, we can get by with thickening 

J’(X) and g(X) up along points. In the case of f(X), the sequence of arcs {A,} is 

replaced with a sequence of points (al} having the property that R2 -f(X) u { ai} is 

connected. Thickening up each of these points to an arc in an appropriate way will 

not increase the dimension or destroy local connectivity. See Fig. 4 for a picture of 

@-a-a 
ai ai ai 

Fig. 4. 
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how this would be done in case we were dealing with the Hawaiian earring. Notice 

that the same point a, can be used more than once to make different complementary 

domains accessible. 

3. An Example 

In this section we construct Example 3.0 and prove that it has the properties 

specified in the Introduction. 

Fix n 2 1. Let W be the wedge of a null sequence of (n-1)-spheres (in case 

n = 2, W is just the Hawaiian earring) and let F: W+ W be the embedding which 

shifts all the (n - 1)-spheres down one place in the sequence. Our example, X, is 

the mapping torus of F. Although he did not describe it this way, Ferry’s example 

[5] arises in precisely the same manner when n = 1. (See Fig. 5.) 

Fig. 5. 

Clearly the obvious embedding A :S’ +X is a shape equivalence. It should also 

be clear that X is n-dimensional and LC”-*. The main point is that X and S’ are 

not CE equivalent. 

Suppose to the contrary that there exist CE maps f: Z + X and g: Z + S’ defined 

on some compactum Z. Consider the universal covers p: X* + X and q : R’ + S’ 
(when n = 2, X does not have a universal cover, but it does have an infinite cyclic 

covering space corresponding to the subgroup determined by A * rr, (S’)). As in [5], 

there exist pullbacks 

zx.l“ x* 
R’ 

z,- rR’ 

with f and g’ CE surjections and with p’ and q’ covering maps. The crucial 

observation is that Z, and Z,? are the same space, called Z’. Once that has been 

shown, the contradiction will be transparent, for by the Vietoris-Begle mapping 
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Theorem, fin-’ (X*) = fiflP’(R’) =O, which is impossible because X* has the 

homotopy type of the wedge of (n - 1)-spheres. 

There is a geometric way to see why Z, and Z, are homeomorphic. Form a new 

space M by attaching the mapping cylinders off: Z + X and g: Z + S’ together 

along the common copy of Z. Embed M in the Hilbert cube Q and use the fact 

that the inclusion-induced H’(M) + I?‘(S’) IS an isomorphism to find a neighbor- 

hood U of M for which the inclusion i: S’ + M + I/ induces an injection of 

fundamental groups. Let e: CJ*+ Cl be the covering space determined by i,n,(S’). 

Now lift the map iq :R’ -+ U to an embedding R’ --, U* and let M* denote the 

component of Ed ‘(M) containing this line. It follows routinely that Z,y is equivalent 

to M*n e-‘(Z) and that f’ functions just like the lift of the mapping cylinder 

collapse. Check that the inclusion j: X + M + U also induces an injection of the 

fundamental groups (for n > 2; when n = 1 it only injects the part corresponding to 

the obvious circle in X). Hence, there exists a lift X* + U* of_@ : X* + U embedding 

X” in M*. The cell-likeness of the mapsfand g ensures thatjh : S’ + U is homotopic 

to i: S’+ U. As before, one can see that Zy is equivalent to M* n e-‘(Z). 

In conclusion, we remark about the connections with a related topic of UVk 

equivalence. Compacta X and Y are said to be UVA equivalent if there exist UV’ 

maps f: Z + X and g : Z -) Y defined on some compacturn Z. (One calls ,f: Z + X 

a UV” map if, when Z is regarded as a subset of the Hilbert cube I’, for each x E X 

and each neighborhood U off-‘(x) in I’ there exists another neighborhood V of 

,f-‘(x) such that every map aB’+’ -t V can be extended to a map B”‘+ U, in 

{0, . . , k}.) It follows from the Vietoris-Begle Theorem that proper UV’: maps induce 

isomorphisms of Tech homology groups in dimension i (i = 0,. . , li). Hence, the 

argument just given indicates that the example X is not UV”- ’ equivalent to S’. 

(On the other hand, it is not difficult to see that the two spaces are UV”-’ equivalent.) 

This example thereby demonstrates the importance of the UV’ hypothesis in Ferry’s 

result [6] that shape equivalent UV’ compacta are UV” equivalent for all k. As the 

referee has pointed out, this raises another question: is every LC” compacturn X 

that is shape equivalent to S’ also UV’ equivalent to S’? 
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