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ADVANCIS IN MATHJHATICS 92, 231-265 (1992) 

Automorphisms of the Lattice of 
Recursively Enumerable Sets: Orbits* 

R. G. DOWNJZY 

Victoria University of Wellington, private bag, 
Wellington, New Zealand 

AND 

MICHAEL STOB 

Calvin College, Grand Rapids, Michigan 49506 

INTRODUCTION 

An important program in the study of the structure of 8, the lattice of 
r.e. sets, is the classilication of the orbits under Aut(J), the automorphism 
group of 8. Obviously, the class of linite sets of a given cardinality and the 
class of inllnite+zoinlmite recursive sets form orbits. But other than these, 
relatively few orbits are known. Harrington has shown that the creative 
sets form an orbit. The most important result in the area is still Soare’s 
proof [Sol] that maximal sets (sets which are coatoms in &* = ~8’ modulo 
the ideal of llnite sets) form an orbit. The proof of this result contains an 
intricate and powerful construction which has since been used to construct 
automorphisms by Maass [Ml, Maass and Stob [MSt], and Stob [St]. It 
remains the most powerful method of constructing automorphisms. 

The principal result of this paper is the existence of a new orbit, the 
hemimaximal sets. A r.e. set H is hemimaximal if there are a maximal set 
44 and disjoint r.e. sets M,,, M1 such that J40 u M1 = 44, each Mi is non- 
recursive, and il4,, = H. In Section 1, we prove that the hemimaximal sets 
form an orbit by extending Soare’s proof for maximal sets and detail the 
properties of splittings of maximal sets which led us to this result. In Sec- 
tion 2, we study the degrees of hemimaximal sets. (All degrees mentioned 
in this paper are r.e.) We show that hemimaximal sets exist in every high 
degree, and that for every degree a > 0 there is a hemimaximal set H such 

* The authors were supported by National Science Foundation Grants DMS W-01242 and 
DMS 85-21712, respectively. 
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238 DOWNEY AND STOB 

that deg(jY) < a. However, there are some r.e. degrees which contain no 
hemimaximal sets. Thus the class of hemimaximal sets, 2, provides an 
example of a detinable (in 8 in the language of lattices) class of r.e. sets 
which forms an orbit but contains r.e. sets of low r.e. degree. This is the tirst 
example of such an orbit. Furthermore, the class of degrees of sets in X is 
not closed upward; again this is the lirst example of a class definable over 
6 with this property. 

In Section 3, we turn to the question of which orbits contain complete 
r.e. sets. Soare has conjectured that the orbit of every nonrecursive r.e. set 
contains a complete set. Exploiting further our idea of lmding 
automorphism types from splittings, we introduce the hallhemimaximal 
sets and show that every halfhemimaximal set is automorphic to a com- 
plete set. An r.e. set A is haljhernimaximal if A has a splitting into disjoint, 
nonrecursive, r.e. sets AO, Al such that A,, is hemimaximal. We show that, 
although not every set is hallhemimaximal, there are large natural classes 
of halfhemimaximal r.e. sets (such as all low simple r.e. sets). 

In Section 4 we discuss the prospects of extending the idea of Section 1 
to splittings of other sets which form orbits. Our main positive result is the 
classification of all orbits which arise from splitting quasimaximal sets (sets 
which are the intersection of finitely many maximal sets). We conclude in 
Section 5 with further remarks and a list of open questions. 

Our notation is standard; a reference is Soare [SOL]. In particular, a * 
affixed to a binary relation means up to a linite set; e.g., A Z* B means 
A - B is finite. Also, we will use heavily the notion of e-states. If { I’e} ~ l ~ 
is a recursive array of r.e. sets with simultaneous enumeration given by 
1 LL,sEco then ~~,~(x), the e-state of x at 3, is {i < e 1 x E Vi,s}. The e-state 
of x, crJx), is {i < e 1 x e Vi}. e-states are ordered by the relation 0 > r if 
and only if (lli)(Vj<i)[(jegejET) and iEu--T]. Thus the empty set is 
the least e-state and {O, 1,2, . . . . e} is the greatest. If we have a simultaneous 
enumeration of a recursive array of finite sets including A and B, A\B= 
{x 1 (!ls)[x~A~--B~]} and A \ B denotes (A\B)nB. 

1. HEMMAXIMAL SETS FORM AN ORBIT 

DEFINITION 1. If A is any nonrecursive r.e. set, a nontrivial splitting of 
A is a pair of disjoint nonrecursive r.e. sets A,,, Al such that A = A0 u Al. 

Friedberg was the first to show that every nonrecursive r.e. set A has a 
nontrivial splitting. In fact, the splittings that Friedberg produced had the 
slightly stronger property of Definition 2. 

DEFINITION 2. A nontrivial splitting A,,, A, of A is a Friedberg splitting 
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if for every r.e. W, if W- A is not r.e., then each of W- A,,, W- AI is not 
r.e. 

Sacks showed that nontrivial splittings A,,, At of A always exist with 
the added property that AO+ A and AI + A (and in fact it can be 
guaranteed that each of deg(AJ and deg(Al) is low). 

DEFINITION 3. A set A is hemimaximal if there are a maximal set II~ and 
a nontrivial splitting MO, MI of A4 such that A = MO. (More generally, if 
P is any property of r.e. sets, A is herniP is there is a set M with property 
P and a nontrivial splitting J4,,, M, of M such that A = MO.) 

Our investigation of hemimaximal sets was initially motivated by the 
following two theorems. 

THEOREM 1. Euery nontrivial splitting of a maximal set is a Friedberg 
splitting. 

Proof Suppose that iVO, A4I form a nontrivial splitting of the maximal 
set M and suppose that W-M is not r.e. Then W- it4 is infinite, so 
i@=* W. Now W-M02 W-M=*M so that if W-M0 is r.e., 
a0 = * M, u ( W- M,,) and so n0 is r.e. This contradicts the nonrecursive- 
ness of MO. Similarly, W - MI is not r.e. 1 

DEFINITION 4 (Downey, [D]). A pair of disjoint r.e. sets AO, At forms 
a maximal pair if whenever BO, Bt are such that Biz Ai, i = 0, 1, and 
BOnBI=@ then Bi-Ajis finite for i=O, 1. 

THEOREM 2. Every Friedberg splitting of a simple set forms a maximal 
pair. 

Proof Suppose that A is simple and that A,,, At is a Friedberg splitting 
of A, B,,zA,,, BIzAI, and B,,nBI=@. Now B,,-AI=BO is r.e., thus 
B0 - A is r.e. (since AO, AI form a Friedberg splitting of A). Since A is 
simple, this implies that B0 - A is finite. Similarly, BI -A is finite. 1 

Theorems 1 and 2 led us to conjecture the following. 

TI-EOREM 3. Zf C, D are hemimaximal sets, then there is @ o Aut(8) such 
that @(C) = D. 

Proof Let A and B maximal be given ,such that AO, AI and BO, BI form 
nontrivial splittings of A and B respectively. Soare [Sol] shows us how to 
construct @ E Aut(&?) such that @(A) = B. We will modify his proof so that 
in addition @(Ai) = Bi for each i. 

607/92/2-8 



240 DOWNEY AND STOB 

Soare constructs four recursive arrays, { UC}eEW, { Ve}CEm, { OC}eEW, 
R.Lco~ such that the map @ delined by @( Ue) = fiC, and @-I( Ve) = PC 
induces an automorphism of &‘*. (It is enough to construct an 
automorphism of 8* since Soare has also shown that if A and B are r.e. 
sets which are intinite and coinlinite, and there is CD E Aut(&‘*) such that C? 
maps the equivalence class of A to B, then there is an automorphism of 8’ 
which maps A to B.) To insure that @ defined in this way is defined on all 
of &* and is onto &‘*, Soare guarantees that 

To guarantee that @ preserves inclusions, the only other requirement on @, 
Soare divides the problem into two subproblems, the so-called J to B part 
and the ,4 to B part. To state exactly what each part requires, we need the 
following detinition. 

DEFINITION 5. Let {XC}eEa and { Ye}eE ~ be recursive arrays of r.e. sets. 
The full e-stute, v of x with respect to {Xe}eEU, { Ye}eEU is the triple 
(e, 0, r), where o is the e-state of x with respect to {Xe}eEW and r is the 
e-state of x with respect to { YejeEU. (Given x and s, v=,*(x) is the 
approximation to the full e-state of x at stage s in some fixed simultaneous 
enumeration of all the sets in the arrays {XC}eEU, { Ye}eEU.) 

Now the 1 to B part of the requirement amounts to 

for each full e-state v, 

inlinitely many elements of 2 have e-state v with respect to 
~~e~eH0~ 1 ELu 

iff 
(21 

inlinitely many elements of B have e-state v with respect to 
Welsh ~KLEUJ. 

Similarly, the -4 to B requirement is 

for each full e-state v, 

intinitely many elements of A have e-state v with respect to 
VLLm t Qe.zm 

iff (3) 

intinitely many elements of B have e-state v with respect to 
VLLJ~ I~elew 



AUTOMORPHISMSOFff 241 

It is clear that (1 ), (2), and (3) guarantee that @ as defined above is an 
automorphism such that @(A) = *B. Now for our theorem, it is enough to 
replace (3) by 

for each i and for each full e-state v, 

infinitely many elements of Ai have e-state v with respect to 
l ~elmJ9 f t.Lm 

iff 

infinitely many elements of Bi have e-state v with respect to 
m?lt?aLl~ l u?ao. 

(4) 

The most dihicult of the three conditions (1 ), (2), and (3) is (3) (and our 
(4)). The primary reason for this difficulty is the conflict between (2) and 
(3). To see why this is so, suppose that UO is given. (Suppose for instance, 
because of (1), that UO is enumerated to satisfy UO = IV,,.) Then, as we 
observe elements in U,, n ,Z, we must enumerate certain elements in tiO 
while they remain in B. However, these elements may later enter B thereby 
threatening (3) with respect to UO. For if oO n B is intlnite, we must have 
that U,, n A is iminite but we have no control over UO. Thus a necessary 
condition for meeting (3) seems to be that if intinitely many elements enter 
B while in oO, iminitely many elements of A must be in UO. Soare extends 
this analysis to all e-states to get a sutkient condition on the enumeration 
on all the sets in the four arrays above for (3) to be met. A preliminary 
definition is needed. 

DEFINITION 6. Given full e-states v = (e, cr, T) and v’ = (e, o’, r’), 
v < v’ if c s O’ and r 2 T’. (The relation < is pronounced “is covered by.“) 

LEMMA 1 (Soare’s Extension Lemma), Assume thut A und B are infinite 
r.e. sets und {U”},,Em, {r”jnE,,,, {n,,}nGW, {Vn}“GW ure recursiue urruys of 
r.e. sets. Suppose that there is a simultaneous enumeration of a recursive 
array including all the above such that A \ p,, = 0 = B \ o,,, for all n. For 
each full e-state v with respect to { U,,},,EW, {r”},,Ea, define the r.e. set 
D:={xix~A~+~ -AS for some s such that v~,~(x) = v}. Similarly, define 
Dt with 4 {DnjnEa, and {vnj,,em in place of A, {UmjnGm, and {rnjEEW. 
Furthermore suppose that ’ 

and 

(Vv)[Df infinite =S (Jv’)[v < v’ und D$ infinite]] 

(Vv)[Dt uzjmite~ (W)[v’ <v and DT mfinite]]. 
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Then there are r.e. sets L?,, extending o,, and v,, extending vE such that (3) 
above is satisfied. 

The first step then in our proof is to extend the Extension Lemma to 
pairs of r.e. sets to guarantee that (4) above is met. To this end, define D$ 
as Dt above but with Ai in place of A for each i = 0, 1. Similarly, define 
D?. Then we have 

LEMMA 2. Let A and B be infinite r.e. sets and AO, A, and BO, BI form 
splittings of A and B, respectively. Suppose that { U”}“E ~, { v,,}HE ~, 
mln~w 1 Kl”GW are recursive arrays of r.e. sets and that there is a 
simultaneous enumeration of a recursive array including all the above such 
that Ai \ rn = @ = Bi \ fi,,, for all n and i. Furthermore suppose that for 
each i, i=O, 1, 

and 

(Vv)[D: infinite = (!lv’)[v < v’ and D$ injmite]] 

(Vv)[D$ infinite z. (Iv’)[v’ < v and DF infinite]]. (6) 

Then there are r.e. sets I?” extending fi,, and pn extending r,, such that (4) 
above is satisfied. 

Proof of Lemma 2. Apply Soare’s Extension Lemma (Lemma 1) to the 
pair A,,, B,,, in place of A, B. The extension guaranteed there meets (4) 
with respect to A0 and I&, Further, the proof of Soare’s Extension Lemma 
guarantees that cn - 0” G B,, and pn - rn G A0 for all n. Now, renaming 
the sets on and Vn which result from this application of Lemma 1 to 0” 
and rn, we see that the hypotheses of the Lemma 1 are now satisfied with 
AI and BI in place of A and B. Thus, applying the Extension Lemma 
again, we get that (4) is satisfied with respect to AI, BI. 

It remains to meet (1) and (2) and satisfy the hypotheses of Lemma 2. 
Obviously, (1) can be satisfied by taking Ue = WC and Ve = We for all e, 
However, to facilitate meeting (2) and the hypotheses of Lemma 1, Soare 
chooses the sets U,, and Vn to have certain further properties. He proves 

LEMMA 3. Let A4 be maximal. Then there is a simultaneous enumeration 
of a recursive array {Z,,}n ~~ satisfying (1 ), with Z. = M, and such that 

(Vn) [Zn\M infinite Q Zn - M infinite e Zn 2 M] (7) 

and 
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We shall choose { Un},,em and { V,,}nCm as the arrays resulting from the 
application of Lemma 3 to A and B respectively. Thus, (1) is satisfied. It 
remains to meet (2) and the hypotheses of the Extension Lemma. Now for 
maximal sets, (2) amounts to 

and similarly with B and Vn in place of ,4 and Un. Thus, to complete the 
proof, we need to prove the following. 

LEMMA 4. Given maximal sets A and B, let { Cl,,},, E ~ and { V” },, E ~ be 
the recursive arrays given by Lemma 3 for A and B, respectively. Then there 
exist recursive arrays {  u,,},, l m, { p,,},,eW together with a simultaneous 
enumeration of a recursive array including all of { U,, I,, E m, { Vn}n E W, 
mLN and l rnlnEm which satisfy the hypotheses of Lemma 2 and also 
(2) which here asserts that 

Proof This proof follows the proof of the analogous lemma of 
Soare [Sol, Theorem 3.21 very closely. At the end of stage s we will have 
defined As and Bs. Given As and Bs, deline $s(x) to be the function which 
maps As onto Bs in increasing order. Let tj - 1 be the identity permutation. 
Let $ = lims tis. We will use + to govern our enumeration of the sets un 
and v,,. We must enumerate 0” and rn to satisfy (9). We will thus attempt 
to guarantee that xe U,, + $(x) E o,, and similarly for r”. The two 
problems with this strategy are that we only have an approximation tis(x) 
to $(x) at any stage s, and that we must not enumerate so much in o,, so 
as to violate the hypotheses of the Extension Lemma. Actually, the lirst 
problem is minor; the second is handled by not enumerating an element y 
in u,, until the state to which it will be raised is successfully covered by 
elements entering both A0 and AI. 

CONSTRUCTION. Stage s = 4t. Let x be the unique element enumerated 
in some Ue at stage t in the given simultaneous enumeration of { U”},,Em. 
Enumerate x in IEJ~,~. Let As= U,,s. 

Stages = 4t + 1. As in stage 4t with V,, for U,, and B for A. 
Stages = 4t + 2. Let (x’, e’) be the lirst pair (x, e) with the following 

properties Pl-P4. If there exist such a pair, enumerate +s-l(x’)e De,,*. 
Otherwise do nothing at this stage. 
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DeIine 

(Vi)iCo,l (~u)(~~)(~~~)(~~~)[~~<u<s- 1 and yE‘4i,“+l- 
Ai,” and pi 2 {e} ucro and ri or% and CT, = {i 1 i<e and 
JJE Ui,“} and rl= {i 1 i<x and YE vi,“}]. (P4) 

Stage 3 = 4t + 3. Similarly, attempt to enumerate some element 
$;Yl(x’) h Ve,,s, where Ai, Un, on, V”, r,, and tj-,(x) in the preceding 
stage are replaced by Z3i, vn, r”, lJn, o,, and $:2,(x). Also, in P3, replace 
(Vi)iCC by (Vi)iGC to reflect the priority of ue over rC. 

CLAIM I. The hypotheses of the Extension Lemma, Lemma 2, are met 
by the above arrays and simultaneous enumeration. 

Proof of Claim 1. It is obvious that Bi \ o,, = @ = Ai Y,, r,, for all n 
and i since we enumerate only elements es- i(x) in o,,. By “speeding up” 
the enumeration of A if necessary, we may assume that infinitely many x 
appear in each Ai before appearing in any Uj, j > 0, or rj. Thus we need 
only verify (5) and (6) for states 0 # @. We verify (5); the veritication of 
(6) is dual. 

Fix i, e, and the full e-state v. = (e, co, ro) with co # 0. Assume that 
D$ is finite for all vi 2 vo. We must show that for each r, G ro, only linitely 
Eany x wsose e-state with respect to { I’n}EEm is r1 are allowed to enter 
U,,O = lJ {U” 1 n E co}. Since e-states increase with time it follows that D: 
must be finite also. 

Let e. = max co. It follows by P2 of the construction and (8) of 
Lemma 3 that DC0 \ 0” is tinite for all n -C eo. Hence, if there are intinitely 
many x in ogO, almost all such x enter De0 only after x E o,,, for all 
n E go - {eo}. But by P4 of the construction and our assumption that Dti 
is finite for all vi 2 vo, at most tinitely many x already in 
fi { u” 1 n E u. - { eo} } will be allowed to enter De0 while the e-state of x 
with respect to { I’,,}nEm is some or z ro. 

CLAIM 2. (9) is satisfied. 
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Proof of Claim 2. It is only here that we use that A,,, Al and B,,, Bl are 
nontrivial splittings. This implies that if U is any r.e. set such that U-A 
is infinite, then U \ Ai is infinite for each i. (Otherwise, since U-A =* 2, 
Ai=* Alelu U and hence Ai is r.e.) 

We prove (9) by induction on e. Assume then that (9) is true for i<e. 
If Ue 2 2 then U=\A is llnite by (7) and hence ue.B and oe - B are llnite. 
Assume then that 17~ 2 1. Choose JJ,, such that for all x E 2, x > JJ~ implies 

(Vi)i<e [[XE Ui++(x)~ oil and [xc ri-=-$(~)~ vi]]. 

We claim that for any x0 E 2, x,, 2 y0 implies $(x0) E De. Define c,, = 
{i 1 i<e and UizA} and define 

Now UO,, 2 A and hence UoO \ Ai must be infinite for i= 0,l by the 
property of nontrivial splittings of A mentioned at the beginning of the 
proof of this claim. Deline 

70 = {i 1 i < x0 and $(x0) E vi}. 

Now if i < x0 and i$7,,, then vi-B is llnite and hence Vi\B is tinite by (7). 
But for any i, Vi\B finite implies vi\A linite. Hence there exist cl 2 go and 
7I ~7~, such that 

But then by P4, $(x0) is eventually enumerated in De. The case of 
e - ‘( I’J = * r= is handled similarly. 

The combination of Lemmas (2) and (3) establishes Theorem 1. 1 

2. DEGREZS OF HEMIMAXIMAL SETS 

The degrees of maximal sets are precisely the high degrees. One goal of 
this work was to find an orbit in which a much larger class of degrees is 
represented. It is not known, for instance, whether there is an orbit in 
which every nonzero r.e. degree is represented. 

DEFINITION 7. H = {deg(A) 1 A is hemimaximal}. 

We summarize the results of this section: 
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(a) For every nonzero c r.e., there is a cc such that aEH 
(Theorem 4). 

(b) HI GH (Theorem 5). 
(c) There is a nonzero degree c, such that c $ H (Theorem 6). 
(d) For all a<b, if beLl, there is a degree c#H such that a<c<b 

(Theorem 7). 

By (a) and (b), H is an orbit class which contains more than only high 
degrees. (An orbit class is a class of r.e. degrees determined by an orbit of 
Aut(&).) This is the tirst example of such an orbit class. All previously 
known orbits consisted of only recursive sets or only high sets. By (a) and 
(d), H is not closed upwards in the r.e. degrees; this is the first example of 
any definable (in 8) class of r.e. sets with this property. We turn now to the 
proofs of the theorems mentioned above. 

THEOREM 4. Suppose that 0 -+ C. Then there is a hemimaximal set A, 
such that 0 C~ A G* C. 

ProojI We will construct M maximal and A, B a nontrivial splitting of 
M such that A is nonrecursive and A & C. A <r C is guaranteed by the 
usual technique of permitting. M will be constructed by the usual e-state 
construction of a maximal set. The requirements, including those to make 
A nonrecursive, are thus as follows: 

Ne: Ii@1 2 e; 

Pe: We#& 

Qe: n has almost constant e-state. 

The priority ranking is QO < NO < P,, < QI . . . . At the end of stage s, the 
elements of ii? are denoted by rn; < rn; < .. . . Note that the requirements 
Pe guarantee that A is nonrecursive. To ensure as well that B is nonrecur- 
sive we may assume that C has low r.e. degree. This is enough since 
deg( A) u deg( B) = deg( M) and deg(M) is high. 

CONSTRUCTION. Stages + 1. Step 1. (P,,) Let c be the least element 
enumerated in C at stage s + 1. Let e be the least integer (if any) such that 
We n A = @ and there is an x satisfying 

Cal xe We,snHs, 

@J x# {%,, . . . . m:} (priority), 

(cl x>c (permitting). 

Enumerate the least such x in A. 
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Step 2. (Qi) Find the least i (if any) and the least j for i such that 
oi,Jm;) -= G&$) and if x was enumerated in A at step 1, rn; <x. 
Enumerate rn; m B. 

LEMMA 0. A<=C. 

ProojI If s is a stage such that CJx] = C[x], then As[x] = A[x]. 

LEMMA 1. For every e, Ne is satisfied. 

ProoJ N= is injured by each of PO, Pi, . . . . P+i at most once each. It is 
injured thereafter by Qi, i< e at most 2’ times after it has ceased being 
injured by Qj, j< i. Thus Ne is injured only finitely often and is satisfied. 

LEMMA 2. For every e, Qe is satisfied. 

ProojI We show that for all j > i > e, if mi = lims rn: and mj = lim3 rn; 
then oJmi) > aJrnj). (This implies that Qe is satisfied; since there are only 
Iinitely many e-states the sequence aJrne) > cJrne + l) 2 aJrn= + z) > . . . 
must have a limit.) If this is not true, there must be cotinitely many s such 
that crJm;) < aeJrnJ), rn; = mi and m;=mj. But at any such stage, rn; 
would be enumerated in B at step 2. 

LEMMA 3. For every e, PC is satisfied. 

ProoJ Otherwise, let e be the least counterexample; we show that C is 
recursive, contrary to hypothesis. Let c be the e-state guaranteed by 
Lemma 2; e G c since We = 2. Let &, be such that j > &, implies that rnj = 
lims rnj has e-state 0. Let s,, be such that j < &, *my = mj and ac,Jrnz) = a. 

CLAIM. Suppose that s >s,, is such that x=m;, ja i,,, and crJx) = a. 
Then for all t > s there is y > x such that y = rnj, j> i,,, and aJ y) = a. 

(The claim implies the lemma, since to answer k o C, find 3 2 s,, such that 
there is x > k such that x satislies the hypotheses on x in the claim. Then 
by the claim, C does not permit below x after stage s or else x or some 
element y > x is available at that stage to be enumerated in A at step 1.) 

Proof of the Claim. If xo a, then x satisties the conclusion for all t. 
Otherwise, let t be such that x enters A4 at stage t (necessarily in step 2). 
Then x = rni and there is y = rni, j> i such that aJx) < ai,J y). Then y > x 
since j> i and aJy) = a&x) = a else rn; would be enumerated in B 
instead of x. Thus y satisfies the conclusion at t. Now if yo i@, then y 
satislies the conclusion of the claim for all later t else we can repeat the 
above argument with y in place of x. m 
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THEOREM 5. For every high r.e. degree a, there, is a hemimaximal set A 
such that deg(A) = a. 

ProojI Our proof is a slight modilication of Lachlan’s version of Mar- 
tin’s proof (see [So2, Theorem X1,2.3]) that every high degree contains a 
maximal set. Given a high r.e. degree a, there is a r.e. set D of degree a, and 
an enumeration {Ds}sEa of D such that if D={dO<d,<dzq-.}, ijs= 
{d;<d; < . . ‘1, and en(x) = (ps)[d; = dX], then cn dominates every total 
recursive function. We will construct disjoint r.e. sets A and B such that 
&f= A u B is maximal, M=r D, B is nonrecursive, and B ST A. Thus A 
will be our desired hemimaximal set of degree a. The requirements are the 
usual maximal set requirements. 

Qe: &? has almost constant e-state, 

and the requirements to make B nonrecursive, 

PC: iJ# we. 

In addition we must ensure that B & A and A == D. As in Theorem 4, 
MS= {rni<rnTc ..e}. 

CONSTRUCTION. Stage s + 1. Step 1 (To satisfy Qe.) Given e < i < j, 
we say rn; is attracted to rn; for Qe if 

(Ve’<e)[WCt,sz{mi ,..., rn;j* Wes,snBs#@]. (12) 

(The condition in (12) reflects the priority of Pep over Qe for e’ce.) 
Choose the least i such that there are e, i, and j such that rn: is attracted 
to rnJ for Qe and such that 

Let e be least for i and j least for e. Enumerate each of rn:, . . . . my-i into 
A s+l. (Thus m~~~=m;+k for all ka0.) 

Step 2. Let z=(py)[d;+‘#dJ,]. If some x~rn;~+~ was 
enumerated in A at step 1, do nothing more. Else enumerate m;z+z in As+, 
and m;z+3 in Bs+, unless one of these two integers has a higher 2z-state 
than both of rn;= and rn;=+, . In that case, enumerate rniz in As+ i and 
mL+ l h k+ l. (The purpose of the choice in step 2 is this: if some rn: for 
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k2z is attracted to at least one of rnsz, m;z+l, m;z+z, or m;z+3, then it 
will be attracted to at least one of the two of these elements which remain 
in j@ after step 2). 

LEMMA 1. For each e, lims rnz = me zk finite. 

ProojI By induction on e. Suppose that for i-~ e there is a stage s,, such 
that mi = rnt”. Let t > sO be such that di = de. Then step 2 never causes rnz 
to change at any stage s > t. However, step 1 causes rnz to change after s,, 
only to increase its e-state. This happens 2e times at most. 

LEMMA 2. D+M,B&A 

ProoJ D&M by step 2; if mze+3=m2e+3, then dz=de. 
M+ D since if d;=de, then eeM iff eEMS. 
B & A since elements enter B only at step 2 and when such an integer 

enters B, a smaller integer enters A at the same stage. 

LEMMA 3. For each e, 

(a) QC is met, 

(b) Wez@*WenB#O.(ThisimpliesPe.) 

ProoJ The proof is by induction on e. Suppose then that the lemma is 
true for i-~ e. This implies, by (a), that there are an (e - 1 )-state cO and an 
&, such that for all i > &, eCP l(mi) = o,,. Let q, be such that if i < iO, then 
m?=m. By (b), we may also assume that for all ice, either 
ki ~~ n isO # 0 or (gj < &)[mj # WJ. The signilicance of this last assump- 
tion is that clause (12) of the definition of attraction for Qe will hold for 
all my where i 2 &, and s 2 s,,. 

Now assume for a contadiction that W=n i@ and PC n A? are both 
inlinite; let or =cOu {e}. 

Dellne a recursive function h as follows. If x<mk, let h(x)=O. For 
x > rn@, define 

h(x) = (,as)[x E MT or OJX) > cro or 

(gi)[x = rn: and ae,Jrn;) = co and ($> i)[aeJmJ > al]]]. 
(13) 

(If the last clause of (13) holds, then x=m: is attracted to my for Qe, for 
some e’ < e.) 

CLAIM. Zf h(x) is defined by the last clause of (13), XEM, and 
crJx) = ao, then d!$*) = dX. 
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To see that the claim gives the desired contradiction, note that the con- 
clusion implies that c~(x) c /z(x) + 1. However, there are intinitely many x 
satisfying the hypotheses of the claim; namely, any x E lVe n I$$ which is not 
one of mO, ml, . . . . mjO. Thus cD(x) does not dominate the recursive function 
h(x) + 1. 

Proof of Claim. Fix x and assume that the hypothesis of the claim 
holds for x. We will show that 

Now (14) implies the conclusion of the claim since it implies that for all 3, 
there is an e’ <e such that x is attracted to some y > x for the sake of Qe, 
at all stages s > /r(x). We prove (14) by induction on s 2 /z(x). For 3 = /z(x), 
(14) is satisfied with k =j. Suppose 3 > /r(x) and rn; satisfies (14) for s but 
not for s + 1. There are two cases. 

Case 1. mLE&lS+l by step 1. Then there are p and q, p < q, such 
that step 1 applies with i = p and j= q. Now p < k and k # q since 
%@C+~. Also x<rn; since x$MY+,. Thus G&VI;) > o=Jrni) since 
otherwise we would have chosen j = k in step 1. Thus (14) holds at s + 1 
via MS =ms+l 4 P . 

Case 2. rniEMS+, by step 2. Then (14) still holds at s + 1 by virtue 
of the remark made at the end of step 2 of the construction. 

We turn now to the proof of (b). Suppose that We 2 M and B n We = 0. 
Then, using (a) for i < e, there are il and sr such that 

Similar to the proof of Theorem 4, we have the following claim. 

CLAIM. Suppose that j and sz are such that 2j + 3 2 i, , sz > sl, andfor all 
i, ij-il<i<2j+3, theno&my)=gl, then,foralls>~~, m;;+3=m&+3. 

Proof of Claim. Suppose to the contrary that .r is least and k least for 
s such that il < k < 2j + 3 and rn; # rnL+ ‘. There are two cases. 

Case 1. Step 1 applied at s + 1 with i= k. Now rni can only be 
attracted to my for some Qe,, e’ < e for the conclusion of (12) does not hold 
with e in place of e’. Thus, we have that c~.~+ I(mi+ r) > gr. But then we 
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can argue by induction on t > 3 that for all f, there is j such that ii <j < k 
for which cJ$) > cl. This contradicts the choice of iI. 

Cu.re 2. Step 2 applied at s + 1. In this case, rn; is enumerated in 
A s+l ad %+1 is enumerated in Bs+ 1. Since k is even, k + I < 2j + 3. 
Thus, rni+ I l We,S. This gives a contradiction since We n B was assumed to 
be empty. 

The claim implies part (b) of the lemma for since there are infinitely 
many j satisfying the hypotheses of the claim, the conclusion implies that 
A4 is recursive,- contradicting Lemma 2. u 

We remark that not just any maximal set 44 will have the property of A4 
in Theorem 5, namely that there is a nontrivial splitting A, B of A4 such 
that A =r M. The methods of [DW] may be used to construct a maximal 
set it4 such that if A, B is a nontrivial splitting of ii4, then A and B form 
a minimal pair. 

THEOREM 6. There is an r.e. set C such that zy A == C, then A is not 
hemimaximal. 

l+f~t Let tGe, re, we, VeLw be an effective listing of all quadruples 
where GOT, rc are recursive functionals and Ue, I’e are disjoint r.e. sets. 
Then the requirements on C amount to the following: 

Re: De(C) = Ue and re( Ue) = C implies Ue u Ve is not maximal. 

We will attempt to ensure that Ue u Ve is not maximal by enumerating an 
array {Te,i}isco of disjoint, finite, r.e. sets such that Te,i g Ue u Vc. This 
guarantees that not only is Ue u Ve not maximal, it is not even hyperhyper- 
simple. Thus the requirements Re will be divided into the following: 

Re,i: @JC) = UC and re( 17~) = C implies Te,i n UC u Ve # @. 

We will assume that the requirements are ordered in some a-sequence, 
thereby inducing a priority ordering on them. We tirst give the strategy for 
meeting a single requirement; it will be convenient in describing it to drop 
all subscripts. The requirement thus becomes: 

R: G(C)= Uandr(U)=Cimplies TI-I Uu V#@ 

Let 4(x, s) and y(x, s) be the use functions associated with the computa- 
tions Qs(Cs; X) and rS(US; x), respectively, and let 1@(s) and l,-(s) be the 
corresponding lengths of agreements of these functions. 

To attack R we proceed as follows. 
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(Such x and s must exist if the hypotheses of R are satisfied and Uu V is 
not cofinite.) Given x and s, our action is to enumerate into Ts+ , all 
y < ~(x, s) such that y $17~ u Vs and to restrain from C all z < d(y(x, s), s). 

Note that after step 1, R is satisfied temporarily since Ts+ l n 
U3 u Vs # a. R will be satistied forever (with the finite restraint imposed by 
step 1) unless there is a stage t > s such that ( Ut u Vt) 2 Tr = Ts + l. Now if 
any element, say z, of Ts+ r - (Us u Vs) is enumerated into Ut - Us, we 
have, by the restraints imposed on C at step 1, that 

and this disagreement is preserved forever with finite restraint. Thus we 
may assume that each element enumerated in T at stage s + 1 is later 
enumerated into V by stage t. Now at stage t + 1 we perform 

Step 2. Remove the restraint on C imposed by step 1. Enumerate 
x (the x of step 1) into Ct+r. 

Step 2 wins requirement R forever since we have that 

The first equality is the crucial one and is true since UJy(x, s)] = 
U[y(x, s)] because U and V are disjoint sets, Ut u Vt 2 {x 1 x < 7(x, s)}, 
and Ut=Us. 

To see that the strategies for the various Re,i cohere, note that each Re,i 
imposes only finite restraint on C and thus Rc,i may be restarted for the 
sake of Re, i, of higher priority as in standard arguments of Fried- 
berg-Muchmk type. The only restraints on the sets Tc,i are to make Te,i 
disjoint from Tc,j if i #j and it is clear that this can be done. We will omit 
the details of combining the strategies for meeting the Re,i since this is a 
straightforward application of the finite injury priority method. 1 

The strategy for meeting requirement R of the previous theorem can be 
combined with other techniques to provide various strengthenings of the 
result. For example, we can also insure that c contains no hemi-r-maximal 
set. Another example is 
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THEOREM 7. II is dense in the low r.e. degrees (i.e., $a, b E Ll , then there 
is c such that a < c < b and c contains no hemimaximal set). 

ProoJ We have added two requirements on C to those of the previous 
theorem. First, we require that de&C) <b. This is easy to arrange via the 
standard technique of permitting. Note that step 2 of the construction of 
Theorem 6, the only step requiring enumeration in C, does not have to be 
performed at stage t + 1. In fact, at any stage u 2 t + 1, the situation still 
exists for diagonalization and if x is enumerated in C at stage v, R is 
satisfied. This is precisely the characteristic of a construction necessary for 
combination with permitting. 

The second additional requirement on C is that deg( C) > a. Let A be any 
lixed set of degree a. Requirement R now reads 

R: @(C@A)=Uandr(U)=CimpliesTnUuV#@. 

Given that a is low, there is a standard technique (due to Robinson [R]) 
for meeting a requirement of the form R. For a complete description and 
examples of the use of this technique we refer the reader to Soare [So2, 
Chap. 12, Theorem 3.11. Here we give an informal description. The prin- 
cipal difficulty in meeting this new version of requirement R is that we now 
longer have complete control in step 1 to restrain the computation 
Os( Cs @ As) = UZ since we have no power to restrain A. Robinson showed 
that if C is low, there is a way to “certify” computations as being “A- 
correct” in such a way that incorrect computations are certified only 
finitely often. Specifically, if A is low, 

Here DE is the linite set with canonical index n. (15) guarantees the 
existence of a recursive function g such that 

lim g(j, s) = 
s 

if (3n)[nE WjandD,,nA=@] 
otherwise. 

We use g as follows. Suppose we wish to perform step 1 in the above con- 
struction. Then we enumerate n in an otherwise empty r.e. set W, where D” 
is the set of numbers used negatively by A in the computation. By the 
recursion theorem, we assume that we know the index j for W. We then 
search for a stage t > s such that D,, n At # 0 or g(j, t) = 1. In the former 
case, we do not believe the computation and do not start an attack. In the 
latter case, we say that the computation is “certified,” and start the attack 
as above. Now it may be the case that the computation was not A-correct; 
we then repeat the process using the same set W. The point is that by (15), 
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we will not certify intinitely many incorrect computations so that tinally we 
will be justitied in believing a computation and then the argument for R 
procedes just as before. A more detailed description of a use of lowness is 
given in the next section in Theorem 12. 

There are no additional conflicts imposed by combining this lowness 
strategy and permitting. As these techniques, separately and in combination, 
are now quite standard and there are no surprises in their combination to 
meet all the requirements Re,i, we omit further details. 1 

By employing techniques of Ambos-Spies and Fejer [ASF, 
Theorem 3.31, we can extend Theorem 7 to the following. 

THEOREM 8. There is an interval [a, b] of low r.e. degrees containing no 
hemimaximal r.e. set. In fact, every interval of low r.e. degrees contains an 
interval with no hemimaximal set. 

3. ORBITS CONTAINING COMPLETE SETS 

The question of just what sets are automorphic to complete sets is still 
open. Soare has conjectured that every r.e. set can be taken to a complete 
set by an automorphism. (Since creativeness is invariant under 
automorphisms, not every set is automorphic to an incomplete set.) 
Harrington (unpublished) has shown that not every r.e. set can be taken to 
a complete set by an automorphism @ which is Z3-presented (i.e., the func- 
tion f such that @(We) = I#&) is ,X3). The signiticance of this is that all 
automorphisms constructed using Soare’s machinery, such as that of 
Section 1 of the current paper, are .Z3-presented. Since there are complete 
hemimaximal sets, every hemimaximal set is automorphic to a complete 
set. Using the hemimaximal sets as a base and exploiting the idea of classi- 
fying r.e. sets by the types of nontrivial splittings that they have, we were 
able to extend this result to a much larger class of r.e. sets. 

DEFINITION 8. An r.e. set A is halfhemimaximal if there is a nontrivial 
splitting AO, A1 of A such that A,, is hemimaximal. 

More generally, if P is any property of r.e. sets, A is halfP if there is a 
nontrivial splitting AO, A1 of A such that A,, has property P. 

The importance of halfhemimaximality for this program is the following 
theorem. 

THEOREM 9. Zf A is haljhemimaximal, then there is a BE= Qj’ and 
@E Aut(8’) such that @(A) = B. 
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ProojI Let A,,, A1 be a nontrivial splitting of ,4 with ,4,, hemimaximal. 
Let & be a complete hemimaximal set (which .exists by Theorem 5). Let 
@E Aut(8) be such that CQt,J = &. Now B = @(A) is our desired com- 
plete set since a’ == B,, <= B. (The last inequality is since B= BO u @(AI) 
and BO and @(Ai) are disjoint. 1 

Though we will show below that many sets are halthemimaximal, it is 
easy to see from the following theorem that there are sets which are not. 

TI-EOREM 10. If A is haljhemimaximal, then A has a maximal superset. 

ProoJ Let AO, AI be a nontrivial splitting of A and B,,, BI a nontrivial 
splitting of a maximal set B with BO = AO. We claim that A G* B. 
Otherwise, since B is maximal, 1 G* B. Thus & =* AI u B, and so BO is 
recursive contradicting its being a part of a nontrivial splitting. i 

COROLLARY 1. Every non-low2 degree contains a set which is not 
haljhemimaximal. 

ProoJ Shoenfield [Sh] has shown that every nonlowz degree contains 
a set with no maximal superset. The result then follows directly from the 
theorem. 1 

We can improve Theorem 10 and its corollary with a little more work. 

THEOREM 11. Every nonzero r.e. degree contains a nonhalj%emimaximal 
set. 

ProojI Suppose that we are given a nonrecursive set B. We will con- 
struct A nonhalfhemimaximal such that BE= A. Let g be a l-l recursive 
function such that g(m) = B. Let {FX}XEm be a recursive sequence of dis- 
joint linite sets such that u { FX 1 x E CD} = CD and lFXi = x + 2 for every x. 
We ensure that A + B in the following way. At stage s of the construction, 
we will enumerate exactly one element into A chosen from FgCsJ. Thus 
iAnFXl<l and lAnFX[=l iff XEB. It is easy to see from this that 
A+ B. 

The requirements that A be nonhalthemimaximal can be put as follows. 
Ia We9 J5Jeeu be a recursive listing of all pairs of disjoint r.e. sets. Then 
the requirements are 

Ne: We G A and Ue u VC 2 A =E- U= u Ve is not maximal or UC is recursive. 

(The requirements are enough by Theorem 10. In fact they show something 
slightly stronger about A than only nonhalfhemimaximality.) We may 
assume in the light of the hypotheses of NC that no element of Ue is 
enumerated in Ue before it is enumerated in A. 

&v/92/2-9 
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CONSTRUCTION. Stuge s. Let x = g(s). We must enumerate one element 
of F.Y into A Choose the least element z from F.X such that for all e GX, 
iF.X n Ve,si > x + 1 implies that z E Ve,s. This is possible since 1 FX 1 = x + 2 
and the condition on z requires it only to be in the intersection of at most 
x + 1 subsets of F.X each of cardinality at least x + 1. This intersection is 
nonempty. Enumerate z into ,4. 

To complete the verilication we need only show that Ne is satisfied for 
each e. So suppose that the hypotheses of NC are satistied and that Ue v Ve 
is maximal. We will show that Ue is recursive. Since Ue u Ve is maximal, 
there is an integer x0 such that for all x 2 x0, IF.= n ( Ue u Ve)j > x + 1 (see 
[Ro, Chap. 12, Theorem XIII]). Let z be fixed such that z E F.Y, x 3 x0. We 
show how to decide if z IZ Ue. Let s be a stage such that /F.X n Vc,sl > x + 1 
or 1 F.X n Asi = 1. One or the other must happen since if F.Y n A = 0 then 
lF.Xn VJ ax+ 1. In the former case, z$ Ue since if z is later enumerated in 
A, z e Ve. In the latter case, if z E A we can enumerate Ue and Ve until z 
appears in one or the other (this must happen since A z UC u Ve) and if 
z$A then z$ Ue. 1 

Despite Theorem 11, there are large natural classes of r.e. sets consisting 
entirely of halfhemimaximal sets. 

THEOREM 12. The following are haljhernimaximal: 

(a) every 10~~ simple set, 

(b) every semilow,,s simple set, 

(cl every d-simple set with a maximal superset. 

Prooj Robinson [R] proved that every low r.e. set has a maximal 
superset. Lachlan [L] and Bennison and Soare [BSo] extended this result 
and the technique used in proving it to low2 and semilow1.5 sets, respec- 
tively. We will show how to extend Robinson’s method to prove 

(d) every low simple r.e. set is halfhemimaximal. 

The same device we use to prove (d) can be used to extend the Lachlan 
and Bennison-Soare methods to prove (a) and (b). 

Suppose then that A is low and simple. We will construct Bz A, B maxi- 
mal, which witnesses that A is halfhemimaximal. We briefly review the 
Robinson construction of B. Our exposition follows Soare [SOL]. We have 
a set of movable markers Ae, eE U. The position of ,4= at the end of stage 
4 fL is the e th element of Bs. Thus, since we will always have As z Bs, 
we make B coinlinite by meeting for every e the requirements 
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The usual strategy for making B maximal is to move Ae,s to maximize its 
e-state. This guarantees that the following requirements are met: 

Qe: almost all elements of D have the same e-state. 

In the usual construction of a maximal set (as in Theorem 4), at stage s we 
move AC to a new element of the complement of Bs only if that new ele- 
ment has higher e-state than &. This requires us to move Ae only finitely 
often (2e times at most after ,40, ,41, . . . . .4e+ i have ceased moving). Further, 
it guarantees Qe since the e-states of the linal positions of the markers 
A, ‘4 e?+ 1, -**, A ~ + k, . . . are nonincreasing in k. 

This strategy conflicts with the requirement A G B in the following way. 
A,, for instance is moving so as to maximize its O-state. Thus, if (3x)[x E Ds 
ad xe ~o,slj &,s will move to x if A,,s $ Wo,s. However, later x may be 
enumerated in A causing A,, to move again. We are thus tempted to move 
A0 inlinitely often if W,,\A is iminite but W. -A = @. 

To avoid this problem, we need to use the lowness of A to give us advice 
on which elements to which Ae might move are actually elements of A. The 
lowness of A guarantees that there is a recursive function f such that 

lim f(e, s) = 
i 

A 
if W@nA#@ 

s if WenTi=@. 

The oraclefis used in the following way. Suppose that we are attempting 
to move Ae to x to raise its e-state to r~. We then enumerate x in a certain 
test set UO. By the recursion theorem, we may assume that we know an 
index for U0, say UC = Wj. Using 5 we locate a stage t > s such that 

UoGA* or f(j, t) = 1. 

By the properties off, t must exist. Now only in the latter case do we move 
Ae to X. Of course it may still be that x is later enumerated in A; we then 
perform the same procedure with another x’ which is in e-state 0. The 
point is that A= will not be moved inlinitely often by this process in an 
attempt to tind an element in e-state 0. For, if .4e is moved infinitely often 
to an element in e-state cr, we must have that lirnsf(J s) = 1 and so 
U0 n A# 0. But any element of U0 nA will remain as Ae forever. Of 
course the above argument presumes that no higher priority Ai or cr’ > CT 
intervenes. In that case, we say that U. is injured and we begin anew with 
a “fresv (empty) version of Urn. 

To make A hallhemimaximal, it suflices to enumerate Bo, Bl such that 
B. G A, B,, u Bl = B, B. n B, = 0, and B. nonrecursive. To see that this is 
enough, deline A0 = B. and Al = Bl n A. Obviously Ao, Al split A and A,, 
is nonrecursive. A i is nonrecursive since otherwise B - A = B, - A l is r.e. 
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contradicting the simplicity of A (B-A is inlinite since no low r.e. set is 
maximal.) Finally, Bi is nonrecursive since B0 <= A and BE= BoCJ3 Bl. 
(The former implies that B,, is low, and thus the latter implies that Bl is 
nonrecursive since B is high.) 

We deline B. and Bl as follows 

Informally, B,, is the set of those x which are enumerated in ,4 before we 
have decided to enumerate them in B. Bo, Bl satisfy all of the above 
requirements except perhaps the requirement that B,, is nonrecursive. Thus 
we have the following requirements on Bo: 

Se will function as a negative requirement on B as follows. The ideal way 
for Se to be satisfied is for an element of We to be enumerated in A before 
we enumerate it in B. This element is then in B. n We and Se is satisfied 
forever. Thus our strategy will be to restrain elements of We from B. If we 
restrain an inlinite r.e. set W of such elements from B, we must have that 
Wn A # @ by the simplicity of A giving us the desired witness to 
We n B. # 0. This restraint is accomplished in the following construction 
by giving requirement Se priority over all but N,,, N,, . . . . Ne. Thus, we are 
entitled to enumerate a marker position, .4i,3 for i > e into B only if by so 
doing it will increase its e-state (rather than only its i-state as is usual) if 
We,s n Bo,~ = 0 ad Ai,s l We,s. We now give the details of the construc- 
tion. 

We assume that W,, = A. During the course of the construction, we will 
speed up the enumeration of A. Our enumeration at the end of stage 3 will 
be denoted As. We will always have W,,S c As. Our construction will have 
for each stage s + 1, substages e for 0 < e < .s + 1. During stage s + 1, As+ 1 
will denote the result in our enumeration of A at the beginning of the 
current substage. Given U an r.e. set, to test U at stage s is to do the 
following. Compute an index e of U from the construction. (This uses 
the Recursion Theorem.) Find t 2 s such that 

Such a t always exist since lims j(e, 3) = 1 if We n 2 # 0. In the latter case 
j-(e, t) = 1, we say that the test succeeds. For all sets U which we test in the 
construction, we will have exactly one element x in U3 - AS. If the test fails 
(necessarily because x E Wo, ,), we will enumerate x in AS. For each e and 
e-state c, we will define an r.e. set I!J~,~. These r.e. sets will serve as test sets 
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for the marker & These sets Ue,q will be enumerated uniformly in e, c and 
so we will be entitled to test them in the sense described above. Further- 
more, from time to time we shall reset Ue,O; to reset iJe,g at stage s means 
to replace Uc,V by a “fresh” empty version of Uc,O. When Uc,O is referred 
to in the construction below, the current version is meant. 

CONSTRUCTION. Stage 0. Define & = e for all e. 
Stage s + 1. 

into As+ i. 
Substage e, 0 < e < x If e = 0 enumerate all of WO,:+ l 

Substage e occurs only if &s, . . . . & l,s have not moved during 
this stage. In this case, we determine whether Ae wants to move during this 
stage (to some x for the sake of some cr). There are two cases. Let z = Ae,s. 

Case 1. ZEA~+~. Then Ac wants to move at s+ 1. cr and x are 
determined as follows. In order of decreasing CJ, c an e-state, we search for 
a CJ for which the following procedure results in a successful test of Ue,O. 
Given CJ, enumerate in the current version of Ue,O the least x > z such that 
x # BS u As + i and r~~,Jx) = g. If no such x exists, proceed to the next CJ else 
test Uc,O. If the test succeeds, we have found r~ and x; otherwise we choose 
the next least x satisfying x > z and ~~,~(x) = c, enumerate it in U+ and 
test Ue,O. If g is not the empty e-state, this procedure must eventually end 
with a successful test or no further x in e-state U. If c is the empty e-state 
this procedure must end with a successful test since otherwise a colinite set 
is enumerated for 17~ O, and so Uc,O n 2 # @ but lims J(& s) = 0, where i is 
the index of Uc,O. This contradicts the properties ofJ 

Case 2. z$A~. Let o’= ~~,~(z). For each r~ > rr’, we do the 
following. We lirst determine whether z is restrained by some Si for e. Let 
j be the least integer such that j E 0 - 0’. Then z is restrained for CJ by Si if 
i c j, i E c+ and Wi,S n As = 0. If z is not restrained for e we perform the 
procedure described in case 1 for determining whether g and x satisfy the 
condition of Ae wanting to move to x for the sake of 0. This test will be 
finite since for each such CJ there are only linitely many x in state c at stage 
3 + 1. This case may terminate without & wanting to move to any x. 

If &s wants to move to x for either of the above two reasons, we move 
Ac by enumerating into BS+, all y such that Ae,s< y -=x. (Thus 
x=A,s+,* ) Further, we reset all ITJ~,,+ such that e’ > e or e’ = e and 0’ c e. 

Substage s + 1. At substage s + 1, we enumerate all of As+ i into 
B s+l. 

LEMMA 1. lims LI~,~ exists, and so B is infinite. 

ProoJ The proof is by induction on e. Let s,, be the least stage such 
that Ai,s,, = lims Ai,s for all i K e. At sO, Ue,O is reset for every 0. Assume for 
a contradiction that ,4e moves infinitely often; each time Ac moves after s0 
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it moves because it wants to. Let cr be the maximal e-state such that A= 
wants to move for the sake of r~ inlinitely often. Let s, 2 sO be the least 
stage such that after s,, ,4F never wants to move for any U’ > O. Then UF,V 
is reset at sr. Now for each stage s > s, at which Ae moves for the sake of 
r7 to x, there is t > s such that j(& t) = 1, where i is the index of the current 
(linal) version of Uc,fl. Thus, limA j(& s) = 1 so that Ue,g n 2 # @. However 
by the construction, there is at any stage 3 at most one element of 
u e.a,.s -As and that element becomes the marker position at the end of 
stage 8. Thus, there is 32 s, such that Ae.*~ ZJ+- ,4 and that element 
remains the marker position of YIP forever. This contradiction establishes 
the lemma. 

LEMMA 2. For every e, We # &,, only finitely many element3 of iI are 
permanently restrained from R by Se, and there is an (e + 1 )-state o wch 
that aimoxt every element x E B has (e + l)-state CJ. 

ProojI The proof is by induction on e. Suppose then that the lemma is 
true for i < e. Then there is an e-state o such that almost all elements of B 
are in e-state cr. Therefore, either ego or eE O. In the former case, 
obviously WC #B and only finitely many elements of E are permanently 
restrained from B by Se. (Any element restrained by Se is an element of 
We). Suppose then that e E V. Let i0 and sO be such that 

(Vi> iO)[Ai has linal e-state rr], 

(Vi< ~o)[A~,~~ = limJ Ai,s]? 

W G hJ~~i soCAi soJ = ~i~~i,so~l. 3 . 
Define an r.e. set Was follows: 

It is obvious that W is r.e. and that BG* W. Suppose that We = &,. This 
implies that no element of W enters A before it enters B. We claim however 
that no element of W is enumerated in B before it is enumerated in A. This 
would provide the desired contradiction since W is inlinite and A is simple. 
Suppose then to the contrary that x is the least element of W that enters 
& say at stage s. Then x= A<,* for some i> iO, CF~,~(X)> e, and x enters B 
because it wants to (else there is some smaller element of W entering B at 
stage s). Since x wants to enter B, necessarily by Case 2, there is y = Aj,s, 
such that j > i and OJX) < c,,J y). But x is restrained from B at stage s by 
Se so in fact O&X) < o~,$( y). But then AiO would want to move to y at sub- 
stage &, of stage s (or else y would be enumerated in A) since o~,JA;,,~) = 
5 < 5&y). Thus x never wants to move. This contradiction establishes that 
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We # BO. Note that we have proved that if B s * We, then We n B,, # @. 
Thus in this case too only linitely many elements are restrained from B by 
Se. To see that the final clause of Lemma 2 is correct, let cO and Q~ be the 
two (e + 1)-states which can appear infinitely often in E, g,, = CJ and 
~i=gu {e+l}. Suppose that x=lim3Ai,s, y=limXA,,s, where icj and 
~o=~e+lb~~~e+lb~= u, and x and y are not permanently restrained 
from B by S,,, .,., Se. Then Ai would want to move to JJ at inlinitely many 
stages and so would move. Thus we cannot have infinitely many such pairs 
x and JJ and so there is an (e+ 1)-state (either o,, or cri) in which almost 
every element of i3 resides. 

Turning now to the proof of part (c) of the theorem, recall the detinition 
of d-simple. 

DEFINITION 9. An r.e. set A is d-simple if for every r.e. set X there is an 
r.e. set Y s X such that Xn 2 = Y n A and if 2 is any r.e. set with Z - X 
inlinite, then (Z - Y) n A # @. 

So suppose A is d-simple and has a maximal superset h4. Let X in the 
above delinition be M. Given the resulting Y, let M1 = Y\A and MO = 
,4 - (Y\A). Since Yn 3 = Mn 2, MO, Ml form a splitting of M. To see 
that MO is nonrecursive, suppose that Z = a,,. Then Z - M is inlinite so 
(Z - Y) n A # 0. But (Z - Y) n ,4 s MO. This of course is a contradiction. 

To complete the proof, there are two cases. 

Case 1. Ml is nonrecursive. Then M,,, Mi form a nontrivial split- 
ting of M and thus Mon ,4 and M1 n A form a nontrivial splitting of ,4 
with M,, n A = M,, hemimaximal witnessing that A is hallhemimaximal. 

Case 2. Mi is recursive. Then let BO, B, be a nontrivial splitting of 
M,,. Let Mb = B,, and M’i = M1 u B,. Mb, J4; form a nontrivial splitting of 
M and as in Case 1, Mb n,4 and Mi n ,4 witness that ,4 is 
hallbemimaximal. 1 

4. ORBITS OF herniP SETS 

Various strong (but false) conjectures might be made after examining the 
result of section 1 that hemimaximal sets form an orbit. We had hoped that 
the following might be true. 

Conjecture 1 (False). If P is a property of r.e. sets such that 9 = {A 1 A 
has P} forms an orbit, then the herniP sets form an orbit. 

That conjecture 1 is false is easy to see. Perhaps the most striking coun- 
terexample is the property of creativeness. The counterexample relies on 
the following very easy theorem. 
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THJZOREM 13. If K is a creative set and C is any r.e. set, then 
K@C(={2x~x~K}u{2x+l~x~C})iscreative. 

ProojI We have K <i K@ C by f(x) = 2x. Thus K@ C is l-complete 
and hence creative. 1 

Now the creative sets form an orbit. However if C is any nonrecursive 
r.e. set, A,, = {2x 1 x E K} and A i = {2x + 1 1 x E C} form a nontrivial split- 
ting of K@ C. It is obvious that not all sets ,4i which arise in this way are 
automorphic. For instance, A1 may be maximal in an infinite, coinfinite 
recursive set (if C is maximal) or nowhere simple (if, say, C is nowhere 
simple). 

One promising possibility motivated by Theorem 2 is to weaken Conjec- 
ture 1 by requiring that the splittings be Friedberg splittings and that the 
property P imply simplicity. Thus, we weaken Conjecture 1 to 

Conjecture 2. Let $7 be a class of r.e. simple sets which forms an orbit. 
Then 

{,4 1 A is half of a Friedberg splitting of a set in %I 

forms an orbit. 

We do not have much evidence in either direction for Conjecture 2. 
Obviously the problem is that we do not know many orbits. However, we 
are able to establish Conjecture 2 for the next easiest case to the 
hemimaximal sets. 

DEFINITION 10. An r.e. set Q is k-quasimaximal if Q is the intersection 
of exactly k maximal sets which are pairwise infinitely different. 

Soare showed, by applying his result on maximal sets, that the k- 
quasimaximal sets form an orbit. We establish Conjecture 2 for the 
quasimaximal sets by proving the following, 

THEOREM 14. Let A and B be k-quasimaximal and A,,, AI and B,,, B, be 
Friedberg splittings of A and B, respectively. Then there is @taut such 
that @(AO) = BO. 

ProoJ We give the proof only for k = 2. The case k > 2 is similar. Let 
M,,, Ml be maximal sets such that M,, n M1 = A; we may assume that 
MCtUMl = m. Similarly, let NO, N, be maximal sets such that N0 u Ni = m 
and N0 n N1 = B. Let R and S be recursive sets such that &%,, z R, II?!, G R, 
N0 G S, and N1 G s. (These r.e. sets exist by application of the r.e. reduction 
principle to the pairs M,,, Ml and NO, Nr.) 

Now observe that R n A,, and R n AI are nonrecursive. For if R n A0 is 
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recursive, then R-A,, is recursive so that R-A is r.e. by the definition of 
Friedberg splitting. However, R-A is infinite and A is simple. Thus we 
have that R n & and R n A1 form a nontrivial splitting of R n A and 
similarly Sn I+, and Sn Br form a nontrivial splitting of S n B. Now 
within the recursive set R, R n A is maximal. (2 n R = ii?0 and the latter is 
cohesive.) Similarly S n B is maximal in S. Thus by Theorem 3, there is an 
automorphism @,, of 8’ restricted to R which maps R to S and R n Ai to 
S n Bi for i = 0, 1. Likewise, there is an automorphism @r of the r.e. sets 
restricted to R which maps i? n .4i to Sn Bi for i = 0, 1. Piecing together Q0 
and @J~ gives the desired automorphism. 1 

COROLLARY 1. The class of Friedberg splittings of k-quasimaximal sets 
from an orbit for each k. 

ProojI We have show that if ,4 and B are halves of Friedberg splittings 
of 2-quasimaximal sets then there is a @ such that @(,4) = B. Conversely, 
if A is half of a Friedberg splitting of a 2-quasimaximal set and @(A) = B, 
then B must be half of a Friedberg splitting of a 2-quasimaximal set since 
this is an elementary property and so must be preserved under 
automorphism. 1 

COROLLARY 2. There are four d$ferent automorphism types of hemi-2- 
quasimaximal sets. 

Proof Let MO, MI be maximal sets such that M,,u MI = c~ and 
M0 n MI = A. Let &, AI be a notrivial splitting of A. Let R be a recursive 
set such that a0 G R and aI G i? and further that all of R n A,,, R n Al, 
i? n &, and R n A r are infinite. Now one of the following is true: 

R n &, and 1 n A r are nonrecursive, or (16) 

R n AI and i? n A,, are nonrecursive. (171 

For if both of the above fail then one of M,,, HI, A,,, or AI is recursive. 
We will suppose that (16) is true. Of the remaining pair of sets, there are 
four possibilities: 

(1) R n AI and R n A,, are nonrecursive, 
(2) R n AI and i? n A,, are recursive, 
(3) R n AI is nonrecursive and j? n A0 is recursive, and 
(4) R n AI is recursive and 1 n A0 is nonrecursive. 

All four possibilities can occur; note that (3) and (4) are symmetric. 

Case 1. We have already seen in the Theorem that any sets A0 and 
AI which arise in this way are of a single orbit. 
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Case 2. In this case, we see that R n A0 is maximal in R - (R n ,4 l) 
which is a recursive set. Since all such sets are automorphic by Soare’s 
theorem, all such sets A0 arising in this way are automorphic. A i is also of 
this type. This class is distinct from case (1) since R- (R n ,4i) witnesses 
that &, A1 do not form a Friedberg splitting of A. 

Case 3 (and Case 4 by symmetry). In this case, s = R- & is 
recursive and so S u A i = s u (A, n R) is nonrecursive. This implies that 
S u A i and A,, form a nontrivial splitting of M1. Thus ,4,, is hemimaximal. 
This determines the automorphism type of ,40 by Theorem 3. This class is 
distinct from those of cases 1 and 2 since in neither of those cases is ,40 
hemimaximal (this can easily be checked). Now A1 is not hemimaximal but 
it is easy to show again that all such Ai are automorphic (by piecing 
together automorphisms on R and i? as in the Theorem 13). This gives the 
fourth and tinal automorphism type. 

Summarizing, there are four automorphism types of hemi-2- 
quasimaximal sets: 

(1) half of a Friedberg splitting of a 2-quasimaximal set, 
(2) maximal in an intinitecointinite recursive set R, 

(3) hemimaximal, and 
(4) not hemimaximal but half of a nontrivial splitting of a 

2-quasimaximal set for which the other half is hemimaximal. 1 

The above classification for hemi-2-quasimaximal sets can be extended to 
hemi-k-quasimaximal sets for k>2 without much difficulty (but much 
detail). 

5. FURTHER REMARKS AND OPEN QLJESTIONS 

Theorem 3 justilied our hope of linding orbits through splittings. While 
Theorem 13 gave a negative result along these lines, we still have some 
hope that Conjecture 2 or some conjecture like it might be true. A test 
question in this program is the following: 

Question 1. Let ,4 and B be promptly simple and low. Let &, A1 and 
Bo, Bl be Friedberg splittings of ,4 and B. Is there @taut such that 
@(&) = Bo? (Maass has shown that there is @E Aut(8) with @(A) = B.) 

Note that even Theorem 13 does not refute Conjecture 2 for nonsimple 
sets since the splittings produced there are not Friedberg splittings. 

Q~e~f~~~ 2. What are the automorphism types among Friedberg split- 
tings of a creative set? 
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The hemimaximal sets form an interesting degree-theoretic class. Left 
open by the results of Section 2 is 

Que~k~ 3. Are there degrees containing no hemimaximal set which 
are not low? 

Concerning the halfhemimaximal sets, a question which we have been 
unable to answer is 

Que$kn 4. Is K halfhemimaximal? 

We have shown that creative sets are halfhemi-2-quasimaximal. 
We have introduced the properties hemimaximal and halfhemimaximal 

in this paper because of their use in finding orbits of Aut(8). However, for 
various properties P, the herniP and halfP sets might prove interesting in 
their own right. For instance, in contrast with Theorem 11, we have been 
able to show that although there are nonhall%emisimple sets, there are 
degrees containing only halfhemisimple sets. 
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