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Abstract: We discuss directional dependence in the time development
of spatial wavefunctions, which includes jet formation, for two-electron
model atoms exposed to intense laser fields. Two competing scenarios
for double ionization are evident: (1) both electrons emerge simultane-
ously from the core region and on the same side of the nucleus, and
(2) the electrons detach on opposite sides but not simultaneously. The
importance of the electron-electron repulsion contribution to the com-
peting processes is investigated for various laser intensities.
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1 Introduction

Experimental studies of double ionization of helium atoms in strong laser fields have
revealed [1]–[3] a “knee” structure in plots of ionization yield vs. laser intensity. At the
highest intensities, the curves correspond to what one would expect for sequential ion-
ization of non-interacting electrons, i.e., the systems exhibit Ammosov-Delone-Krainov
(ADK) behavior [4, 5]. At lower intensities, however, there is a greater amount of ion-
ization than would be expected for uncorrelated electrons. These experimental studies
have drawn considerable theoretical interest as researchers seek to understand the na-
ture of the “excess” double ionization [6]–[16]. Recent experimental reports [17]–[20] of
electrons emerging on the same side of the nucleus provide further data to challenge
theoretical work.

Because of the complexity of a two-electron, three-dimensional system, many the-
oretical groups have been working with a reduced-dimensionality model of the helium
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atom [11], [22]–[29]. This model allows the use of fully two-electron wavefunctions in nu-
merical studies of the ionization process. In this model the electrons and (fixed) nucleus
interact via a 1-D screened Coulomb potential [24, 25]. In atomic units, the Hamiltonian
for “one dimensional helium” interacting with an external laser field can be written

H(x, y) =
p2x
2

+
p2y

2
−

2
√
x2 + 1

−
2

√
y2 + 1

+
C

√
(x− y)2 + 1

+W (x, y, t) (1)

Here x and y denote position variables for the electrons, and C represents a “corre-
lation charge.” We typically set C = 1 so that the electron-electron interaction is of
equal strength with the electron-proton interaction, but variation of C also can provide
information about electron correlation.

The interaction with the laser field is

W (x, y, t) = −(x+ y)E0f(t) sinωt (2)

Here E0 denotes the field strength, ω the laser frequency, and f(t) is a pulse-shape
parameter, which we take to be trapezoidal.

In our numerical investigations we discretize the x and y variables, and solve the
Schrödinger equation on the resulting two-coordinate spatial grid. We evolve the spatial
wavefunction Ψ(x, y) in time using split-operator techniques and a split-domain algo-
rithm [26, 30, 31]. We begin with the system in its ground state, which we assume to
be spin zero. Consequently the initial spatial wavefunction is symmetric with respect
to exchange of the electrons. Then because H contains no spin-dependent interactions,
this exchange symmetry Ψ(x, y) = Ψ(y, x) is preserved for all time.

It is known [13] that for this model system the double-ionization probability, when
considered as a function of laser intensity, shows a knee structure qualitatively similar
to what is observed experimentally. Further, the height of the knee depends critically
on the value of the correlation charge C [21], supporting the conjecture that non-ADK
behavior arises because of an interaction between the electrons.

We have previously shown [32] that the spatial wavefunction for the two-electron
system exhibits jets of double ionization each half cycle, provided the laser has reached
sufficient strength and enough time has elapsed for recollision to occur. In these jets,
the two electrons emerge simultaneously on the same side of the nucleus. We have found
that for laser intensities corresponding to the “knee” area, the size of the jets is very
dependent on the correlation charge C [13]. In addition, we have noted that there is
a competing double-ionization process in which the electrons emerge sequentially on
opposite sides of the nucleus, and we have commented that the sequential ionization
apparently dominates at intensities above the knee.

Finally, we should note other recent progress in the field. There is now strong ex-
perimental evidence [17]–[20] of having both electrons emerge on the same side of the
nucleus. This evidence is based on a momentum analysis of outcoming particles, and
is consistent with the two-electron jets. Other theoretical results showing the double-
ionization jets have also recently appeared [28, 29].

2 Time Development of the Spatial Wavefunction

We begin by examining the general characteristics of the time development of the spatial
wavefunction. We look in particular at a four-cycle 1 + 2 + 1 trapezoidal pulse of peak
intensity I = 6.5 × 1014W/cm2 with its frequency corresponding to five-photon single
ionization. This frequency places the ionization in the knee area [13].
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Fig. 1. Animation (0.9 MB) of the time development of |Ψ(x, y)|2 for one-
dimensional helium for a four-cycle pulse of intensity 6.5 × 1014W/cm2 and fre-
quency 0.1837a.u. The still image is for t = 2.875 cycles and shows the jets as well
as sequential ionization.

Figure 1 presents a QuickTime video of the time development of the modulus squared
of the spatial wavefunction. We truncate the plot vertically at 10−4 for the clearest
viewing of the general characteristics of the development. We have previously presented
[32] logarithmic contour plots for this time development, but with much larger time
increments. The animation shows 32 images per cycle. The still image in Fig. 1 is for
t=2.875 cycles.

A conspicuous characteristic of the development is the oscillation of the wavefunction
in response to the external field. When x and y coordinates are plotted orthogonally as
in Fig. 1, the interaction (2) is equivalent to having an electric field pointing alternately
parallel and antiparallel to the line y = x.

Single ionization, which is characterized by population moving steadily outward
along the x and y axes, is clearly evident. Since the field oscillations can bring the
population back to the core region, considerable rescattering occurs.

Double ionization is evident when population separates from the axes, and ripples
of double ionization are visible in Fig. 1. In Fig. 2 we change the viewpoint, and show
the jets at t = 2.25 cycles. The jets emerge during the latter part of each half cycle
and in the direction of electric force. Their emergence directly from the origin indicates
simultaneous departure from the nuclear region for the two electrons (although this need
not be the first departure for both!); their direction of motion implies that the electrons
have similar velocities. (Motion directly along the line y = x would correspond to equal
velocities.) The x− y symmetry mentioned above is obvious.

Once the electrons are away from the core region the repulsive force between the
electrons causes them to separate. In our 1-D system the combined effect of the electric
field and the electron-electron repulsion is to send population out of the first and third
quadrants and into the second and fourth quadrants, i.e., to send one electron back
across the nucleus. In a three dimensional system one could also expect the electron-
electron repulsion to cause the emerging electrons to separate. Of course, the appearance
of electrons on the same side of the nucleus is completely consistent with recent reports
of electron momentum correlation [17]–[20].
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Fig. 2. Animation (1.0 MB) of the time development of |Ψ(x, y)|2 as for Fig. 1, but
viewed from along the line y = x, and truncated at 10−5. The still image is for
t =2.25 cycles.

It is noteworthy that jets do not emerge in the first quadrant until the second half of
the second cycle even though there is considerable population along the axes during the
first half of the cycle. This suggests that rescattering is important in the formation of the
jets. The apparent inertial effects that they show are also consistent with a rescattering
interpretation.

In [32] we also noted that the jets are not the only method of double ionization.
There is more population emerging in the second and fourth quadrants than can be
accounted for by the jets. As can be seen in Fig. 1 for times near 1.875 cycles and
2.875 cycles, some doubly-ionized population apparently emerges from the axes rather
than directly from the origin. This population can be associated with sequential double
ionization. It is interesting to observe, however, that these population bursts appear
to travel perpendicular to the axes, suggesting that the outer electron is nearly at rest
when the inner electron is ionized.

We thus see clearly that there is a competition between different processes of double
ionization, and one might expect that the different processes would depend differently on
variables such as laser field strength and the strength of the electron-electron repulsion.
One of the results of [13] was that the strength of the double-ionization signal in the
vicinity of the knee is highly dependent on the value of the correlation C appearing in
the Hamiltonian 1. Our detailed plots allow us to investigate reasons underlying this
dependence.

We have studied the time development of the system with C = 0.9 or C = 1.1 to
complement our studies with C = 1.0. Figures 3 and 4 show logarithmic contour plots
of |Ψ(x, y)|2 vs. x and y after each cycle of 6-cycle (2+2+2 trapezoidal) pulse for the
three values of C. Other parameters are the same as for Figs. 1 and 2. Because of the
longer turn-on time, no significant double ionization occurs until the third laser cycle.
These plots show a considerable increase in double ionization with increasing C. The
enhancement of the jets with increased C is especially noteworthy.

To examine in more detail the enhancement of the jets that occurs when C is in-
creased, Fig. 5 repeats Fig. 2, but with C=1.1. The enhancement of the jets with in-
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Fig. 3. Logarithmic contour plots of |Ψ(x, y)|2 vs. x and y after each of the first
three cycles of a 6-cycle (2+2+2 trapezoidal) pulse for C = 0.9, 1.0, and 1.1. Other
parameters are the same as for Figs. 1 and 2.
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Fig. 4. Continuation of Fig. 3, showing |Ψ(x, y)|2 vs. x and y after each of the final
three cycles of a 6-cycle (2+2+2 trapezoidal) pulse for C = 0.9, 1.0, and 1.1.

creased correlation charge C is very dramatic.
In order to consider next the dependence of sequential ionization on the correlation

charge C, in Fig. 6 we present still images of |Ψ(x, y)|2 at t = 1.875 cycles for the
two C values from the same viewpoint as in Fig. 1. There is an enhancement of the
sequential ionization, but not as dramatic as the jet enhancement. The inference we
draw is what might have been expected, namely that the electron-electron repulsion is
not as important in the sequential ionization as for rescattering ionization.

Figures 3 through 6 suggest that the reason for the strong dependence of the knee
on correlation charge C–and hence the reason for the enhanced double ionization–is the
jets.

To test this inference regarding the importance of the jets, we now turn our attention
to a higher laser intensity, namely 1.0× 1015W/cm2. We keep the same laser frequency.
Figure 7 is analogous to Fig. 1, but for this higher laser intensity. Enhancement is
clearly visible for the jets as well as for the sequential ionization, but increasing the
laser intensity has clearly had greater effect on the sequential ionization than on the
jets. This result is consistent with our expectation that sequential ionization should
become more dominant as the laser intensity is increased.

We have previously shown that the total ionization probability becomes less depen-
dent on C at intensities above the knee. This conclusion is supported by Figs. 8 and
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Fig. 5. Animation (1.7 MB) of the time development of |Ψ(x, y)|2 as for Fig. 2, but
with correlation charge C = 1.1 instead of 1.0. The still image shows |Ψ(x, y)|2 at
t = 2.25 cycles.

9, which compare stop-action views for C = 1.0 and 1.1, and shows that increased C
provides noticeable enhancement of the jets. Figure 9 shows the sequential ionization
at t = 1.875 cycles for the two values of C, and shows once again that the sequential
ionization is less dependent on C than the jets are. All these results are consistent with
the idea that the knee is due to the double-ionization jets. At high intensities such as
that of Figs. 7-9, the sequential ionization begins to dominate.

Finally, we consider a lower intensity, I = 3× 1014W/cm2, which is below the knee
area. In Figs. 10, we present stop-action shots (for C = 1.0) at times t = 1.875 cycles
(left) and t = 2.25 cycles (right). Because of diminished ionization, the plots use vertical
scales that are a factor of 10 lower than in our earlier figures. At this intensity, the jets
are more visible than the sequential double ionization. These times are the same as for
earlier plots.
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Fig. 6. Linear plots of |Ψ(x, y)|2 vs. x and y at t = 1.875 cycles for C = 1.0 and 1.1,
showing only small enhancement of the sequential ionization for increased C. Laser
parameters are as for Figs. 1-5.
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Fig. 7. Animation (1.0 MB) of the time development of |Ψ(x, y)|2 for one-
dimensional helium for a four-cycle trapezoidal pulse (1+2+1) of intensity 1.0 ×
1015W/cm2 and frequency 0.1837a.u.. The still image is for t=2.875 cycles, and
shows both jets and sequential ionization.

3 Summary

We have examined numerical results for the time development of one-dimensional helium
exposed to intense laser light. We have considered three laser intensities–one below the
knee, one at the knee, and one above the knee.

Our data makes clear that there are competing processes for double ionization. In
one process, which we assign to rescattering, the two electrons emerge from the core
simultaneously and on the same side of the nucleus in “jets”. We have seen that these
double-ionization jets are particularly sensitive to the strength of the electron-electron
interaction in the knee area. We conclude that these double ionization jets are respon-
sible for the enhanced double ionization that leads to the knee.

We have also examined a competing process of double ionization, in which the elec-
trons leave the nuclear area sequentially. We have noted that electron-electron repulsion
still plays a role in this process, since the electrons emerge on opposite sides of the nu-
cleus. However, this process is not as sensitive to small changes in the electron-electron
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Fig. 8. Linear plots of |Ψ(x, y)|2 vs. x and y at t = 2.25 cycles for C = 1.0 and 1.1,
and for laser parameters of Fig 7. As for the lower intensity, there is an enhancement
of the double-ionization jets.

(C) 2000 OSA 3 July 2000 / Vol. 7,  No. 1 / OPTICS EXPRESS  37
#21863 - $15.00 US Received May 18, 2000; Revised June 21, 2000

https://www.osapublishing.org/viewmedia.cfm?uri=oe-7-1-29&seq=4


C=1.0

-50

0

50
x Ha.u.L -50

0

50

y Ha.u.L0

1.5µ10-5» Y Hx, yL »2
-50

0

50
x Ha.u.L

C=1.1

-50

0

50
x Ha.u.L -50

0

50

y Ha.u.L0

1.5µ10-5» Y Hx, yL »2
-50

0

50
x Ha.u.L

Fig. 9. Linear plots of |Ψ(x, y)|2 vs. x and y at t =1.875 cycles for C = 1.0 and
1.1, and laser parameters as in Figs. 7-8. Note that the vertical axis is truncated
at larger values than in Fig. 8. At this intensity the sequential ionization begins to
dominate the double-ionization jets.
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Fig. 10. Linear plots of |Ψ(x, y)|2 vs. x and y at t = 1.875 cycles (left) and t = 2.25
cycles (right) for C = 1.0, and laser intensity 3.0×1014W/cm2. The laser frequency
remains unchanged from earlier plots, and is 0.1837a.u.. The two plots have very
different viewpoints.

repulsion as the jets are. Further, we have found that this process increases more rapidly
with laser intensity than the double-ionization jets, and totally dominates at high in-
tensities.

The use of detailed videos of the time-development of |Ψ(x, y)|2 is useful in devel-
oping understanding of the single and double-ionization process. One topic we have not
discussed is the the role that resonances might play in the ionization process. Changing
the value of C will also change energy-levels of the model system, which can alter the
dynamics of the double-ionization process. Some of us take up that topic elsewhere [21].

Acknowledgements

This work has been supported by the National Science Foundation through Grants
PHY-9415583 to the University of Rochester and PHY-9722079 to Calvin College, and
by Calvin College. We acknowledge the assistance of R. Panfili and C. Szymanowski.

(C) 2000 OSA 3 July 2000 / Vol. 7,  No. 1 / OPTICS EXPRESS  38
#21863 - $15.00 US Received May 18, 2000; Revised June 21, 2000


	Directional correlation in direct and sequential double ionization of model atoms
	Recommended Citation

	Directional correlation in direct and sequential double ionization of model atoms

