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Abstract 

An open subset W of S”, n > 6 or n = 4, and a homotopy equivalence f : S2 x Sne4 -+ W 

are constructed having the property that f is not homotopic to any topological embedding. 0 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this paper we construct examples of open manifolds that have unusual compact- 

ness properties. The precise properties of the examples are spelled out in the following 

theorem. 

Theorem 1.1. There exists an open subset W” of S”, n 3 6, such that W” has the 

homotopy type of S2 x S”-4, but there is no compact subset X” contained in W” such 

that the inclusion Xn - W” is a Czech equivalence. There exists an open subset W4 

of S4 such that W4 has the homotopy type of S2, but there is no compact subset X4 

contained in W” such that the inclusion X4 Q W4 is a tech equivalence. 
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When we say that X at W is a tech equivalence we mean that the inclusion map 

induces isomorphisms on the Tech homology and cohomology groups (with Z coeffi- 

cients). 

One consequence of Theorem 1.1 is the fact that there is a homotopy equivalence 

between piecewise linear manifolds that is not homotopic to an embedding. 

Corollary 1.2. There is a homotopy equivalence f : S2 x Sm + Wmt4, m 3 2, such 

that f is not homotopic to any topological embedding. 

The corollary contrasts sharply with what happens in the compact setting. In that setting 

the following problem has been studied extensively: If f : M”-2 --f W” is a homotopy 

equivalence from a closed, orientable PL (n - 2)-manifold M to a compact, orientable 

n-dimensional PL manifold (with boundary) W, then is f homotopic to a locally flat PL 

embedding? Cappell and Shaneson [l-3], Kato [4], Kato and Matsumoto [5], and Mat- 

sumoto [9-121 have developed a codimension two ambient surgery theory that answers 

this question in case n > 6. There is an obstruction that vanishes if and only if f is 

homotopic to a locally flat PL embedding. One consequence of the theory is the fact that 

for n odd the obstruction group is the same as the ordinary surgery obstruction group. It 

follows that, in odd dimensions, a (possibly nonlocally flat) PL embedding always exists 

[2, Theorem 6.11. Corollary 1.2 shows that this fails in case W is not compact. 

It should also be noted that the corollary illustrates a distinct difference between codi- 

mension two and codimensions greater than two. For k > 3, every homotopy equivalence 

from a closed PL n-manifold to a PL (n + k)-manifold is homotopic to an embedding. 

This is true whether or not the target manifold is compact-see the Introduction to [ 181 

for a discussion of this. 

There have previously been topological nonembedding results in dimension four ([7] 

and [17]), but none that we are aware of in higher dimensions. 

Another way to view Theorem 1.1 is in terms of compact cores. We say that a compact 

submanifold N of W is a core of W if the inclusion map N of W is a homotopy 

equivalence. In this paper we are allowing the subset to be an arbitrary compactum; in 

that generality it makes sense to define core in terms of shape equivalence. Thus we 

define a compact subset X of W to be a generalized core of W if the inclusion map 

X -+ W is a shape equivalence. Theorem 1.1 asserts that a generalized core may fail to 

exist even if the manifold has the homotopy type of a finite complex. 

Corollary 1.3. There is an open subset W” of S”, n > 6, such that W” has the 

homotopy type of a finite complex but W” contains no generalized core. 

Historical note. Matsumoto proved in 1978 [13] that Kawauchi’s Theorem [6] could 

be generalized to the topological setting. In the summer of 1996 the other two authors 

rediscovered Matsumoto’s 1978 notes and saw how to simplify the argument and extend 

the techniques to higher dimensions. 



VT Liem et al. / Topology and its Applications 90 (1998) 211-222 213 

2. Background and notation 

Since the proof given here builds on that in [18], we will assume that the reader is 

familiar with the notation and techniques of [ 181. In particular, all the notation associated 

with the construction of IV in [ 18, Section 21 will be assumed. Also the definitions of the 

Alexander polynomial A(X, y; t) and the Kawauchi invariant k(X, y) in [18, Section 31 

and all the lemmas of [ 18, Section 31 will be assumed. So it is essential that Sections 2 

and 3 of [18] be read before this paper. The remainder of this paper will substitute for 

the proofs found in [18, Section 41. 

Most homology and cohomology groups will have coefficients in Z. If no coefficient 

group is specified, coefficients in Z are to be assumed. Occasionally we will require 

rational coefficients; in those cases the coefficient group Q will be specified. 

Readers who are unfamiliar with shape theory should consult [8] for the definitions 

needed in order to understand the statement of Corollary 1.3. Since the Tech homol- 

ogy and cohomology groups are shape invariants [8, Chapter II], Corollary 1.3 follows 

immediately from Theorem 1.1. 

In the next four sections we will give the details of the proof of Theorem 1.1 in 

the special case n = 4. In the final section we will indicate the modifications that are 

necessary to prove the high dimensional cases of the theorem. 

3. Neighborhoods of X 

Suppose X is a compact subset of the 4-manifold W and that X c-t IV is a tech 

equivalence. Compactness implies that there exists an i such that X C Int IV(&). This 

i will be fixed for the remainder of the proof. The hypothesis that 

H*(X) ” H*(W) z H*(s2) 

implies that there exists a sequence of connected neighborhoods Ni , N2, . of X in 

Int IV(&) such that the following conditions are satisfied. 

(3.1) N,+1 c IntN, for each j > 1. 

(3.2) n,“=, NJ = X. 

(3.3) The inclusion induced homomorphism Hk(N,+i) -+ Hk(Nj) is zero for k # 0 
or 2. 

(3.4) If oj : H2(Nj+,) 4 HZ (Nj) denotes the inclusion induced homomorphism, then 

imck, 2 Z. 

The fact that the inclusion map X of W is a Tech homology equivalence allows us to 

impose one more requirement on the neighborhoods. 

(3.5) If & : H2(Nj) + H2(W) denotes the inclusion induced homomorphism, then 

io(, 1 im oj : im ~j --j H2 (IV) is an isomorphism. 

We will use ai and /z$ to denote the inclusion induced homomorphisms Q; : HI (Nj+ I- 
X) + H1(N3 -X) and/3;:Hi(Nj -X) + HI (W - X). Recall that W(Li) is con- 

structed from B4 by attaching a l-handle and a 2-handle. Let us denote the boundary 



214 WY Liem et al. / Topology and its Applications 90 (1998) 2Il-222 

of the cocore of the 2-handle by b,. Note that bi is a loop on dW(Li) c W - X 

and that bi bounds a disk ci C IV(&). The pair (ci, bi) represents a generator of 

Hz(W(Li), aW(Li)) Z Z. 

Lemma 3.1. rfa$ and /Ii are us above, then im cri g Z and /3; 1 im o$ : im ol; + Ht (W- 

X) is UR isomorphism. Moreovel; bi represents a generator of HI (W - X). 

Proof. Since Nj is a subset of S4 we see that the inclusion induced homomorphism 

Hz (Nj - X) + Hz (Nj ) is onto. Thus the long exact sequence of the pair (Nj , Nj - X) 

shows that Hz(Nj) ---) Hz(Nj, Nj - X) is the zero homomorphism. Now consider the 

following commutative diagram. 

Hz(Nj+t ) & H2(Nj+, , Nj+l - X) a3+1_ H,(N,+l - X) -Hl(Nj+l) 

I Gz I 3 

AH2(Nj, Nj - X) a3 
If I 0 

fww -H1(Nj -X) -----H,(Nj) 

I 1 
6 

I 
H2W) HI(W-X) -HI(W) = 0 

The vertical arrows in the second column are isomorphisms by excision. By Alexander 

duality, each group in the second column is isomorphic to fi2(X) %’ Z. An easy diagram 

chasing argument shows that im ffi = im aj 2 Z. Essentially the same argument shows 

that im @: o C$ = im 8 = HI ( W - X) E Z. Since every onto homomorphism Z + Z is 

an isomorphism, we have that ,f?; ( im CY~ : im cyi -+ HI (W - X) is an isomorphism. 

Since X c--f W and W(L,) L) W induce isomorphisms on k2, X 4 W(Li) does 

as well. It follows that the horizontal arrow in the lower left comer of the following 

diagram is an isomorphism. 

Hz(W(&), aW(&)) -H2(W(L), W(b) -X) AH2(W,W-X) 

5% 
I I c% _ I 2 

H2(W(L)) r?z =-P(X) P(X) 
The second arrow in the top row is an isomorphism by excision. The vertical arrows are 

the Alexander and Poincare duality isomorphisms. The diagram commutes by naturality 

of duality. Since (ci , bi) represents a generator of H2 (W (Iii), a W (Li)) , it also represents 

ageneratorofH2(W,W-X).Buta:Hz(W,W-X) --+ Ht(W-X)isanisomorphism, 

so bi represents a generator of HI (W - X). 0 

4. Neighborhoods of C 

We now turn our attention to M(Li). Recall that M(Li) is the manifold constructed 

by attaching two 2-handles to B4 along the components of Li using zero framing. Thus 
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M(L,) 3 W(Li) and M(Li) - IntW(L,) E S’ x B*. Let us use C to denote the core, 

S* x {0}, of n/r(&) - IntW(L,). I n order to simplify the notation, let us use M to 

denote M(L). 
Let A be a PL ray in M that starts at a point of C and converges to X. Choose A 

in such a way that A n C consists of one point and A n X = 8. Further, choose A so 
that, for each j, A intersects aN, transversely in exactly one point. In this way we form 

a compact, connected set C = X U A U C. By taking the union of NJ with a regular 

neighborhood of (A - Int Nj) U C we can form a connected neighborhood Pj of C in 

Al. The sequence of neighborhoods {PI} satisfies the following conditions. 

(4.1) Pj+l c IntP, for each j >, 1. 

(4.2) n,“=, Pj = C. 
(4.3) The inclusion induced homomorphism Hk(Pj+I ) + Hk(Pj) is zero for k # 0 

or 2. 

(4.4) If $6j : H*(Pj+,) + H2(P, ) denotes the inclusion induced homomorphism, then 

im& rZ@Z. 

(4.5) If ,& : H2(P3) 4 H*(M) denotes the inclusion induced homomorphism, then 

vC’j/imqij :im& 4 Hz(M) is an isomorphism. 

The last three conditions are achieved with the aid of a Mayer-Vietoris sequence. 

Lemma 4.1. For every j and for every k, the inclusion induced homomorphism 
HI,(M, Pj+l) -+ Hk(M, Pj) is zero. 

Proof. In case k # 2 or 3, the conclusion follows immediately from the following 

commutative diagram. 

0 = Hlc(M) -Hk(M, P,+I) -Hk-,(Pj+,) 

!I I 1 
0 

0 = Hk(M) - Hk(M? PJ --L(Pj) 

In case k = 2, the argument is nearly the same but we must extend the diagram one 

place to the left. We use the fact that $j is onto, by Property 4.5 above. 

H2(p,+,)~H2(M) --H~(M,P,+I) -HI(~,+I) 

1 /I 

0 

H2(Pj) AH*(M) A 
1 1 

Hz(M, 5) --L&,(Pj) 

Finally, in case k = 3, the argument is a little more delicate. Let us use Oj to denote 

the inclusion induced homomorphism Bj : Hj (M, Pj+l) -+ H3( M, Pj). We have the 

following commutative diagram. 

0 = Hj(M) -H~(M:P,+I)- a3+’ H2(Pj+,) % H*(M) 

/I 0 
0 = H3(M)- i, Hi 
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Let 5 E Hj(M, Pj+t). Then $~jaj13.j(~) = 0 and so $jc$aa,+t (x) = 0. But Property 4.5 

implies that $j / im & is manic. Hence $J d,+t (z) = 0. By commutativity of the diagram 

we have djQj(z) = 0. This implies that O,(z) = 0 since exactness of the bottom row 

implies that dj is a monomorphism. 0 

Lemma 4.2. H,(M - C, 3M) = 0. 

Proof. Let Ma denote the manifold obtained from M by deleting a small open collar on 

i3M. By Alexander duality we have 

Hk(M - C, aM) ” Hk(M - C, M - M,,) ” a4-“(M,,, C) ” B4-“(M, C). 

Now the definition of Tech cohomology gives 

&4-k(M, C) = j~rnm H4-“(M, I”). 

Hence the conclusion follows from Lemma 4.1 and the Universal Coefficient Theorem 

for Cohomology (see [16, Theorem 53.11, for example). q 

5. The infinite cyclic cover of A4 - C 

The next step in the proof is to construct an infinite cyclic cover of M - C. Recall [1X] 

that HI (aM; Z) E Z $ Z. We use J to denote the multiplicative infinite cyclic group 

with generator t. Define y : TI(~ M) + JJ by sending each of the two generators of 

HI (8M; Z) to a generator of J. (In order for y to be uniquely defined we must first 

choose an orientation for Li. This choice should be made as in [14].) Lemma 4.2 allows 

y to be extended to ~1 (M - C). Let 
- 

p.M-C+M-C 

denote the associated infinite cyclic cover. 

We now begin to use rational coefficients in our homology groups. The symbol n is 

used to denote the group ring, QII], which consists of all Laurent polynomials in t with 

rational coefficients. For each pair of polyhedra (K, L) in M - C we use the notation 

Hk (K, L; A) as a shorthand for the homology group Hk (p-’ (K), p-’ (L); Q). Of course 

HI, (K, L; A) has a natural n-module structure. 

As in [ 181, we use the same letter t to denote a generator of JJ, the associated deck - 
transformation of M - C, and the homomorphisms it induces on the homology groups - 
of M - C. Thus a Laurent polynomial in t can be thought of as a homomorphism on 

homology groups. The transformation induced by the polynomial t - 1 is of special 

interest to us because for each pair of polyhedra (K, L) in M - C we have a long exact 

sequence of the following form. 

... 4 Hk+,(K,L;Q) + Hk(K,L;A) % Hk(K,L;A) 2 Hk(K,L;Q) + . . . . 

We will refer to this sequence as the Milnor sequence of the pair (K, L) because of 

the important role it plays in the paper [15], where many of the techniques used in this 



VT Liem et al. / Topology and its Applications 90 (1998) 21 l-222 211 

paper have their origin. (This sequence can also be viewed as a special case of the Wang 

sequence.) 

Lemma 5.1. For each j > 1, the inclusion induced homomorphism 

‘l,j : H, (A$+, - c; A) ---f H, (Nj - c; A) 

satisjies 

fLj(H,(N,+, - C;A)) c (t - l)(H,(Nj - C;A)). 

Proof. Note that the only difference between C n N3 and X n IV3 is An Nj. But An NJ 

is a l-dimensional polyhedron, so removing it from the 4-dimensional manifold NJ has 

no effect on the first homology group. It therefore follows from Lemma 3.1 that if c$’ 

denotes the inclusion induced homomorphism a$’ : H, (NJ+, - C; Q) + H, (Nj - C; Q), 

then im cry Z Q. It also follows from the last statement in Lemma 3.1 that p-’ (NJ - C) 

is connected for each j and so Hu(N, - C; A) = Ha@-‘(N, - C); Q) E Q. Consider 

the following commutative diagram in which each row is a portion of a Milnor sequence. 

(In order to keep the lengths of the rows in the diagram down to a manageable size we 

use NI, = NJ - C and Ni+, = NJ+, - C.) 

CL2 a3 a; 2 2 

H,(N;;A)-----t t-’ H,(N;;A)~+_H,(N;;Q)-%&(N;;A)+Ho(N;;A) 

Exactness of the top row implies that S,+, is an epimorphism. Thus 6,~; is epic and 

so 6, ( im a; is an epimorphism from im o$ to Ha( NJ - C; A). By the previous paragraph, 

each of these groups is isomorphic to Q. Since the only epimorphisms from Q to Q are 

isomorphisms, we see that S,( imo$’ is a monomorphism. Now the composition h,p,n, 

is zero, so &j~yp,+, = 0. The previous two sentences together imply that cyypj+, = 0. 

Thus pjn, = 0’ and so im a3 c ker pj = im(t - 1). 0 

Lemma 5.2. The inclusion induced homomorphisms 

bj : H, (Pj+, - C; A) --f H, (P3 - C; A) 

and 

c3 : H, (M - C, P,+, -C;A) + H,(M-C,P, -C;A) 

sati.& 

bj (HI (P,-+I - C; A)) C (t - 1) (H, (Pj - C; A)) 

and 

cj (H, (M - C: I=‘+, - CA)) c (t - l)(H,(M - C, PJ - C;A)). 
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Proof. The fact about bj follows from Lemma 5.1 and a Mayer-Vietoris sequence ar- 

gument. By Lemma 4.1 and excision, the inclusion induced homomorphism Hr (1M - 

C,P,,,-C;Q)+H,(M-CJ-C;Q)’ IS zero. Thus the second part of the lemma 

can be seen from the following commutative diagram in which each row is a Milnor 

sequence. 

H, (M - C, Pj+, - C, A) 2 H, (M - C, Pj+, - C, A) + H,(M - C, Pj+, - C;Q) 

1 
% 

I 
0 

H,(M-C,P, -C,A) SH,(M-C,P, -c,A) -+H,(M-C,Pj-C;Q) 

6. Proof of Theorem 1.1 in case n = 4 

We are assuming that the compactum X exists and wish to derive a contradiction 

from this assumption. In view of Lemma 4.2, we may apply [18, Lemma 3.51 to the 

pair (M-C,aM). Thus HI(M-C;A)(,_,, 2 H,(aM;A)(,_,). In particular, H,(M- 
C; A),t_,, is finitely generated as a A-module. As computed in [14], k(i3M, TlaM) = 2i 

andso H,(aM;A)(,_,) # (0). W e will derive our contradiction by proving that HI (M - 

C;A)(t_,, = {O}.By[18,Lemma3.2],itsufficestoshowthat(t-1):H~(~-C;A) -+ 

Hr (M - C; A) is onto. This follows from an elementary homological algebra argument 

involving the following diagram. 

HI (f-$+2 - C; A) + HI (M - C; A)k’H, (M - C, Pjf2 - C; A) + &o(pj+2 - c) = 0 

I I 
9+1 

H,(P,+, - C;A)eti’Hl(M -C;A)k’H,(M -C,Pj+, -C;A)+jjo(pj+, -c) = 0 

b I II I I 
H,(P, -C;A)%H,(M-C;A)-H,(M-C,P, -C;A) -ii,(Pj - C) = 0 

For the sake of completeness we include the details of the argument. Let fj+2, fj+,, 

ej+r , and e3 be the indicated homomorphisms in the diagram. Choose 2 E H, (M-C; A). 
We must show that there exists u E H, (M-C; A) such that 5 = (t - 1)~. By Lemma 5.2, 

there exists y E HI (M - C, Pj+, - C; A) such that cj+r fj+z(~) = (t - 1)~. Hence 

fj+l (z) = (t - 1)~. By exactness fj+r is onto, so there exists z E H1 (M - C; A) such 

that fj+r (z) = y. Now 

fj+1 (x - (t - G) = fj+, (x) - (t - l)fj+, (z) = 0. 

Thus there exists w E H, (Pj+, - C; A) such that ej+i (w) = II: - (t - 1)~. Finally, 

another application of Lemma 5.2 gives u E H, (Pj - C; A) such that bj(w) = (t - 1)~. 

It is simple to check that u = z + ej(v) satisfies z = (t - 1)~. 

This completes the proof of Theorem 1.1 in case n = 4. 
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7. Proof of Theorem 1.1 in case n 3 6 

In this section we prove Theorem 1.1 in the high dimensional cases. The proof follows 

the same outline as the 4-dimensional proof does. Rather than repeat all the details, we 

will go through the outline of the proof and indicate which parts are the same as in the 

previous proof and which details need to be changed. 

The manifold W” is simply W” = W x Sne4, where W is the 4-dimensional example. 

Since W c Iw', we have W” c IR4 x Snp4. But R4 x SnP4 embeds in S” (as a regular 

neighborhood of Ye4 c P), so we have Wn c S”. Suppose there exists a compact 

set X” c Wn such that X” L) W” is a Tech equivalence. By compactness of X” there 

must exist an i such that X” c Int W(L) x S”-4. This i will be fixed for the remainder 

of the proof. Of course, W(L,) x Se4 c M(L,) x Snp4. Let us use M” to denote 

M(Li) x Sne4. We have 

i3M = a(M(&) x Y4) = (aM(L,)) x ,Y4, 

so we may define 

to be the composition of the homomorphism ~1 (aM) -+ TI (aM(Li)) induced by the 

project map with the homomorphism rri (aM(L,)) -+ J that was use in the proof of the 

4-dimensional case. One key point to notice is that the infinite cyclic covers satisfy 

&ii = (aM_i)) x Sn-4. 

The reason for this is the fact that n 3 6 and so PM4 is simply connected. The com- 

putation in [14] shows that HI(CIM;A)(~_,J # (0). We will use the existence of X” to 

show that Hi (C)M; A),,_,, = (0) and thus derive our contradiction. 

Using the fact that X” if W” is a Tech equivalence we can construct a sequence 

NT, NF, NF. . . of connected neighborhoods of X” that are similar to those used in 

the proof of the 4-dimensional case. In particular, the neighborhoods will satisfy the 

following conditions. 

(7.1) NF+, c Int NT for each j > 1. 

(7.2) n,“=, NT = X”. 

(7.3) The inclusion induced homomorphism HE,(N~+~ ) + Hk (N,“) is zero for Ic # 

0,2, n - 4, or n - 2. 

(7.4) If c$ : Hk(N,n,,) -+ Hk (NJ?) denotes the inclusion induced homomorphism, 

then im c$ Z Z for Ic = 0,2, n - 4, or n - 2. (Unless n = 6, in which case 

irncu; E ZC3Z.) 

(7.5) If /33”:: H&(N;) + Hk ( Wn) denotes the inclusion induced homomorphism, then 

@ 1 ima,k : im czj -+ Hk(Wn) is an isomorphism for all k. 

As in Section 3, these properties imply the following lemma. The proof of Lemma 7.1 

is the same as that of Lemma 3.1, except that (7.4) and (7.5) for the case k = n - 2 
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must be used in place of (3.4) and (3.5). Let bi denote the boundary of the cocore of the 

2-handle in IV(&), just as before. 

Lemma 7.1. For each j, the inclusion induced homomorphism Q; : HI (Njn+, - Xn) + 

HI (N.J’ - Xn) satisjies im 01 g Z and the inclusion induced homomorphism bi : 

H,(Njn - X”) -+ Hl(W” - Xn) restricts to an isomorphism 

,D;Iirnag :imo$ 2 H,(W” -X”). 

Moreovel; a generator of HI (W” - X”) is represented by bi x {point}. 

Now (M(Li) x Sn-‘) - (W(Li) x Sn-‘) g S2 x B2 x Snp4. Let us use Q to denote 

the core, S2 x S”-4, of (M(Li) x Sne4) - (W(L,) x Snp4). As before, we connect X” 

and Q with a PL ray A to form a new connected compacturn C” = X” U A U Q. It is at 

this point in the proof that the major difference between this proof and the 4-dimensional 

one occurs. Note that the best we can hope for is that fi*(Cn) E B*((S2 x Snp4) V 

(S2 x Se4)) while B*(Mn) E fi((S2 V S2) x Snp4). Thus we cannot expect that 

H,(Mn - C”, aMn) = 0. But we do not need the full strength of Lemmas 4.1 and 4.2; 

the weaker version stated as Lemma 7.2, below, suffices. Before stating the lemma, we 

must examine the neighborhoods of C”. 

Just as in Section 4, we construct a sequence of neighborhoods of C”. For each j, 

let PT denote a neighborhood of C” obtained by taking the union of NT and a regular 

neighborhood of (A - Int NJ?) U Q. The neighborhoods can be constructed to have the 

following properties. 

(7.6) Pj”,, c Int Py for each j 3 1. 

(7.7) nj”=, Pj” = C”. 
(7.8) The inclusion induced homomorphism Hk(Pj”,l) --) Hk(P,“) is zero for k # 

0,2, n - 4, or n - 2. 

(7.9) If # : Hk(Pj”,,) + HI, (Pj7L) denotes the inclusion induced homomorphism, 

then im #$ g Z @ Z for k = 0,2, n - 4 or n - 2. (Unless n = 6, in which case 

im~j2~Z@Z@Z@Z,ork=O,inwhichcaseim#$jOiZ.) 

(7.10) If $$ : Hk(P,“) -+ Hk(Mn) denotes the inclusion induced homomorphism, 

then $1 im @ : im $ + HI,(M”) is an isomotphism for k = 0,2 or n - 2 

and is an epimorphism with kernel Z when k = n - 4. 

Lemma 7.2. Hk(Mn - C”, 3Mn) = Ofor k 6 2. 

Proof. Alexander duality (used as in the proof of Lemma 4.2) and the definition of Tech 

cohomology give 

Hk(M” - C”, a&f”) 2 An-lc(Mn, Cn) = /;im_ H+‘(M”, P,“). 

By the Universal Coefficient Theorem for Cohomology, it suffices to prove that 

Hn-k(Mn, Pjn+,) + H,_k(Mn, Pj”) is the zero homomorphism for k < 2 and 

im[Hn-3(Mni Pjn+i) -+ Hn_3(Mn, PJF)] is free abelian. 
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The fact that Hn-r (Mn, I-?;+,) -+ H,- 1 (M”, P,“) is zero follows from the same argu- 

ment as was used in the proof of Lemma 4.1 to show that H3(M, Pj+l ) -+ H3 (M, Pj) is 

zero. The fact that Hn_2(MnT Py+,) + Hn-2(Mn. P,“) zero follows from the same ar- 

gument as was used in the proof of Lemma4.1 to show that Hz(M, Pj+l) + Hz(M, Pj) 

is zero. The proof that im[H,_s(M”, Py+]) 4 Hn-3(Mn, PJ?)] is free abelian follows 

from Property 7.9, above, along with the following diagram. 

0 = fL3(Mn) - 

Let Sn-’ S”-” and Bj denote the homomorphisms indicated in the diagram. By Prop- 3fl’ 3 
erty 7.10, ker[$y-4] f’ irn[$;L-“1 F Z. Now 

im[S,y-‘Q,?] c im[$“p4] n ker[?,!$-4] Z Z, 

and 5yp3 is manic (by exactness), so im[oj] is isomorphic to a subgroup of Z and hence 

is either (0) or isomorphic to Z. 0 

We can now complete the proof of Theorem 1.1. Lemma 7.2 allows us to extend y 

to Mn - C” and thus we have an infinite cyclic cover of Mn - C”. Exactly as in the 

4-dimensional case, Lemma 7.2 together with [18, Lemma 3.51 imply that 

H, (all/“; A)ct-,j 2 H, (M” - C”; A),,_,,. 

The proof will be complete when we show that HI (Mn - C”; A),,_,, = (0). 

The fact that Hl(M” - C”;A),,_,J = (0) is p roved exactly as in the 4-dimensional 

case. The homological algebra argument for this was given in Section 6. That argument 

required Lemmas 5.1 and 5.2 as input, The proofs of those two lemmas, given is Section 5, 

required Lemma 3.1 as input. Now Lemma 7.1 is an n-dimensional version of Lemma 3.1, 

so Lemma 7.1 implies n-dimensional versions of Lemmas 5.1 and 5.2. Those lemmas in 

turn make the argument of Section 6 work and so the proof is complete. 0 

References 

[l] S. Cappell and J. Shaneson, The codimension two placement problem and homology 
equivalent manifolds, Ann. of Math. 99 (1974) 277-348. 

[2] S. Cappell and J. Shaneson, Piecewise linear embeddings and their singularities, Ann. of Math. 
103 (1976) 163-228. 

[3] S. Cappell and J. Shaneson, Totally spineless manifolds, Illinois J. Math. 21 (1977) 231-239. 
[4] M. Kato, Embedding spheres and balls in codimension < 2, Invent. Math. 10 (1970) 89-107. 
[S] M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in codimension two I. 

J. Math. Sot. Japan 24 (1972) 586-608. 
[6] A. Kawauchi, On a 4-manifold homology equivalent to a bouquet of surfaces, Trans. Amer. 

Math. Sot. 262 (1980) 95-112. 



222 VT. Liem et al. / Topology and its Applications 90 (1998) 211-222 

[7] S. Kojima, Milnor’s p-invariants, Massey products, and Whitney’s trick in 4 dimensions, 

Topology Appl. 16 (1983) 43-60. 

[8] S. MardeSiC and J. Segal, Shape theory: the inverse systems approach, Math. Library 26 
(North-Holland, Amsterdam, 1982). 

[9] Y. Matsumoto, Knot cobordism groups and surgery in codimension two, J. Fat. Sci. Univ. 

Tokyo 20 (1973) 253-317. 
[lo] Y. Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Sot. 81 (1975) 467- 

470. 
[ 1 I] Y. Matsumoto, Some counterexamples in the theory of embedding manifolds in codimension 

two, Sci. Papers College Gen. Ed. Univ. Tokyo 25 (1975) 49-57. 
[12] Y. Matsumoto, Wild embeddings of piecewise linear manifolds in codimension two, in: 

Geometric Topology (Academic Press, 1979) 393-428. 
[13] Y. Matsumoto, An extension of Kawauchi’s results to topological embeddings, Handwritten 

notes (1978). 
[14] Y. Matsumoto and G.A. Venema, Failure of the Dehn lemma on contractible 4-manifolds, 

Invent. Math. 51 (1979) 205-218. 
[ 151 J.W. Milnor, Infinite cyclic coverings, in: J.G. Hocking, ed., Conference on the Topology of 

Manifolds (Prindle, Weber & Schmidt, 1968) 115-133. 

[16] J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Redwood City, CA, 1984). 
[17] T. Ohkawa, Homological separation properties of 2-spheres in a 4-manifold, Topology 21 

(1982) 297-313. 
[18] G.A. Venema, A manifold that does not contain a compact core, Topology Appl. 90 (1998) 

197-210 (this volume). 


	A homotopy equivalence that is not homotopic to a topological embedding
	Recommended Citation

	PII: S0166-8641(98)00187-4

