Evolutionary origins, diversification, and biogeography of liver flukes (Digenea, Fasciolidae)

Wael M. Lotfy
Alexandria University

Sara V. Brant
The University of New Mexico

Randy J. DeJong
Calvin University

Hoa Le Thanh
Institute of Biotechnology

Recommended Citation
Lotfy, Wael M.; Brant, Sara V.; DeJong, Randy J.; and Thanh, Hoa Le, "Evolutionary origins, diversification, and biogeography of liver flukes (Digenea, Fasciolidae)" (2008). University Faculty Publications. 511. https://digitalcommons.calvin.edu/calvin_facultypubs/511
Evolutionary Origins, Diversification, and Biogeography of Liver Flukes (Digenea, Fasciolidae)

Wael M. Lotfy, Sara V. Brant,* Randy J. DeJong, Thanh Hoa Le, Aleksander Demiaszkiewicz, R. P. V. Janythe Rajapakse, Vijitha B. V. P. Perera, Jeff R. Laursen, and Eric S. Loker

Parasitology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt; University of New Mexico Biology Department, Albuquerque, New Mexico; Biology Department, Calvin College, Grand Rapids, Michigan; Immunology Department, Institute of Biotechnology, Cau Giay, Hanoi, Vietnam; Witold Stefaninski Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland; Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka; Department of Wildlife Conservation, National Wildlife Training Center, Giritale, Sri Lanka; Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois

Abstract. Fasciolid flukes are among the largest and best known digenetic trematodes and have considerable historical and veterinary significance. *Fasciola hepatica* is commonly implicated in causing disease in humans. The origins, patterns of diversification, and biogeography of fasciolids are all poorly known. We have undertaken a molecular phylogenetic study using 28S, internal transcribed spacer 1 and 2 (ITS-1 and ITS-2) of nuclear ribosomal DNA, and mitochondrial nicotinamide dehydrogenase subunit 1 (*nad1*) that included seven of the nine recognized species in the family. The fasciolids examined comprise a monophyletic group with the most basal species recovered from African elephants. We hypothesize fasciolids migrated from Africa to Eurasia, with secondary colonization of Africa. Fasciolids have been conservative in maintaining relatively large adult body size, but anatomical features of their digestive and reproductive systems are available. These flukes have been opportunistic, with respect to switching to new snail (planorbid to lymnaeid) and mammalian hosts and from intestinal to hepatic habitats within mammals.

INTRODUCTION

One of the first infectious agents to be discovered and implicated in causing disease was no doubt the liver fluke, *Fasciola hepatica* Linnaeus, 1758, causative agent of liver rot disease in domestic ruminants. This species is also increasingly implicated in causing disease in humans.1 *Fasciola hepatica* also holds a special place in the history of parasitology by virtue of being the first fluke for which a complete life cycle was shown.2-5 It is today one of the most identifiable of all invertebrates and remains a common subject of study in invertebrate zoology and parasitology classes. Surprisingly, after decades of study, the evolutionary history of *F. hepatica* and other members in the Fasciolidae Railliet, 1895, remains virtually unexplored. The Fasciolidae is a relatively small family comprised of only nine recognized species. Flukes in this family are nonetheless well known for their large body size and considerable public health and veterinary significance. Although fasciolids mostly parasitize large herbivorous mammals, three species *Fasciola hepatica*, *F. gigantica* Cobbold, 1856, and *Fasciolopsis buski* Lancaster, 1857, regularly infect humans.6 Other species such as *Fascioloides magna* Bassi, 1875, one of the largest of all digenetic trematodes, can cause considerable morbidity and mortality when infecting abnormal hosts.7 Infections by other species, such as *Fasciola jacksoni* Cobbold, 1869, or *Protofasciola robusta* Lorenz, 1881, can kill even their massive mammalian hosts, Asian and African elephants, respectively.6,7

Whereas some fasciolids have retained circumscribed geographic distributions, others such as *F. hepatica* have become cosmopolitan.8 The spread of this species is in part caused by its adaptability to different lymnaeid snail hosts and to introduction of infected livestock or of susceptible snail hosts into new areas. In its new environments, for example, in the altiplano of Bolivia, *F. hepatica* can be responsible for significant public health problems.9 To gain a better perspective on the biology of fasciolid species of medical and/or veterinary importance and to more fully understand the evolutionary history in this and other fluke families, comparative studies that include a greater breadth of fasciolid flukes are needed.

Although the taxonomy of fasciolid flukes has been reviewed recently and a classification scheme has been proposed based on adult morphology,10-12 hitherto lacking have been inclusive phylogenetic studies using molecular characters to provide perspective on the taxonomy of the family. Molecular phylogenetic studies will also help us to better understand the origins, radiation, evolution, and patterns of host use of these important trematodes. Accordingly, the aim of this study is to use molecular DNA sequence data to reconstruct the phylogenetic relationships among the species in the Fasciolidae to 1) test the monophyly of the family, 2) investigate the relationships between the different species and establish hypotheses for their origins and diversification; 3) examine how host switching may have influenced the evolution of fasciolids; and 4) synthesize some of the morphological trends that have taken place among the adult flukes in this family.

MATERIALS AND METHODS

Specimens. Samples from seven of the nine recognized species of Fasciolidae were collected during this study (Table 1). One or two individuals from each species or strain were used for the molecular study.

Molecular analysis. Genomic DNA was extracted from a small part of the apical zone, to avoid inclusion of female genitalia likely to include foreign sperm, by the alkaline-lysis (Hot-SHOT) method.13 In a final volume of 400 mL of storage buffer. For some samples, we used an Aqua-Pure Genomic DNA kit (Bio-Rad Laboratories, Hercules, CA). The extracted DNA was used either immediately for PCR amplification or stored at −20°C until used. Nucleotide sequences

* Address correspondence to Sara V. Brant, Department of Biology, University of New Mexico, 1 University of New Mexico, MSC03 2020, Albuquerque, NM 87131-0001. E-mail: sbrant@unm.edu
of the internal transcribed spacer regions of the small subunit (SSU) ribosomal DNA (rDNA) gene have proven to be helpful in delineating genera and species in the Fasciolidae. Also, mitochondrial genomes have been found useful to investigate phylogenetic relationships among trematodes at many levels. Thus, in this study, nuclear rDNA 28S and internal transcribed spacer regions (ITS1 and ITS2), and partial mitochondrial NADH dehydrogenase subunit 1 (nad1) were sequenced and analyzed to study the phylogenetic relationships among the seven species of fasciolids we obtained. The volume of each amplification reaction was 20 μL with 200 ng of DNA, 0.8 mmol/L dNTPs, 2 mmol/L MgCl2, 0.5 μmol/L of each primer, 0.5 units Taq DNA Polymerase (Promega, Madison, WI), and 2 μL 10× PCR buffer.

To amplify the ITS1 region, we used the primers BD1 [5′-GTC GTA ACA AGG TTT CGG TA-3′] and BD2 [5′-TCT AGA TGC GTT CGA AGT GTC GAT G-3′]. The ITS2 region was amplified using the primers 1. The mitochondrial DNA region nad1 was amplified using the primers of Bowles and McGlone. The 1,255 base pairs of the 28S region were sequenced, and outgroups were selected from the context of the superfamily, the 1,255 base pairs of the 28S

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Location</th>
<th>28S GenBank accession number</th>
<th>ITS1 GenBank accession number</th>
<th>ITS2 GenBank accession number</th>
<th>nad1 GenBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasciola hepatica</td>
<td>Domestic water buffalo</td>
<td>Alexandria, Egypt</td>
<td>EU025874</td>
<td>EF612467</td>
<td>EF612479</td>
<td>EF612491</td>
</tr>
<tr>
<td>F. hepatica</td>
<td>Domestic water buffalo</td>
<td>Alexandria, Egypt</td>
<td>EF612468</td>
<td>EF612480</td>
<td>EF612482</td>
<td>EF612492</td>
</tr>
<tr>
<td>F. hepatica</td>
<td>Domestic sheep</td>
<td>Tehran, Iran</td>
<td>EF612469</td>
<td>EF612481</td>
<td>EF612483</td>
<td>EF612493</td>
</tr>
<tr>
<td>F. gigantica</td>
<td>Domestic water buffalo</td>
<td>Alexandria, Egypt</td>
<td>EF612470</td>
<td>EF612482</td>
<td>EF612484</td>
<td>EF612494</td>
</tr>
<tr>
<td>F. gigantica</td>
<td>Domestic water buffalo</td>
<td>Alexandria, Egypt</td>
<td>EF612471</td>
<td>EF612483</td>
<td>EF612485</td>
<td>EF612495</td>
</tr>
<tr>
<td>F. gigantica</td>
<td>Domestic cow</td>
<td>Njiru, Kenya</td>
<td>EU025873</td>
<td>EF612472</td>
<td>EF612484</td>
<td>EF612496</td>
</tr>
<tr>
<td>F. jacksoni</td>
<td>Asian elephant</td>
<td>Sri Lanka</td>
<td>EU025871</td>
<td>EF612473</td>
<td>EF612485</td>
<td>EF612497</td>
</tr>
<tr>
<td>F. jacksoni</td>
<td>Asian elephant</td>
<td>Sri Lanka</td>
<td>EF612474</td>
<td>EF612486</td>
<td>EF612486</td>
<td>EF612498</td>
</tr>
<tr>
<td>Fascioloides magna</td>
<td>White-tailed deer</td>
<td>Minnesota, U.S.A.</td>
<td>EU025872</td>
<td>EF612475</td>
<td>EF612487</td>
<td>EF612499</td>
</tr>
<tr>
<td>Parafasciolis basaki</td>
<td>European bison</td>
<td>Białowieża, Poland</td>
<td>EU025869</td>
<td>EF612488</td>
<td>EF612488</td>
<td>EF612500</td>
</tr>
<tr>
<td>Parafasciolis basaki</td>
<td>Domestic pig</td>
<td>Hanoi, Vietnam</td>
<td>EU025870</td>
<td>EF612477</td>
<td>EF612489</td>
<td>EF612501</td>
</tr>
<tr>
<td>Proteoascicola robusta</td>
<td>African forest elephant</td>
<td>Africa</td>
<td>EU025868</td>
<td>EF612478</td>
<td>EF612490</td>
<td>EF612502</td>
</tr>
<tr>
<td>Diplodiscus subhelvatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notocotylus attenuatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opisthotrema daunios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenocota multii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paralochasmus oxyrrurus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloacitrema narrabennsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclocoelum mutabile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euparyphium melis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinostoma paraensei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. caproni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. friedi</td>
<td></td>
<td></td>
<td>AJ564382</td>
<td>AJ564382</td>
<td>AJ564378</td>
<td>AJ564379</td>
</tr>
<tr>
<td>Echinopharyphus cinctum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCR Microcon columns (Millipore, Billerica, MA), and both strands were sequenced using an Applied Biosystems 3100 automated sequencer (BigDye terminator cycle sequencing kit; Applied Biosystems, Foster City, CA).

Sequence alignment and phylogenetic analysis. Sequences for 28S, ITS1 and ITS2 rDNA, and nad1 mtDNA were assembled and edited using Sequencer ver. 4.6 (Gene Codes, Ann Arbor, MI). Alignments were made by eye and edited in Se-Al (A Rambaut, 1996, Se-Al: Sequence Alignment Editor, http://evolve.zoo.ox.ac.uk). Sequences generated in this study were submitted to GenBank (Table 1). Phylogenetic analyses using standard methods of maximum parsimony (MP), maximum likelihood (ML), and minimum evolution (ME) were carried out using PAUP* ver. 4.0b10 and Bayesian inference using the program MrBayes. Modeltest was used to determine the best nucleotide substitution model based on Akaike Information Criteria (AIC) for the combined data to use for ML and ME analyses.

To place members of the family in a larger phylogenetic context of the superfamily, the 1,255 base pairs of the 28S region were sequenced, and outgroups were selected from the Echinostomatoida. The GTR+G model from Modeltest was used for this 28S dataset with the following parameters: base frequencies = 0.20, 0.21, and 0.31; rate matrix = 0.60, 3.8, 1.9, 0.12, 6.4, and 1.0; pinvar = 0.42; gamma distribution = 0.9. Gaps were treated as missing data. The GTR+G model from Modeltest was used for the combined dataset of ITS and nad1 with the following parameters: base frequencies = 0.19, 0.18, and 0.27; rate matrix = 0.60, 2.9, 1.3, 0.25, 2.0, and 1.0; gamma distribution = 0.5. Gaps were treated as missing data. To explore the data for inconsistencies and test the usefulness of the genes used, each gene was analyzed independently, and the genes were combined. For all datasets, parsimony trees were reconstructed using heuristic searches (500 replicates), random taxon-input order, and tree-
bisection and reconnection (TBR) branch swapping. Optimal ME and ML trees were determined from heuristic searches (500 replicates for ME, 100 replicates for ML), random taxon-input order, and TBR. Nodal support was estimated by bootstrap (500 replicates) and was determined for the MP and ME trees using heuristic searches (10 replicates); 100 replicates were used for a bootstrap using ML, each with random taxon-input order.

For the Bayesian analysis, 28S commands were the following: Nst = 6 rates = gamma ngamma = 4, followed by the following parameter settings: unlink shape = (all) pinvar = (all) statefreq = (all) revmat = all; preset ratepr = variable. In the combined dataset, there were two partitions, ITS1 and ITS2 (Nst = 6 rates = gamma ngamma = 4) and nad1 codon positions codon1, codon2, and codon3 (Nst = 6 rates invgamma ngamma = 4), followed by the following parameter settings: unlink shape = (all) pinvar = (all) statefreq = (all) revmat = all; preset ratepr = variable. For each dataset, four chains were run simultaneously for 3×10^5 generations, trees were sampled every 100 cycles, the first 3,000 trees with preasymptotic likelihood scores were discarded as burn-in, and the retained trees were used to generate 50% majority-rule consensus trees and posterior probabilities.

RESULTS

A phylogenetic tree based on the 28S (548 bp) DNA sequence data was reconstructed (Figure 1) to place members of the Fascioloidae in broader context relative to its hypothesized closest relative digenean families. Tree topology of the MP, ME, and Bayesian analyses were the same. However, only the Bayesian analysis resulted in moderate node support.

![Figure 1](image-url)
for a basal position of *Protofasciola* (Protofasciolinae). The ML analysis placed *Protofasciola* as unresolved. To explore relationships within the Fascioloidae, a dataset of ITS (367 bp) and *nad1* (488 bp) was analyzed. For the ITS and *nad1* combined dataset, all nodes in the tree presented in Figure 2 were robust and recovered the following relationships: a basal position in the family for *P. robusta*, an intermediate position for members of the Fasciolopsinae (*F. buski* and *P. fasciolaeemorpha*), and a derived position for the Fasciolinae (*Fasciola* and *Fascioloides*), similar to the 28S dataset. *Fasciola* as currently defined seems to represent a paraphyletic assemblage.

DISCUSSION

This study is the most complete phylogenetic analysis of the Fasciolidae thus far undertaken and includes molecular data for representatives of five of the six known fasciolid genera and seven of nine described species, retrieving a monophyletic group. The comments provided below are the first attempt that we know of to synthesize the evolutionary history across the family.

Evolutionary relationships among the fasciolids. In general, our molecular trees were in agreement and retrieved *P. robusta* as the basal fasciolid (Figure 3). This species, the sole member of the Protofasciolinae, is an inhabitant of the small intestine of the African elephant. There has been one report of *P. robusta* in Asian elephants, but this report was in error (M. E. Fowler, personal communication). Some of the prominent morphological characters that distinguish it from other fasciolids are an unspined tegument, testes and ovaries that are entire as opposed to dendritic, and simple non-sinuous and unbranched caeca. The life cycle and snail host for this basal fasciolid unfortunately remain unknown.

Fasciolopsis buski is the next most basal member of the Fasciolidae. This species is one of two representatives of the Fasciolopsinae and is noteworthy for inhabiting the small intestine of suids and humans in Eastern Asia (Figure 3). This fluke has a large linguiform body with sinuous but unbranched intestinal caeca and dendritic testes and ovary. This fluke parasitizes small planorbid snails (*Segmentina* spp. and *Hippeutis* spp.) in Asia.24

The next branch on the molecular tree is occupied by the other member of the Fasciolopsinae, *Parafasciolopsis fasciolaeemorpha*, which occurs in the liver and bile ducts of cervids in Europe (Figure 3). This species also possesses sinuous, unbranched intestinal caeca and dendritic testes, but the ovary is entire. This is the most basal fasciolid to possess the

Figure 2. Bayesian estimated tree from the combined data partitions of ITS1, ITS2, and partial *nad1* genes. Nodal support values are indicated on the branch as bootstrap values for MP/ME/Bayesian posterior probabilities (E, E1; E2, Egyptian; K, Kenyan; Ir, Iranian).
cephalic cone that is prominently developed in most derived fasciolids. This fasciolid parasitizes the planorbid snail Planorbarius corneus.25 The remaining clade on the tree is occupied by members of the two genera available for molecular study within the Fasciolinae: Fasciola (represented by three species) and the monotypic Fascioloides (represented by F. magna). All members of the Fasciolinae are united by having branched intestinal caeca and dendritic testes and ovaries, and all colonize either the bile ducts or liver parenchyma of their definitive hosts (Figure 3). Where the molluscan intermediate hosts are known (F. hepatica, F. gigantica, F. nyanzae, and F. magna), lymnaeid snails are implicated in transmission.26 Fasciola hepatica and F. gigantica are retrieved as sister species, which is not surprising given that they share several morphological features. Moreover, these two species hybridize in nature.27–30

Interestingly, the fasciolid of Indian elephants, Fasciola jacksoni, groups more closely with F. magna, a parasite of North American cervids, than with other species of Fasciola (except in the Bayesian analysis where F. jacksoni is sister to the clade containing F. gigantica, F. hepatica, and F. magna). Both flukes are relatively thick-bodied, lack a distinctive cephalic cone, and have long median (internal) intestinal branches, which are relatively short in F. hepatica and F. gigantica. Based on our data, placement of F. jacksoni in Fascioloides should be considered: Fasciola as currently defined is paraphyletic. F. jacksoni is well known as an Asian elephant fasciolid, and although there is one anecdotal reference to this species occurring in African elephants,30 there is no published reference supporting that report.

The two remaining fasciolid species that were unavailable for study are Tenuifasciola tragelaphi from the sitatunga31 and Fasciola nyanzae from the hippo,32 both of which inhabit the livers of their respective hosts. In both species, the body is elongated compared with other fasciolids, but they have the morphological features characteristic of the Fasciolinae (cephalic cone, branched intestinal caeca, and reproductive organs), suggesting they are derived fasciolids.

Snail hosts. The results of this study are suggestive of certain trends that seem to have characterized the evolution of this relatively small family of flukes, although more complete information is required, particularly regarding the life cycles of several species, including for the most basal species, P. robusta. Given that F. buski and P. fasciolaemorpha (both of the Fasciolopsinae) are the closest relatives of P. robusta and that they use planorbid snails as first intermediate hosts, the Planorbidae would be the most reasonable family in which to begin to search for the intermediate host for P. robusta (Figure 3). Also needed for this species is a determination that its cercariae encyst on vegetation, thus making its life cycle dependent on ingestion of metacercariae on vegetation, a constant feature across the Fasciolidae for which life cycles are known.

Of the six species in the more derived Fasciolinae, four are well known for their use of lymnaeid snails as first intermediate hosts; the snail hosts for the remaining two species are unknown. Thus, it seems clear that there has been a major host switch from one basommatophoran family, the Planorbidae, to another, the Lymnaeidae, as the fasciolids diversified (Figure 3).

The likely ancestral snail host for F. hepatica and certainly the most important snail host of this species today is Lymnaea truncatula of Europe, Africa, and South West Asia.26 Fasciola gigantica is transmitted by the more fully aquatic lymnaeid species Radix auricularia in Asia and Lymnaea natalensis in Africa. The latter species also transmits F. nyanzae.32 Fasciola hepatica has been more successful than F. gigantica in exploiting diverse lymnaeid lineages.33 Interestingly, these diverse

Figure 3. Tree simplified from Figure 2 to map significant patterns and changes in hosts, habitat, morphology, and distribution. Snail at base of the tree represents the family Planorbidae, the other snail family is Lymnaeidae. Each illustrated fluke indicates the intestinal caeca (scale bar: 10 mm).
lymnaeid snails are united by their preference for shallow water or muddy banks, raising the possibility that habitat preference more than phylogenetic affinity may help to explain patterns of snail host use in this most cosmopolitan of fasciolids.

Biogeography of Fasciolidae. The presence of the most basal fasciolid in African elephants is suggestive of an origin of fasciolids in proboscideans that originated in Africa ~50 million years ago (MYA). Probsocideans dispersed toward and within Eurasia from ~18.5 to 0.8 MYA, where they underwent extensive radiation. Perhaps as a result of the northward migration and radiation of proboscideans, the next most basal species, *F. buski* and *P. fasciolaemorpha*, are also found in Eurasia. It is noteworthy that the extant Asian elephant lacks a species comparable to the ancestral fasciolid, *P. robusta*. Both suids, as future hosts for *F. buski*, and cervids, as future hosts for *P. fasciolaemorpha*, would have been present in Eurasia at the time proboscideans first colonized this land mass. Similarly, proboscideans are usually found to be one of the most diverse orders of mammals in fossil deposits. Similarly, this might suggest that their fasciolid parasites radiated with them. Subsequently, it also suggests that with the widespread extinctions of these potential proboscidean hosts, followed a wide spread extinction of a majority of fasciolid diversity and might explain the relatively small number of extant species of fasciolids and the odd mix of current definitive hosts.

The origins of members of the Fasciolinae are more problematic to discern: two of the six known species, *F. nyamzae* from hippos and *T. tragelaphi* from sitatunga, are today exclusively African. However, although hippos probably originated in Africa, ~16 million years ago, they radiated extensively in Eurasia where they are now extinct. *Fasciola gigantica* is common and widespread in Asia, Africa, and Hawaii, and *F. jacksoni* is a parasite of the Indian elephant. *Fasciola hepatica* is likely of Eurasian origin given its clear host preference for *L. truncatula* of that region. It seems likely that a host switch from planorbid to lymnaeid occurred in Eurasia and that this favored the emergence of the Fasciolinae, with colonization of Africa occurring secondarily, both by *F. gigantica* and an apparent ancestor of *F. nyamzae* in hippos and *T. tragelaphi* in sitatungas, both hosts sharing common habitats.

Fasciola jacksoni is of particular interest for two reasons. Its presence in Indian elephants is suggestive of a second, independent colonization of proboscideans by fasciolids. Also of interest is its relationship to the North American cervid parasite, *Fascioloides magna*. One possibility is that proboscideans brought a fasciolid with them to the Nearctic and that descendants of this parasite that shifted into cervids in North America were able to persist after the extinction of proboscideans in the Americas. However, it should be kept in mind that the first descriptions of *F. magna* were from Italy. Although these reports came from North American cervids imported to that country and it is therefore likely that the animals acquired their *F. magna* infections in North America, another possibility that should be kept in mind is that *F. magna* is Eurasian in origin and later colonized North America where it became common and widespread, in contrast to Eurasia where it persisted at low levels.

Habitat use by adult fasciolids. The fasciolids are also of particular interest with respect to the evolution of body form and habitat use among their adult life cycle stages. The two most basal species in the phylogeny, *P. robusta* and *F. buski*, both colonize the small intestine of their respective hosts. The next species retrieved in the phylogeny, *P. fasciolaemorpha*, inhabits both the duodenum and the bile ducts of its cervid hosts. All three species are characterized by unbranched caeca and a ventral sucker that is large relative to the oral sucker. The remaining species, all of which have an extensively branched gut and relatively small ventral suckers, live either in the biliary tree (*F. hepatica, F. gigantica, F. jacksoni, F. nyanzae*, and *T. tragelaphi*) or in the liver parenchyma in a fibrous capsule that communicates with bile ducts (*F. magna*). Thus, two prominent trends in the evolution of the family seem to be a switch in habitat within the definitive host from the small intestine to the liver and arborization of the parasite gut. The habitat switch is presumably accompanied by a shift in diet of adult worms from the partially digested contents of the small intestine to blood cells or parenchyma or epithelial cells of the liver. The complex parasite gut architecture may have allowed the worms to digest more complex dietary substrates found in the liver. Dendritic gut architecture would also have the general benefit of reducing diffusion distances for both nutrients and waste products for these large-bodied flukes. Alternatively, branching of the gut may have allowed development of large body size, rather than being necessary to accommodate dietary changes. Also, the reduction in size in the ventral sucker noted for fasciolids that inhabit the liver may have been in response to the lack of pronounced peristaltic action characteristic of the mammalian intestine that does not occur in the liver.

The adoption of branched ovaries and testes also reaches its highest manifestation in the Fasciolinae, although clearly evolution in this direction has already occurred in the more basal and large-bodied *F. buski* that inhabits the small intestine. A branched structure for the ovary and testes would again have the general benefit of facilitating diffusion of nutrients to these metabolically active organs. Adoption of highly branched organs may be indicative of the approach of fasciolids to a body size that can be supported without a circulatory system, particularly given that they live in endothermic hosts that would also increase their own metabolic rates.

A discussion of the evolution of the fasciolids must also consider the extraordinary size achieved by the adult worms, all of which are parasites of large-bodied herbivorous or omnivorous mammals (Figure 3). One of the more derived fasciolids, *F. magna*, has body dimensions of 3–7.3 × 2–3 cm and thickness 0.2–0.45 cm, making it one of the largest of all fluke species. Large body size is not a feature unique to liver-inhabiting representatives, however, because the basal, intestine-inhabiting species *P. robusta* is itself a large, thick-bodied fluke that is 2 cm in length. Perhaps big body size as a family-wide trait reflects conservative retention of this trait from an ancestral fasciolid that inhabited a very large definitive host such as a proboscidean.

Long-range host switches. The Fasciolidae shares with two other relatively well-known digenean families, the Schistosomatidae and Paragonimidae, evidence for having undergone prominent host switches with respect to the molluscan host, but the patterns observed in each case differ. In the Schistosomatidae, shifts from marine to freshwater gastropod lineages have occurred, as have shifts from caenogastropods to pulmonates and from pulmonates to opisthobranchs. In the Paragonimidae, host shifting has been less extensive, but nonetheless, two different caenogastropod superfamilies
have been exploited. In the Fasciolidae, the shift between two basommatophoran families is by comparison modest but still noteworthy given the small size of this fluke family and that this switch has undoubtedly played a major role in the emergence of fasciolids of both veterinary and public health importance.

The fasciolids provide yet another example of digeneans that exhibit host specificity with respect to their snail hosts and show an evolutionary history in which long-range shifts with respect to the snail host have clearly occurred. The beginnings of a resolution to this paradox may lie in the work of Abrous and others, who noted that the planorbid snail Planorhis leucostoma Millet, 1813, could support cercariae-producing infections of F. hepatica if first infected with another trematode, Paramphistomum daubneyi. This is of interest for two reasons: it may be indicative of retention of some ability of fasciolids to infect planorbid snails, which, as noted above, are the snail hosts of more basal fasciolid species, and second, this provides a potential mechanism to explain how long-range host shifts might occur within particular digenean families.

CONCLUSIONS

The Fasciolidae is a relatively small group of digeneans that are hypothesized to have originated in African proboscisceans and that later radiated in Eurasian herbivores. They likely all share a similar life cycle pattern with the vertebrate host becoming infected by ingesting metacercariae on vegetation, although this remains to be shown in a few pivotal species. Host shifts have occurred in both molluscan and mammalian hosts as the family diversified, and a trend toward abandoning the intestine for the liver is evident. Fasciolids are large flukes that also show a trend toward arborization of internal organs, and they may approach the upper limit of body size without a separate circulatory system. Fasciola as currently conceived is paraphyletic, and F. jacksoni might be considered a representative of Fascioloides. Acquisition of life cycle details for F. jacksoni should instruct any changes in nomenclature.

Received January 28, 2008. Accepted for publication April 13, 2008.

Acknowledgments: We thank Dr. Sharon L. Deem (Field Veterinary Program, Wildlife Conservation Society), Dr. Stephen Blake (Africa Program, Wildlife Conservation Society), John M. Kinsella (Helm West Laboratory), and the Wildlife Conservation Society (USA) for samples of Protofasciola robusta and Gerald Mkoji (Kenya Medical Research Institute) for Kenyan samples of Fasciola gigantica.

Financial support: Technical support is acknowledged from the University of New Mexico’s Molecular Biology Facility, which is supported by NIH Grant 1P20RR18754 from the IDEA program of the National Center for Research Resources. This work was supported by funds provided by the college of Arts and Sciences at UNM and NIH Grant RO1 AI44913 (ESL), a grant from the Center for Special Studies and Programs, Bibliotheca Alexandrina (Egypt), Grant 050138 (WML), and partially by the US-Egypt Joint Science and Technology Fund, Grant B09-005-002 (WML and ESL) and the National Research Council of Sri Lanka Grant 05-23 (RPVJR).

Author’s addresses: Wael M. Lotfy, Parasitology Department, Medical Research Institute, Alexandria University, 165 El-Horraya Avenue, Alexandria, Egypt. Sara V. Brant and Eric S. Loker, University of New Mexico Biochemistry Department, MSC03 2020, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001. Randy J. De-Jong, Biology Department, Calvin College, 1726 Knollcrest Circle, SE, Grand Rapids, MI 49546-4403. Thanh Hoa Le, Immunology Department, Institute of Biotechnology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam. Aleksandr Demiaszkiewicz, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-018 Warsaw, Poland. Jayanne Rajapakse, Department of Veterinary Parasitology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka. Vijitha B. V. P. Perera, Department of Wildlife Conservation, National Wildlife Training Center, Elehara Road, Giritale, Sri Lanka. Jeff R. Laursen, Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099.

REFERENCES

22. Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ,