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Abstract. The effect on a finite group G of imposing a condition 6 on its proper

subgroups has been studied by Schmidt, Iwasawa, Itô, Huppert, and others. In this

paper, the effect on G of imposing 9 on only the cofactor H/cora H (or more generally,

the subcofactor ///scorG H) of certain subgroups H of G is investigated, where

cor0 H (scor0 H) is the largest G-normal (G-subnormal) subgroup of H. It is shown,

for example, that if (a) ///scorc H is /»-nilpotent for all self-normalizing H <G, or if

(b) 7f7scorG H is p-nilpotent for all abnormal H< G and p is odd or the />-Sylows of

G are abelian, then in either case, G has a normal p-subgroup P for which G/P is

p-nilpotent. Results of this type are also derived for 6 = nilpotent, nilpotent of class

an, solvable of derived length g«, o-Sylow-towered, supersolvable. In some cases,

additional structure in G is obtained by imposing 8 not only on these "worst" parts

of the "bad" subgroups of G (from the viewpoint of normality), but also on the

"good" subgroups, those which are normal in G or are close to being normal in that

their cofactors are small.

Finally, this approach is in a sense dualized by an investigation of the influence on

G of the outer cofactors of its subgroups. The consideration of nonnormal outer

cofactors is reduced to that of the usual cofactors. The study of normal outer co-

factors includes the notion of normal index of maximal subgroups, and it is proved,

for example, that G is p-solvable iff the normal index of each abnormal maximal

subgroup of G is a power of p or is prime to p.

There are a number of theorems which describe the effect on a finite group G of

a condition 6 imposed on its proper subgroups. For example, Schmidt [15] and

Iwasawa [12] have shown that if every proper subgroup of a finite group G is

nilpotent, then G is solvable, and among other things (see Theorem 2-A), if G

itself is nonnilpotent, then \G\ =paq" for distinct primes p and q, G has a normal

/j-Sylow subgroup and cyclic í7-Sylow subgroups. Huppert [10] and Doerk [5] have

obtained corresponding results for the case where the proper subgroups of G are
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supersolvable. Results are also known for the cases where the proper subgroups

are p-nilpotent, or abelian, or a-Sylow-towered.

Extensions of such results have been obtained by imposing 6 on only certain

subgroups of G. For example, Deskins [3] has shown that the finite group G is

solvable if it has a nilpotent maximal subgroup having Sylow subgroups of class

^2. Rose [14] has established: (1) If all the proper abnormal subgroups of G are

nilpotent, then G is solvable and has a normal Sylow subgroup P such that G/P

is nilpotent. (2) If all the proper self-normalizing subgroups of G are supersolvable,

then G is solvable.

As in these last two results, the chief concern here is with the effect on a finite

group G of a condition 6 imposed on the "bad" subgroups of G (from the view-

point of normality), namely, the self-normalizing, or the abnormal, subgroups.

However, we will not require that 6 be satisfied by these subgroups themselves,

but only by their "worst parts" (again from the viewpoint of normality or sub-

normality), that is, by their cofactors or subcofactors. In some cases, to obtain

more structure in G, we will impose 6 on the "good" subgroups of G also, those

which are normal in G, or are rather close to being normal in the sense that their

cofactors are quite small.

1. Preliminaries. For 77 a subgroup of a finite group G, the core of H in G,

corG77, is the largest G-normal subgroup of 77; alternatively, corG H=f)xeGHx;

the subnormal core of H in G, scorG 77, is the largest G-subnormal subgroup of 77.

It is well known that for G finite, if L1 and L2 are subnormal in G, then so also is

<£,!, L2>; thus, scorG 77 is well defined for G finite.

Lemma 1.1. For 77 a subgroup of the finite group G, scorG 77 is normal in 77.

Proof. We haveL = scorG 77«]G, say /_<¡7Vi<l■ ■ -<]Nr = G. Let x be any element

of 77; clearly, LX<NX<-- -<]Nrx = G, hence LX<\<\G. Thus, (L,Lxy is subnormal

in G and is contained in 77, hence is contained in scorG 77=L so that LX=L.

For 77 a subgroup of the finite group G, the cofactor of H in G, denoted cofG 77,

is defined as 77/corG 77; in view of Lemma 1.1, the subnormal cofactor of H in G,

scofG 77, can be defined as 77/scorG 77.

All groups considered here are assumed to be finite. It might be mentioned,

however, that the definitions of corG 77 and cofG 77 are still legitimate in case G is

infinite. Also, it follows from Poincaré's Lemma (see Theorems 1.1.10 and 3.3.5

in [16]) that if G has a proper subgroup K of finite index, then G/corG K is a finite

group. Using this allows one to apply the results given here to obtain information

about such infinite groups. For example, it follows from (i) of Lemma 1.3 (which

holds for all groups) and Theorem 2.6 that if G has a proper subgroup K of finite

index and if the proper normal subgroups of G as well as the cofactors of maximal

subgroups of G are nilpotent, then G is solvable and the conclusions of Theorem

2.6 hold for G/corG K.

It is obvious from the definitions for H<G, corG 77sscorG 77, so scofG 77
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= 77/scorG H is a homomorphic image of cofG 77=77/corG 77. It follows that any

result obtained from imposing a homomorphism-invariant condition 8 on the

subcofactors of subgroups of G will automatically hold if the cofactors of these

subgroups are 0-groups. Thus, wherever possible, we will impose conditions on

the subcofactors of subgroups as opposed to their cofactors.

In general, scor0 77=¿corG 77; for example, if 77 is a subgroup of order 2 in

(7=^4 = the alternating group of degree 4, then corG 77=1 and scorG 77=77. For

maximal subgroups, however, the core and subnormal core must coincide.

Lemma 1.2. If S is a maximal subgroup of the finite group G, then corG S=scorG S.

Proof. Let scorG S^Ny^N2^- ■ -^Nr = G. Since scorG S is the maximal G-

subnormal subgroup of S, Ny£S since Ny<¡<¡G. From Lemma 1.1, scorG S<1S;

thus, since scorG S<¡Ny, we have scorG S<](Nlt S} = G so that scorG SqcorG S.

Since the reverse inclusion is obvious, the desired equality follows.

The next lemma is essential for induction arguments. It follows immediately

from the definitions and the isomorphism theorems.

Lemma 1.3. Given G finite, K<\G, and K^H<G. Then

(i) corG/Jf (H/K) = cora H/K, and cofG;¡r (H/K)~cofG 77;

(ii) scorG/K (H/K) = scora H/K, and scofG/K (H/K)~ scofG 77.

For 8 a group-theoretic property, Baer [1] defines the ^-commutator subgroup

ofG, [G, 8], as f) {^<1G | G/K is a 0-group}. 0 is said to be strictly homomorphism-

invariant if (a) 0 is homomorphism-invariant; (b) 8 is subgroup-inherited; (c)

G/[G, 8] is a 0-group. In the presence of (a) and (b), condition (c) is equivalent to

(c') direct products of 0-groups are 0-groups. 0=abelian, nilpotent, /?-nilpotent,

supersolvable, solvable are obviously strictly homomorphism-invariant properties.

Theorem 1-A. Let 8 be a strictly homomorphism-invariant property, and let G

be a finite group.

(i) (Baer) If 8-groups are nilpotent, then [G, 8] is nilpotent if and only if cofG S

is a 8-group for all maximal subgroups S of G.

(ii) (Baer) [G, 8] is nilpotent and G/[G, 8] is solvable if and only if cofG S is a

8-group for all maximal subgroups S of G and equicore maximal subgroups of G are

conjugate in G.

(iii) (Ore) For G solvable, equicore maximal subgroups of G are conjugate in G.

Using the Fitting subgroup of G, F(G) = the largest normal nilpotent subgroup

of G, we have the following immediate corollary.

Corollary 1.4. Let 8 be a strictly homomorphism-invariant property and let G

be a finite group.

(i) If 8-groups are nilpotent, then G/F(G) is a 8-group if and only if cofG S is a

8-group for all maximal subgroups S of G.

(ii) If G is solvable, then G/F(G) is a 8-group if and only if cofG S is a 8-group for

all maximal subgroups S of G.
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2. 9= nilpotent. In this section we examine the influence on a group G of

nilpotent subcofactors of subgroups of G, and investigate what additional structure

is forced upon G if one then also requires that the proper normal subgroups be

nilpotent, and finally, that the nearly normal maximal subgroups be nilpotent.

The classic result in this direction is the following Schmidt-Iwasawa Theorem

([15], [12], Satz 5.2 of [9, p. 281]).

Theorem 2-A. If all proper subgroups of the finite group G are nilpotent, but G

itself is nonnilpotent, then (i) \G\ =paqbfor distinct primes p andq; (ii) G has a normal

p-Sylow subgroup P; (iii) 0(F)sZ(G), so P has class ^2; (iv) expP=/? orexpF = 4

according as p is odd or p = 2; (v) each q-Sylow subgroup Q of G is cyclic and

(D(ß)cZ(G).

In this same direction, Rose [14] has shown the following:

Theorem 2-B. If all the proper abnormal subgroups of the finite group G are

nilpotent, then G has a normal Sylow subgroup P such that G/P is nilpotent.

Here a subgroup 77 is abnormal in G, denoted 77XIG, if x e <77, 77*> for each

x e G, or equivalently, if every subgroup K of G containing 77 is self-normalizing

in G (that is, NG(K) = K) and 77 is not contained in two distinct conjugate subgroups

of G. For example,

(i) NG(P)XG for every Sylow subgroup F of G.

(ii) If 77X1G and H^K<G, then KXG.

(iii) A maximal subgroup S of G is abnormal in G if and only if S is self-

normalizing in G if and only if S is nonnormal in G.

Since nilpotency is a strictly homomorphism-invariant property, we have the

following as an immediate consequence of Corollary 1.4.

Theorem 2.1. For G a finite group, G/F(G) is nilpotent if and only if cofG S

= S/cora S is nilpotent for all maximal subgroups S of G. Alternatively, the Fitting

length of G, /(G), is at most 2 if and only if cofG S is nilpotent for all maximal sub-

groups S of G.

Here/(G) is the least integer n for which Fn(G) = G, where 1 =Fo(G)£F1(G)ç • ■ •

is the ascending Fitting series of G defined by Fi+1(G)/Fj(G) = F(G/Fj(G)) = the

Fitting subgroup of G/F^G).

One would hope to obtain more structure in G by requiring that the cofactors

of maximal subgroups are all nilpotent of the same class. The following results

describe what can be said in this case.

Lemma 2.2. Let Fn denote the property "nilpotent of class :£n". Then

(i) For any group G, the F „-commutator subgroup [G, Fn]=yn(G), where G =

y0(G)2yi(G)2 • ■ • is the descending central series of G.

(ii) rn is a strictly homomorphism-invariant property.
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Proof, (i)
[G, rB] = O {K<\G I G/K is a rn-group}

= H {K<G I yn(G/K) = 1}

= n{^<3G|y»(GWi=l}
= n{^<G|y,(G)=^} = yn(G).

(ii) rn is clearly homomorphism-invariant and subgroup-inherited. The fact that

G/[G, r„] is a Tn-group follows immediately from (i).

Theorem 2.3. For G a finite group, the following are equivalent:

(i) GjF(G) is nilpotent of class Sn.

(ii) cofG S=S/corG S is nilpotent of class -in for all maximal subgroups S of G.

(iii) yn(G) is nilpotent.

(iv) yn(H)«Gfor all subgroups 77 ofG.

(v) yn(H)<\<\G for all abnormal subgroups 77 of G.

Proof. The equivalence of (i) and (ii) is an immediate consequence of Lemma 2.2

and Corollary 1.4; (ii) -> (iii) follows from Lemma 2.2 and Theorem 1-A.

(iii) -> (iv). If 77< G, then since yn(77)Çyn(G) and yn(G) is nilpotent, yn(H)<¡<¡

y„(G)<iG so that yn(77)<l<IG.

(iv) -> (v) is trivial.

(v) -*■ (ii). Let S be any maximal subgroup of G. Since cofG S= 1 if S<iG, we

may assume S<jiG and thus S XG. Then since yn(S)<l<¡G, we have, using Lemma

1.2, yn(S)^scorG S=corG S. Thus cofG S=S/corG S is a homomorphic image of

the IYgroup S/yn(S) and hence is itself nilpotent of class á n.

In a similar way one can show that the property An = " solvable of derived length

^n" is a strictly homomorphism-invariant property and that [G, An] = G(n), where

C7 = G(0)3Ga)2 • • • is the derived series of G. This leads to the following:

Theorem 2.4. For G a finite solvable group, the following are equivalent:

(i) G/F(G) has derived length ^ «.

(ii) cofG S=S/cotg S has derived length ^n for all maximal subgroups S of G.

(iii) G(n) is nilpotent.

(iv) HM«iGfor all subgroups 77 ofG.

(v) H(n)<i<]Gfor all abnormal subgroups H ofG.

Imposing the condition of nilpotence or nilpotence of class at most n on the

cofactors of the maximal subgroups of G is not sufficient to guarantee that G has

a normal Sylow subgroup; in particular, the conclusions of Theorems 2-A and 2-B

need not hold. In fact, it is not sufficient to require that the cofactors of all proper

subgroups be abelian. The following example shows this and can be verified in a

straightforward manner.

Example 2.5. The group G = S3xAif where S3 is the symmetric group on 3

letters and Aé is the alternating group of degree 4, has no normal Sylow subgroups,

but 77/corG 77 is abelian for all proper subgroups 77 of G.
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If we now require that in addition to the cofactors of the maximal subgroups of

G being nilpotent, the proper normal subgroups of G also are nilpotent, we would

surely hope to find more structure in G. Although Example 2.8 shows that we

cannot recover all of the results of Schmidt, Iwasawa, and Rose, we do find the

structure of G is quite severely restricted. The following result spells out some of

this structure; here we will say that a subgroup 77 of G is nearly normal in G if

cofG 77=77/corG 77 is trivial or of prime order, and that 77 is nearly subnormal in G

if scofG 77=77/scorG 77 is trivial or of prime order.

Theorem 2.6. Let [G|=nr=i7'f'> where the pt are distinct primes dividing \G\.

Suppose that cofG S is nilpotent for all maximal subgroups S of G and that all proper

normal subgroups of G are nilpotent, but that G itself is nonnilpotent. Then G is

solvable and F(G) is the unique maximal normal subgroup ofG. Moreover, for one of

the prime factors of \G\, say pr, the following hold:

(1) G is pr-ni¡potent, that is, G has a normal pr-complement.

(2) G is non-pi-nilpotent for all i^r.

(3) [G:F(G)]=Pr.

(4) For all H<G, |scofG 771 = 1 or pr; in particular, all proper subgroups of G

are nearly subnormal in G, and all maximal subgroups are nearly normal in G.

(5) For each i^r, G has a normal p¡-Sylow subgroup P¡.

(6) For each i=£r, P^G'; thus G/G' is a pr-group.

(7) The prime pr divides dp¡ = Y\V=i (Pi ~ 1 ) for a^ ' ^ r-

(8) FacA pr-Sylow subgroup Q has G as its normal closure, that is, Q° = G.

(9) For each i^r for which P¡ is abelian: (i) G has exactly pf distinct prcomple-

ments; (ii) CG(P¡) = F(G), so G induces in Pt a group of automorphisms of order pr;

(iii) the number ofpr-Sylow subgroups of G is a multiple of pp.

(10) 7/F( is abelian for all i^r, then G has exactly \G\/p?r distinct pr-Sylow

subgroups, each of which is abnormal in G, and which are the system normalizers

( = Carter subgroups) of G.

Proof. The solvability of G follows from Theorem 2.3; the fact that F(G) is the

unique maximal normal subgroup is trivial, since all proper normal subgroups of

G are nilpotent, hence are contained in F(G).

(3) is immediate, since maximal normal subgroups in a solvable group have

prime index; relabelling if necessary, we may take [G:F(G)]=pr.

(1) F(G) is nilpotent, hence />r-nilpotent. Its normal /^-complement T is charac-

teristic in F(G), thus is normal in G, and since [G:F(G)]=pr, F is a normal pr-

complement of G.

(4) Let 77 be any proper subgroup of G. If 77s F(G), then by the nilpotence of

F(G), H<]<¡F(G)<G, and hence, scorG 77=77. So suppose 77£ F(G) = F. Then

77F=G, so |77nF| = |77| |F|/|77F| =(|77|/|G|)(|G|//>r)=|77|//v How 77 O F<¡<

F<\G which means that 77 n Fs scorG 77. Thus, since [77 : 77 n F] =pr, 77/scorG 77
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has order 1 or pr. In particular, if S is a maximal subgroup of G, then since

scorG S=corG S, we have |S/corG S\ = 1 orpr so that S is nearly normal in G.

(5) is immediate; for since [G:F(G)]=pr, the /»¡-Sylow subgroups of F(G) for

i^r are/?¡-Sylow subgroups ofG and are characteristic in F(G), hence are normal

in G.

(2) If for some i+r, G is/»¡-nilpotent, say with normal /»¡-complement Tit then

F¡, being nilpotent, would have a characteristic /»¡.-Sylow subgroup Q which would

then be a normal />r-Sylow subgroup of G. But this together with (5) would imply

that G is nilpotent.

(6) Letting G('P|) be the smallest normal subgroup of G for which the factor group

is an abelian /»¡-group, we note first that G[P0 = G for each i^r. If not, it would be

nilpotent by hypothesis, hence /»¡-nilpotent, and its characteristic /^-complement

would then be a normal /»¡-complement ofG, in contradiction to (2). It now follows

from one of the basic transfer theorems (see [16, 13.5.2]) that 1 =G/G('Pl)~P¡/7J¡ n G'

so that Pi^G' for each i^r.

(1) Case 1. For some i+r, P¡ is not minimal normal in G.

Let M =£ 1 be a normal subgroup of G properly contained in P¡. Then G/M is not

/?¡-nilpotent; for if it were, say with normal /»¡-complement T/M, then T, being a

proper normal subgroup of G, would be nilpotent, hence /»¡-nilpotent, and its

characteristic /»¡-complement would then be a normal /»¡-complement of G in

contradiction to (2). Also, the other hypotheses hold for G/A7 so that by induction,

for each i+r, pr divides d^ = Ylbji=1(p'i-\), where |G/A7| = n¡ = i pV- Hence, pr

also divides dp=Y\%i (p{-\) for each i<£r.

Case 2. ar>\.

Let g be a /?r-Sylow subgroup of G. From (4), |ö/corG Q\ =pn so since ar> 1,

corG Qj=\. Now, G/corG Q is non-/?rnilpotent for i^r; otherwise, if F/corG Q were

a normal/»¡-complement, Fwould be a normal/»¡-complement of G in contradiction

to (2). Again, the other hypotheses hold for G/corG Q so that, by induction, since

all the Pi divide |G/corG Q\, we have the result as in Case 1.

Case 3. ar= 1 and, for all i^r, P¡ is minimal normal in G.

Then each P¡, i^r, is elementary abelian so that |Aut (P¡)| =p¡'-dp¡, where

e,¡ = a¡(a¡—l)/2 and dp. is as in the theorem. Now from (9), which will be proved

independently, CG(Pi) = F(G) for Mr, so [G: CG(Px)]=pr. Thus, for iVr,;, divides

|Aut (P¡)|, and hence divides dPt.

(8) is immediate, since if for some />r-Sylow subgroup Q, Q° + G, then QG would

be nilpotent by hypothesis, making Q<iG. But this together with (5) would

contradict the nonnilpotence of G.

(9) (i) is an immediate consequence of Theorem 3.4 to be proved later.

(ii) If Pi is abelian for some i+r, then F(G) centralizes P¡ so that CG(Pi) = F(G)

or G, by the maximality of F(G). However, Pi$Z(G); otherwise, F¡ would centralize

and hence normalize a/»¡-complement T¡ of G making TX<]G, which contradicts (2).

Therefore, CG(Pt) = F(G).
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(iii) If Q is any /vSylow subgroup of G, then QW is a /»¡-complement of G

containing Q, where Wis the uniques-complement of F(G); thus,

(a) each /vSylow subgroup of G is contained in some ^¡-complement of G

for each i^r.

Also, if X and 7 are two distinct /^-complements of G, then X n F(G)= W

= y n F(G), [X: W\ = [ Y: W] =pr, so X n 7= PF; and since p? does not divide

\W\ = \Xn Y\, it follows that

(b) no two distinct /^-complements of G have a /vSylow subgroup of G in

common.

Since G is solvable,

(c) any two /^-complements are conjugate in G and hence must contain the

same number, say /x, of />r-Sylow subgroups of G.

Finally, from (i), we have that if F¡ is abelian,

(d) G has exactly pf distinct /^-complements.

Statements (a)-(d) imply that G has exactly ¡xpp distinct /?r-Sylow subgroups, if

F¡ is abelian.

(10) If « = the number of />r-Sylow subgroups of G, then since P¡ is abelian for

all ¡Vr, we have from (9(iii)) that/^'|« for all /Vr. Since n=l (mod/?r), it follows

that n=|G|/p°'. Each />r-Sylow subgroup Q is abnormal in G since AfG(ß)XlG,

and by what we have just shown, NG(Q) = Q.

Since F(G) is nilpotent as is G/F(G), the Carter subgroups of G coincide with the

system normalizers. From (1) and (9(i)), it follows that G has \G\/pfr distinct

Sylow systems, and hence has at most \G\jpp distinct system normalizers. But

from (9(iii)), each /vSylow subgroup is a Carter subgroup, hence a system normal-

izer; thus, since G has exactly |G|//??r p,-Sylow subgroups, these must be all the

system normalizers of G.

Statement (4) of the preceding theorem shows that if we extend the require-

ment of nilpotence to the nearly normal maximal subgroups of G, then all

maximal subgroups are nilpotent so that Theorem 2-A holds, giving the following

corollary.

Corollary 2.7. If the cofactors of all maximal subgroups of G are nilpotent as

are the nearly normal maximal subgroups of G, but G itself is nonnilpotent, then all

proper subgroups of G are nilpotent, and thus, the conclusions of Theorem 2-A hold

(as do those of Theorem 2.6).

The condition imposed in Theorem 2.6 that a nonnilpotent group have the

cofactors of its maximal subgroups and all its proper normal subgroups nilpotent

does not, in contrast to the Schmidt-Iwasawa Theorem, impose any bounds on

177(G) |. Neither does it guarantee that G has a normal Sylow subgroup for which

the factor group is nilpotent, so Theorem 2-B cannot be recovered. In fact, it is

not even sufficient to require that the cofactors of all subgroups and the proper

normal subgroups be cyclic, as the following example shows.
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Example 2.8. For all n £ 3, there exists a nonnilpotent group G such that

(i) The cofactors of all subgroups of G and the proper normal subgroups of G

are cyclic.

(ii) \G\ is divisible by n distinct primes.

(iii) G has no normal Sylow subgroup P for which G/P is nilpotent.

Proof. Take any collection 2 = {/?i, ...,/?„_i} of n—\ distinct odd primes, and

for each i, let P¡ = <x¡> be cyclic of order pt and a¡ an automorphism of P¡ of order 2.

Let K=PyX ■ ■ ■ x Pn _ y and G the extension of AT by the automorphism a=ax x • • ■

x (*„_!. Then G is not nilpotent; for otherwise, <a> would be normal in G, hence

would centralize K in contradiction to the fact that a has order 2. This group G

clearly satisfies (ii), so only (i) and (iii) require proof.

(i) Let H be any proper subgroup of G. If 2\ \H\, then clearly 77 is cyclic.

Thus we may assume that 2| |77|. Then 77 is not normal in G. For suppose it is.

Since H^G, some pt does not divide |77|, so Pt n 77=1. Also, the 2-Sylow sub-

groups ofG are contained in 77, in particular, a e 77. Then [xt, a]=xt~1axta is in 77.

But since P, = <x(> is characteristic in G, [xt, a] e Pt. Thus [xt, a] e Pt n 77= 1, which

implies that xf = xt, contradicting the fact that a( = a|Pl has order 2. Therefore

7/<j]G; and it is clear that corG 77 is the product of the P¡ for those /»¡ dividing |77|.

Consequently, 77/corG 77 is cyclic of order 2.

(iii) The P¡ are the normal Sylow subgroups of G. If for some /, G/Pi were

nilpotent, then for a 2-Sylow subgroup T of G, we have FP¡/P¡<lG/Pj, hence

TPi<\G, which contradicts the proof in (i) that if 2| |77|, then H-JG.

3. 0 =/»-nilpotent. We now examine those finite groups G for which the cofactors

or subcofactors of certain subgroups are /»-nilpotent, that is, they possess a normal

/»-complement. As in the preceding section, we will later require that the proper

normal subgroups of G also be /»-nilpotent to further delimit the structure of G,

and finally, that the somewhat normal subgroups be /»-nilpotent. One of the major

results in this direction is the following, due to Itô [11] (also proved in [9, p. 434,

Satz 5.4]).

Theorem 3-A. If all the proper subgroups of the finite group G are p-nilpotent,

but G itself is not, then all proper subgroups ofG are nilpotent, and thus the conclusions

of Theorem 2-A hold.

Rose [14] has also established results in this direction:

Theorem 3-B. (i) If every proper self-normalizing subgroup of G is p-nilpotent,

then G has a normalp-subgroup P0 (which may be trivial) such that G/P0 is p-nilpotent.

(ii) If every proper abnormal subgroup of G is p-nilpotent and either p is odd or

the p-Sylow subgroups ofG are abelian, then the conclusion of(i) holds.

That the added conditions on p in (ii) cannot be omitted is shown by the following

example given by Rose in [14]:
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Example 3-C. Let 77 be the simple group of order 128 (77=PGL (3, 2)), and G

the split extension of 77 by the automorphism a of 77 defined by a: x^(x~1)t,

where yl denotes the transpose of the matrix y. Then every proper abnormal sub-

group of G is supersolvable, hence 2-nilpotent, but G is not solvable, hence not

2-solvable.

The results of Rose in Theorem 3-B can be extended by requiring that only the

subcofactors of the self-normalizing or abnormal subgroups be p-nilpotent. To

establish this, the following well-known results of Burnside (see [9, pp. 434, 419,

Hilfssatz 5.3, Hauptsatz 2.6]) and the lemma which follows are used.

Theorem 3-D. (i) If the finite group G is not p-nilpotent, then G has a nontrivial

p-subgroup F0 and an element x of order a power of q for some prime q=£p such that

x e NG(P0) but x £ CG(P0).

(ii) 7/G is a finite group with p-Sylow subgroup P^Z(NG(P)), then G is p-nilpotent.

Lemma 3.1. Let 6 be a group-theoretic property such that products of normal

6-subgroups of a group are again 9-groups. If the finite group G has a nontrivial

subnormal B-subgroup, then G has a nontrivial normal 6-subgroup.

Proof. Let AT be a nontrivial 0-subgroup of G which is subnormal in G, say

K=K0¿K1'^- ■ ^Kn.x^Kn = G, where n is the minimal length of subnormal

chains from K to G. We use induction on n. The result is trivially true if n=\;

thus, suppose n>\. By induction, Kn^1 has a nontrivial normal ö-subgroup; let

A"* be the product of all such. Then K* is a nontrivial 0-group, is clearly character-

istic in 7C_i, and hence is normal in G.

For 77 a subgroup of a finite group G, the hypernormalizer of H in G, NG(H),

is the subgroup in which the ascending chain H=H0<¡H1<iH2<¡- ■ -, defined by

Hi = NG(Hi-1), terminates.

Theorem 3.2. If the subcofactor scofG 77=77/scorG 77 of each proper self-normal-

izing subgroup H of G is p-nilpotent, then there exists a normal p-subgroup P0 (which

may be trivial) such that G/P0 is p-nilpotent. In particular, G is p-solvable ofp-length

Ú2.

Proof. We use induction on \G\. We may assume that G is not p-nilpotent, since

the result is trivially true otherwise. It suffices to show that G has a nontrivial

normal p-subgroup F0. For then, using Lemma 1.3, we see that the hypotheses

hold for G = G¡P0; hence, by induction, G has a normal p-subgroup P\ =P1/P0 such

that G/Fi is p-nilpotent so that Px is a normal p-subgroup of G and G/P1 ~ G/P1

is p-nilpotent.

If G is non-p-nilpotent, then by Theorem 3-D, G has a nontrivial p-subgroup P

and a p'-element x in NG(P) which does not centralize P. Let N=NG(P) be the

hypernormalizer of F in G. If N=G, then P<¡<¡G so that from Lemma 3.1, G has

a nontrivial normal p-subgroup and the result follows.
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Thus suppose 7V#G. Then, by hypothesis, since N is self-normalizing in G,

N=N/scorG N is/»-nilpotent. Let P=P(scorG jV)/scorG N and x = x(scorG N). Since

x normalizes P, P<I<P, x>; and since <P, x) is /»-nilpotent as a subgroup of N,

<x><<P, jc>. Since x is a /-element, it follows that <P, x>=Px<x>, hence that

x centralizes P.

Since x$ Ca(P), there exists ueP such that [«, x] = m_1x_1«x^ 1. And since x

centralizes P, [u, x) e scorG N; also, [w, x] e P since x normalizes P. Thus 1 / [u, x]

eP n scorG N; and since P<KW, we have P n scorG N<l<lscorG N<i<]G. Hence,

P n scorG N is a nontrivial subnormal /^-subgroup of G so that from Lemma 3.1,

G has a nontrivial normal /»-subgroup, as we wished to show.

That G is/»-solvable of/»-length ^2 is immediate.

The Thompson subgroup J(P) of a /»-group P is defined as in [7] by J(P) =

{A | A e s¡f(P)}, where s/(P) is the collection of all abelian subgroups of P of

maximal order. We will use the fact that Z(P)çZ(J(P)) and the Glaubermann-

Thompson Theorem (see [7, p. 280, Theorem 3.1]):

Theorem 3-E. Let P be a p-Sylow subgroup of the finite group G with p odd.

If NG(Z(J(P))) is p-nilpotent, then so also is G.

Theorem 3.3. If the subcofactor scofG 77=77/scorG 77 of each proper abnormal

subgroup H of the finite group G is p-nilpotent and either p is odd or the p-Sylow

subgroups ofG are abelian, then the conclusion of Theorem 3.2 holds.

Proof. As in the proof of Theorem 3.2, if G has a nontrivial normal /»-subgroup,

the result follows by induction. So suppose G has no such subgroup, and thus by

Lemma 3.1, no nontrivial subnormal /»-subgroup; we must show that G is p-

nilpotent.

Let P be a /»-Sylow subgroup of G and consider first the case that P is abelian.

Then N=NG(P) is a proper abnormal subgroup of G, since P<§G, so that by

hypothesis, A//scorG N has a normal /^-complement F/scorG N. Since P<iN, P n

scorG JV<scorG /V<OG. And since G has no nontrivial subnormal /»-subgroup, this

means that P n scorG N= 1, hence that scorG A^ is a /»'-group, so F is a normal /»-

complement of TV. It follows that N=Px T, so Fe C0(P). Since P is abelian, we have

N=P x Fç CG(P), that is, P^Z(N). Therefore, by Theorem 3-D, G is/»-nilpotent.

Now consider the case that p is odd and let Ñ=Na(Z(J(P))), where J(P) is the

Thompson subgroup of P. Since Z(J(P)) is characteristic in P, Z(J(P))<\NG(P) so

that NG(P)CÑ. Now JVXG since NG(P)X}G, and Ñ¿G since G has no nontrivial

subnormal />subgroups. Thus, 7V/scorG TV is />nilpotent by hypothesis.

Suppose Pi=P n scorG 7Y# 1. Then Py<\P since scorG Ñ<\Ñ, hence Py n Z(P)

#1. Since Z(P)^Z(J(P)), P2=Py n Z(J(P))¿ 1. Now P2=Z(7(P)) n scorG iV

<scorG $<I<|G, since Z(J(P))<\Ñ, so that P2 is a nontrivial subnormal /»-subgroup

of G, a contradiction. Consequently, P n scorG ,/V= 1, that is, scorG Ñ is a/?'-group.

From the /»-nilpotence of 7V/scorG Ñ, it follows as in the preceding case that Ñ is

/»-nilpotent, and thus, by the Glaubermann-Thompson Theorem, G is /»-nilpotent.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



470 L. R. NYHOFF [February

We have the following special cases of Theorems 3.2 and 3.3:

Corollary 3.4. If (a) 77/scorG/7 is 2-nilpotent for each self-normalizing 77<G,

or (b) H j scot G 77 is 2-nilpotent for each abnormal H<G and the 2-Sylow subgroups

of G are abelian, then in either case, G is solvable and there exist normal subgroups

77, K of G such that H/K is isomorphic to a 2-complement of G.

Proof. From the theorems, there exists a normal 2-subgroup K of G such that

G/K has a normal 2-complement 77/AT, which is then isomorphic to a 2-complement

of G since K is a 2-group. Since 77/K has odd order, it is solvable by the Feit-

Thompson Theorem; hence, G is solvable since K and G/77 are 2-groups.

Example 2.5 shows that a non-p-nilpotent group having the cofactors of all its

subgroups p-nilpotent need not have a normal p-Sylow subgroup. This is no longer

the case, however, if we require that the proper normal subgroups also be p-

nilpotent. Before establishing this, we first prove the following result (already used

in the proof of Theorem 2.6).

Theorem 3.5. Let G be a solvable non-p-nilpotent group having all proper normal

p-subgroups p-nilpotent, and let \G\ =pam with (p, m)=\. If G has an abelian normal

p-Sylow subgroup P, then G has exactly pa distinct p-complements.

Proof. Extend G=>P=> 1 to a chief series G = G0=> ■ ■ ■ =>Gm=P=>Gm+1^ ■ ■ ■ =>

Gm+n= 1, and set Pt = Gm+i for 0^/^«. Then for each i'^ 1, G/P¡ is not p-nilpotent.

For if K/Pi were a normalp-complement of G/F¡ for some / = 1, then sincep| |G/F(|,

K is a proper normal subgroup of G, hence has a characteristic p-complement

T which is then easily seen to be a normal p-complement of G, making

G p-nilpotent.

Also, if (G/PiX,,) is the smallest normal subgroup of G/Pi for which the factor

group is an abelian p-group, then for each i ä 1, (G/F¡)('p) = G/Pi. For if (G/F¡)('p) =F/F¡

were properly contained in G/P¡, then L, being a proper normal subgroup of G,

would be p-nilpotent. But then 7_/P¡ would also be p-nilpotent and its characteristic

p-complement would then be a normal p-complement of G/Ph contradicting what

we have just shown.

Now for each l'è 1, let rt be the transfer of GjP^ into its abelian normal p-Sylow

subgroup P/Pi. Then ker (r^ = (G¡PÍ)'w, and t¡(G/F¡) = (F/F¡) n Z(G¡Pl). It follows

from what we have just shown that (P¡Pi) n Z(G/F¡) = 1 for all i'= 1.

For each /^ 1, therefore, since Pj-jSP, we have (P¡_i/P¡) n Z(G/F¡)= 1, which

means that each of PIP1,PJP2,...,Pn_1IPn is an eccentric chief factor of G.

A result of P. Hall [8] states that, for a solvable group G, the number of p-com-

plements of G is equal to the product of the orders of the eccentric p-chief factors

of G. Thus the number of p-complements of G is n?=i 1-fVi/Al = \P\=Pa-

Although Example 2.8 shows that adding to the hypotheses of Theorems 3.2 or

3.3 the condition that the proper normal subgroups be p-nilpotent is not enough to

give Itô's result, we do find some additional structure in G.
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Theorem 3.5. Let G be a non-p-nilpotent group having all its proper normal sub-

groups p-nilpotent, and let \G\ =pam with (/», m)=\. Suppose also that the hypothesis

of Theorem 3.2 or of Theorem 3.3 holds. Then

(1) G has a normal p-Sylow subgroup P.

(2) P^G'.
(3) FP(G) = the largest normal p-nilpotent subgroup of G is the unique maximal

normal subgroup of G and G/FP(G) is a p'-group.

(4) For all proper normal subgroups KofG, ([G: K], dp) ̂  1 where

4, = fl (/>'-!)•
1 = 1

(5) If P is abelian, then CG(P) = FP(G), and thus G induces a p'-group of auto-

morphisms in P.

(6) If G is solvable, then [G:Fp(G)] = q for some prime qe-n(G) dividing dp; if

also P is abelian, then G has exactly pa distinct p-complements.

Proof. Most of the conclusions are immediate. For (2), the proof of (6) of

Theorem 2.6 carries over with/?¡=/?. (3) is trivial, since every proper normal sub-

group of G must be contained in FP(G); in particular, P^FP(G). (6) will follow

from the fact that, in a solvable group, maximal normal subgroups have prime

index, together with (4) and Theorem 3.4.

(1) From Theorems 3.2 and 3.3, G has a normal /^-subgroup P0 such that G/P0

has a normal /»-complement K/P0. If P0 is not a /?-Sylow subgroup of G, then K

would be a proper normal subgroup of G, hence /»-nilpotent. But it is easily seen

that its characteristic /»-complement would be a normal /»-complement of G,

contradicting the non-/»-nilpotence of G. Thus, G has a normal /7-Sylow subgroup.

(4) Let G be a minimal counterexample. Then there exists L^G with ([G:L], dp)

= 1. Let F=FP(G). Then L^F from (3) so that [G:F] = n also is prime to dp as

well as to p. Suppose now that P is not minimal normal in G, and let the normal

subgroup M t¿ 1 of G be properly contained in P. If G/M were /»-nilpotent, say with

normal /»-complement U/M, then U would be a proper normal subgroup of G,

hence /»-nilpotent, and its characteristic /»-complement would be a normal /»-

complement of G. Thus, G/M is not/»-nilpotent; and using Lemma 1.3, we see that

the other hypotheses hold for G/M. But F/A7 is a proper normal subgroup of G/A7

and [G/M:F/M] = [G:F] = n is prime to dp, hence is prime to d* = \~[$i = y (p'-l),

where ps is the/?-part of \G/M\. This means that G/A7 is a counterexample of order

less than |G|, contradicting the minimality of G. Therefore, P is minimal normal

n G, hence is elementary abelian so that |Aut (P)\ =pe-dp, where e = a(a-\)/2.

Now, since P is abelian and P^F which is /»-nilpotent, both P and the normal

/»-complement F of F centralize P; thus F=Px T^CG(P), from which it follows

that |G/CG(P)| divides [G:F] = n, and so is prime to both p and dp. However,

|G/CG(P)| must divide |Aut (P)\ =pe-dp. Thus we have a contradiction, so no such

minimal counterexample can exist.
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(5) From the proof of (4), FP(G)^ CG(P) ; and from Theorem 3-D, P$ Z(NG(P))

= Z(G). Thus, by the maximality of FP(G), we have FP(G) = CG(P).

If we call a subgroup H of G somewhat normal in G if cofG 77=77/corG 77 is

cyclic of prime-power order, and extend the requirement of p-nilpotence from the

proper normal subgroups of G to the proper somewhat normal subgroups, then

we recover all of Itô's result.

Theorem 3.6. Let G be a finite non-p-nilpotent group having all its proper somewhat

normal subgroups p-nilpotent. Suppose also that the hypothesis of Theorems 3.2 or 3.3

holds. Then

(i) \G\ =paq" for some prime q^P', in particular, G is solvable.

(ii) All proper subgroups of G are nilpotent.

(iii) The conclusions of Theorems 3-A and 3.5 hold.

Proof, (i) From Theorem 3.5, G has a normal p-Sylow subgroup F, and from

Theorem 3-D, G has an element x of order qb for some prime q #p, where x <£ CG(P).

Now FscorG(F<x», so F<x>/corG (F<x>) is a homomorphic image of F<x>/F

— <x>, hence is cyclic of prime-power order. Thus P<x> is a somewhat normal

subgroup of G. If F<x>^G, then by hypothesis, P<x> is p-nilpotent, from which it

follows that F<x>=Fx <x>. But this implies that x centralizes F, a contradiction.

Therefore, G=P(xy, so \G\=paq". The solvability of G now follows from the

well-known theorem of Burnside.

(ii) Since F<IG and |G|=pV> G is g-nilpotent, and thus so also are all its

subgroups. In particular, the unique maximal normal subgroup F= FP(G) is both

p- and g-nilpotent, hence is nilpotent. Now let S be any maximal subgroup of G,

so S is g-nilpotent. Either S=F, in which case S is nilpotent, or SF=G. In this

last case, since F is nilpotent, S n F«]F<1G so that S n FsscorG 5=corG S;

also, IS n F| = \S\ |F|/|G| = \S\/q. Hence, S/corG S has order 1 or q, so S is some-

what normal (in fact, nearly normal) in G. By hypothesis, therefore, Sisp-nilpotent,

and thus is nilpotent. This means that all maximal subgroups (and hence all

proper subgroups) of G are nilpotent.

(iii) now follows immediately from (ii).

We conclude this section with one result in which we again strengthen the

conditions imposed in Theorem 3.4. Since the p-nilpotence of a subgroup or of the

subcofactor of a subgroup provides no useful information in case it has order prime

to p, we might hope to obtain more structure in G if we impose some additional

condition on these. Although Example 2.8 shows that the conditions of the fol-

lowing theorem are not sufficient to give Itô's result, we do obtain some additional

information about G.

We will call a finite group G (p:q)-nilpotent if (i) G is p-nilpotent; (ii) q\ \G\ and

G is g-nilpotent in casep \ \G\ and |G| > 1.

Theorem 3.7. Let G be a finite group and p a prime factor of\G\ for which every

proper normal subgroup K is (p:qK)-nilpotent for some prime qK depending on K.
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Suppose also that the cofactor H/corG 77 of each proper subgroup H of G is (p:qH)-

nilpotent for some prime qH depending on 77. Then

(i) G is solvable.

(ii) G has a normal Sylow subgroup.

(iii) If G is not p-nilpotent, then the conclusions of Theorem 3.4 hold; in particular,

G has a normal p-Sylow subgroup, and if P is abelian, then G has exactly pa distinct

p-complements where pa is the p-part of \G\.

Proof. Case 1. G is/»-nilpotent.

Let \G\ =TYi=yPi', where py=p and the /»¡ are distinct primes dividing \G\. We

may assume r>\, since the result is trivially true otherwise. Then there exists

Ty<\G with [G:Ty]=pl1, since G is /vnilpotent. Since Ty is a proper nontrivial

normal /»i-subgroup, it is /vnilpotent for some ¡'5 2, say for i = 2. Thus there

exists F2 characteristic in Ty, hence normal in G, with [T1:T2]=p212. Continuing

gives a normal series of G, G=F0=>Fi=>F2=> • • ■ =>Fr=l, where for each /äl,

|F¡_1/F¡| =pp. It follows that G is solvable with a normal/7r-Sylow subgroup Fr_x.

Case 2. G is not p-nilpotent.

Then, by Theorem 3.4, G has a normal /»-Sylow subgroup P so that (ii) holds.

We consider two subcases.

(a) Suppose P is not minimal normal in G. Let M+\ be a normal subgroup

of G properly contained in P. We show that the hypotheses hold for G/M. If

H/M <G/M, then cofG 77=77/corG 77 is (p:qH)-ni\potent for some prime qH, and

thus cofG/M (77/M)~cofG 77 also is (/»:^-nilpotent relative to this same prime qH.

Clearly all proper normal subgroups of G/M are p-nilpotent. Now suppose K/M

is a proper nontrivial normal /»'-subgroup of G/M. Then K is /»-nilpotent by hypoth-

esis, say with characteristic /»-complement T. Then T is normal in G, and since M

is the /»-Sylow subgroup of K, K=MxT. Since T+\ is a //-subgroup, it is q-

nilpotent for some prime q dividing \T\. Hence, since K/M~T, q divides \K/M\

and K/M is ^-nilpotent.

The hypotheses thus hold for G/M, so by induction, G/M is solvable. Since M

is a/»-group, G also is solvable.

(b) Suppose P is minimal normal in G. Then either there is a minimal normal

subgroup L of G distinct from P, or P is the unique minimal normal subgroup of G.

In the first case, L n P= 1 so that L is a proper normal /»'-subgroup of G, hence

is ç-nilpotent for some prime q dividing \L\ ; and since the normal ^-complement

is characteristic in L, it follows from the minimality of L that L is a ¿/-group. As

in (a), the conditions on the cofactors of subgroups of G/L are satisfied, and all

proper normal subgroups of G/L are /»-nilpotent. Now let K/L be a nontrivial

proper normal /»'-subgroup of G/L. Then by hypothesis, K is ^-nilpotent for some

prime qx dividing \K\, say with normal ^-complement U. Now, if qy\ \K/L\, we

have exhibited a prime qx dividing \K/L\ for which K/L is ^-nilpotent. So suppose

that qy does not divide \K/L\. This means that qy=q so that K= UxL. Now £/is a
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nontrivial proper normal p'-subgroup of G, so it is ga-nilpotent for some prime q2

dividing \U\. Since K/L~U, we have that q2\ \K/L\ and that K/L is <¡r2-n¡lpotent.

We have thus shown that the hypotheses hold for G/L; by induction, therefore,

G/L is solvable, and hence, so is G.

There remains to consider only the possibility that F is the unique minimal

normal subgroup of G. By the Schur-Zassenhaus Theorem, F has a complement T

in G. Then if 77 is any subgroup of T (not necessarily proper), H is a proper p'-

subgroup of G; and by the uniqueness of F, we have corG 77= 1 so that 77=cofG 77.

By hypothesis, therefore, each nontrivial subgroup 77 of T, including T itself, is

tftf-nilpotent for some prime q„ dividing |77| (where qH depends on 77). Arguing as

in Case 1 with G replaced by T, we find that Fis solvable. Thus G/P~ F is solvable,

from which it follows that G is solvable.

(iii) is immediate.

4. 8 = supersolvable or a-Sylow-towered. In this section we examine the influence

on a group G of supersolvable subcofactors of certain subgroups of G, and more

generally, of o--Sylow-towered subcofactors. A finite group G is said to have a

a-Sylow-tower, where a = (pu .. .,pm) is some ordering of a set S={p1,.. .,pm}

of primes containing 77(G), if there is a normal series of G, 1 = Ar0£AT1e • • • £ Km

= G, such that for each i=l,..., m, Ki/Kl_1 is isomorphic to ap¡-Sylow subgroup

of G (which may be trivial in case p \ \G\). For example, if a is the natural descending

order of S, then it is well known (see [7, p. 716, Satz 9.1]) that if G is supersolvable,

then G has a <7-Sylow-tower.

The classic result in this direction is the following well-known theorem of

Huppert [9] :

Theorem 4-A. If all the proper subgroups of the finite group G are supersolvable,

then G is solvable.

Doerk in [5] has extended this result by describing much of the structure of G.

Several of his results parallel those of the Schmidt-Twasawa Theorem given in §3.

The following are extensions due to Rose [13], [14]:

Theorem 4-B. Let G be a finite group and a a fixed ordering of a set X of primes

containing tt(G).

(i) If (a) every proper self-normalizing subgroup H of G has a a-Sylow-tower, or

//(b) every proper abnormal subgroup H of G has a a-Sylow-tower and the 2-Sylow

subgroups of G are abelian, then in either case, G is solvable.

(ii) If every proper abnormal subgroup H of G is supersolvable and the abnormal

maximal subgroups of G have prime-power index, then G is solvable.

[Example 3-C shows the need for the additional condition in (ii) and in (i(b)).]

We will now show that it is sufficient to impose the conditions in these results

of Rose on only the subcofactors 77/scorG 77. First, however, we establish a pre-

liminary lemma and theorem.
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Lemma 4.1. For G a group, F2(G') = G' (that is, G' has Fitting length ^ 2) if and

only if G/F2(G) is abelian.

Proof. Using the equality F(G')=F(G) n G' and the normality of G' and F(G),

we have the following chain of equivalences: F2(G') = G' <-» G'/F(G') is nilpotent

<-> G'/F(G) n G' is nilpotent <-> G'F(G)/F(G) is nilpotent <-> G'F(G)¡F(G) is con-

tained in F(G/F(G))=F2(G)/F(G) <-> G'^F2(G) <-> G/F2(G) is abelian.

Theorem 4.2. Lei G be a finite solvable group for which the cofactors of the

maximal subgroups are supersolvable. Then

(i) G/F(G) is supersolvable.

(ii) /(G')^2, lAar is, F2(G') = G', or equivalently, G/F2(G) is abelian.

(iii) /(G) ^ 3, that is, F3(G) = G.

Proof, (i) follows immediately from Corollary 1.4(ii). For (ii), since G/F(G) is

supersolvable, its derived subgroup (G/F(G))' = G'F(G)/F(G) is nilpotent, hence so

is the isomorphic group G'/G' n F(G), which is in turn equal to G'/F(G'). There-

fore, G'/F(G') is nilpotent so that F2(G') = G'. (iii) follows from (ii).

That m = 2 and n = 3 are the best possible integers for which G' = Fm(G') and

G = Fn(G) in the preceding theorem is seen by taking G = S,4. S4 is solvable, the

cofactors of all proper subgroups of S^ are supersolvable, the Fitting length of

S4 = y44 is 2, and the Fitting length of S± is 3.

Example 3-C shows that the solvability of G is needed in Theorem 4.2, that the

supersolvability of the cofactors of the maximal subgroups of G is not sufficient

to guarantee that G is solvable. The following extension of (a(i)) of Theorem 4-B

shows, however, that if we enlarge the class of subgroups which are to have super-

solvable cofactors (and more generally, a-Sylow-towered subcofactors) to the

collection of all self-normalizing subgroups of G, then G is solvable.

Theorem 4.3. Let a be a fixed ordering of a set S of primes containing n(G). If

the subcofactor 77/scorG H of each proper self-normalizing subgroup H of G has a

a-Sylow-tower, then G is solvable. Moreover, G/F(G) has a a-Sylow-tower.

Proof. We first show that G is solvable, using induction on |G|. If G is simple,

the solvability follows from Theorem 4-B, since in this case, every proper subgroup

has subnormal core = 1 so that each proper self-normalizing subgroup is a-Sylow-

towered. Thus suppose G is not simple, and let M be a minimal normal subgroup

of G. Since tt(GIM)<^tt(G)'~"L and the subcofactors of self-normalizing subgroups

of G/M are a-Sylow-towered by Lemma 1.3, GjM is solvable by induction.

We show now that the hypotheses hold for M. If 77 is any self-normalizing (in

M) subgroup of M, then N=NG(H) = the hypernormalizer of 77 in G is a self-

normalizing subgroup of G. M£N, for otherwise H<\<]M since 77<1<1A. Thus

A/G so that A/scorG N is cr-Sylow-towered by hypothesis, and hence so also is its

subgroup 77(scorG A)/scorG N. Since H<\<]N, 77 n scorG A«lscor0 A<1<1G, so

77 n scorG N is contained in scorG 77, which in turn is easily seen to be contained
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in scorM 77. Therefore, 77/scorM 77, being a homomorphic image of 77/77 n scorG N

~ 77(scorG N)/scotg N is a-Sylow-towered. Since 7r(M)£7r(G)£S, the hypotheses

hold for M so that by induction, M is solvable; and the solvability of G now

follows.

The fact that G/F(G) has a a-Sylow-tower is an immediate consequence of

Corollary 1.4(ii), since the property of being a-Sylow-towered is easily seen to be a

strictly homomorphism-invariant property.

We also have the following extension of (i(b)) of Theorem 4-B:

Theorem 4.4. Let a=(py,...,pn) be a fixed ordering of the set {py,..., /»„} of

primes containing ir(G). If the subcofactor 7//scorG 77 of each proper abnormal sub-

group H of G has a a-Sylow-tower and the 2-Sylow subgroups of G are abelian,

then G is solvable, and G/F(G) has a a-Sylow-tower.

Proof. The last part follows as in the proof of Theorem 4.3, so only the solv-

ability of G requires proof. For this, suppose G is a minimal counterexample. If G

has a nontrivial solvable normal subgroup K, then by the minimality of G, G/K

would be solvable and the solvability ofG would follow. Thus, G has no nontrivial

normal solvable subgroup, and so, from Lemma 3.1, no nontrivial subnormal

solvable subgroup.

Now consider a maximal segment of a a-Sylow-tower for G, that is, a normal

chain A"rç A"r+1£ ■ ■ • £ Kn = G such that there is no G-normal subgroup 77 of Kr

for which Kr/H is isomorphic to a /?r-Sylow subgroup of G, and in case r<n.

KJKi-y is isomorphic to a /?¡-Sylow subgroup of G for each i = r+l,..., n.

The first condition is clearly equivalent to saying that Kr is not /»¡.-nilpotent. Since

G is not solvable, hence not <r-Sylow-towered, we have r>0 so that Kr+ 1.

Case 1. pr = 2.

Let P be a 2-Sylow subgroup of K=Kr, and thus a 2-Sylow subgroup of G

since 2 \ [G:K]. Then N = NG(P)><]G and N^G since G has no nontrivial normal

solvable subgroups. By hypothesis, therefore, N/scorG N has a tr-Sylow-tower.

Since P<\N, P n scorG AKIscorG N<\<\G so that P n scorG N= 1 since G has no

nontrivial subnormal solvable subgroups. This means that scorG N has odd order,

hence is solvable by the Feit-Thompson Theorem, and thus scorG N= 1 since G

has no subnormal solvable subgroups /l. Consequently, N=N/scorG N has a

a-Sylow-tower, and thus so also does its subgroup NK(P) = N n K.

Since Pr+y, ■ ■ -,pn do not divide |.íy|, it follows that NK(P) has a (py,.. .,pr)-

Sylow-tower, in particular, NK(P) has a normal /»¡.-complement F. And since P

and Fare normal in NK(P), NK(P)=Px F so that F centralizes P. But P is abelian

by hypothesis, so P^CG(P) also. It follows that P^Z(NK(P)), and hence from

Theorem 3-E, that K=Kr is /»¡.-nilpotent, a contradiction.

Case 2. pr is odd.

As before, let P be a/»r-Sylow subgroup of K=Kr and thus a/»r-Sylow subgroup

ofG. Let J(P) = the Thompson subgroup ofP, and Ñ=NG(Z(J(P))). Now Z(J(P))
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<NG(P) so NG(P)^Ñ, and since NG(P)XG, Ñ is also abnormal in G. ÁVG

since G has no nontrivial normal solvable subgroups. By hypothesis, therefore,

JV/scorG Ñ is (7-Sylow-towered, so its subgroup (A^Xscorg Â)/scorG Ñ also is,

where ÑK = NK(Z(J(P))) = Ñ n K. It follows that (ÂK)(scorG Â)/scorG Ñ is

pr-nilpotent, as in Case 1, hence so is ÑK/ÑK n scorG Ñ.

Arguing as in the proof of Theorem 3.3, we find that if PX=P n scorG Ñ is

nontrivial, then F2 =P1 n Z(J(P)) is a nontrivial subnormal subgroup of G, which

contradicts G having no subnormal solvable subgroups j=\. Thus P n scorG Ñ= 1

so that scorG À is a p¿-group, and hence so also is ÑK n scorG Ñ. Since

Ñk¡Ñk ^ scorG Â is pr-nilpotent, this implies that ÑK = NK(Z(J(P))) also ispr-nil-

potent. But then by the Glaubermann-Thompson result, we again have K=Kr

is pr-nilpotent, a contradiction.

Each case, therefore, leads to a contradiction so that no such minimal counter-

example can exist.

The preceding two results give the following corollary.

Corollary 4.5. If (a) the subco)"actor 77/scorG 77 of each proper self-normalizing

subgroup H of G is supersolvable, or if(b) the subcofactor 77/scorG 77 of each proper

abnormal subgroup H of G is supersolvable and the 2-Sylow subgroups of G are

abelian, then in either case, G is solvable. Moreover, G/F(G) is supersolvable and

G/F2(G) is abelian ; thus, f(G') á 2 and /(G) ¿ 3.

Proof. The solvability of G follows from Theorems 4.3 and 4.4 and the comments

in the opening paragraph of this section. The last part follows by Theorem 4.2.

We can similarly extend Theorem 4-B(ii). For this we need the following lemma

given by Rose in [14].

Lemma 4-C. Suppose G is simple and that G = HK where 77 and K are proper

subgroups of G. Then corH (H n K) = cor^ (77 n K) = 1.

Proof. One shows that for C=corH (77 n K) (and similarly for cor* (77 n K)),

the normal closure of C=CG^K, so by the simplicity of G, CG=\, hence C=l.

Theorem 4.6. If the subcofactor 77/scorG 77 of each proper abnormal subgroup 77

of G is supersolvable and the abnormal maximal subgroups of G have prime-power

index, then G is solvable. Moreover, G/F(G) is supersolvable and G/F2(G) is abelian ;

thus/(G')^2 and/(G)^3.

Proof. The last statement follows as before, and only the solvability of G

requires proof. For this, we use induction on \G\. If G is simple, then all maximal

subgroups of G are abnormal in G and have subnormal core = l, so G is solvable

by Huppert's theorem or by Theorem 4-B(ii). So suppose G is not simple, and let M

be a minimal normal subgroup. By induction, G/M is solvable ; and if G has another

minimal normal subgroup M*^M, the solvability of G=G/M n M* follows.

We may assume, therefore, that M is the unique minimal normal subgroup of G,
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and we need only show that M is solvable. We suppose it is not, and work toward

a contradiction.

If M is not solvable, then M=MyX ■ ■ ■ xMk, where the M¡ are isomorphic

simple nonabelian groups. M£ 0(G) since M is not solvable, so there exist maximal

subgroups of G not containing M. By the uniqueness of M, we see that G has

maximal subgroups of core 1.

Suppose there is only one conjugacy class W of such maximal subgroups of

core 1. By hypothesis, for some power pa of a prime/», [G:S]=pa for all Se'W.

Since M£S for S eft, we see that /»[ \M\. Let P be a /»-Sylow subgroup of M;

then \¥=P, and P^M since M is not solvable. By the Frattini argument, G =

MNG(P); and by the minimality of M, N0(P)^G so that NG(P)^T for some

maximal subgroup F of G. Since G=MN0(P) = MT, we have M£T, so corG T= 1

by the uniqueness of M. It follows that Feíí so that pa = [G : F] = [MT: T] =

[M:M n F], which contradicts the fact that P^M n NG(P)^M n F Therefore,

G has at least two distinct conjugacy classes of maximal subgroups of core 1.

Now let S be a maximal subgroup with corG £=scorG S=l, and let P be a /»-

Sylow subgroup of S where /» = max (tt(S)). Then SX1G so that S=S/scora S is

supersolvable by hypothesis; in particular, P<\S, hence S^NG(P). Since G has no

nontrivial solvable normal subgroups, it follows that S=NG(P); also, it is now

clear that P is a /»-Sylow subgroup of G.

Thus, if S and F are maximal subgroups of G with core 1 and /» = max (tt(S))

= max (tt(T)), then S=NG(P) and T=NG(P*) for some p-Sylow subgroups P and

P* of G. Since P and P* are conjugate in G, so are S and F. Therefore, if S is any

maximal subgroup of G with core 1 and /» = max (n(S)), then the conjugacy class

of S is <#(p)={NG(P) | P a p-Sylow subgroup of G}.

If ^(pi) and ^(p2) are two such conjugacy classes with px >p2, then py =p

= max (tt(G)). For if F e #(p2), then p2 = max (tt-(F)) ; and since p ^pi >p2, this

implies that bothp andp¡ divide [G:T], a contradiction unlessp=py.

Now let Se^(py)='ë'(p) and Te^(p2). Then [G:F] is a power ofp andpf \T\

so that F is a p-complement of G. Let q \ [G:S] and let U be a ^-complement of S,

hence of G. (£/ exists since S=S/scorG 5 is supersolvable, hence solvable.) Then,

as Rose shows in [14], A = T n U n M is an abelian Hall {p, <7}'-subgroup of G.

We include the argument here.

First, since M<\G, T n M and U n M are p- and ^-complements respectively of

M, so for each i=l,.. .,k,Tn Mt and Un Mt arep- and ^-complements of M¡.

It follows that Mt = (T r\ M()(U n M¡); and since F n M¡ and C/n M¡ are super-

solvable while M is not, these are proper subgroups of M(. Hence, by Lemma 4-C,

At = T n U n Mi contains no nontrivial normal subgroup of either T d Mt or

C7HM,.

Now, by straightforward computation, we see that At is a Hall {p, #}'-subgroup

of M¡ for each /; in particular, At is a ^-complement of F n Mx and a p-complement

of U n M¡. Also, each At is abelian. To see this, let P be a p-Sylow subgroup of
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U n Mt. Since p = max (n(U n M¡)) and U n M¡ is supersolvable, P<\U n Mt so

that P^F(Un A/() = the Fitting subgroup of Un Mt. If P^F(Un Mt), then the

nontrivial characteristic p-complement of F(U n M¡) would be normal in U n M,,

hence contained in the p-complement At of U n Mu which contradicts the fact

that Ai contains no nontrivial normal subgroup of U n Mt. Thus P—F(U n M¡);

and since U n M¡ is supersolvable, (U n M¡)'£F(Í/n M^=P, so (U n Mi)/P~A¡

is abelian.

From this it follows that A = T n U n M is an abelian Hall {p, g}'-subgroup of

M. Now, q = max (7r(F n Mi)). For let q' = max (tt(F n M¡)) ; since F n M{ is super-

solvable, it has a normal g'-Sylow subgroup Q. Since the g-complement /I; of

T n Mi contains no nontrivial normal subgroup of F n Mu Q£At, from which it

follows that q'=q. Thus, g = max (tt(F n Af¡)) ; in particular, q^min(n(M)), for

otherwise, T n Mt would be a g-group making M¡ a {p, gj-group so that each M¡

and hence M would be solvable.

We thus have that A is an abelian Hall {p, g}'-subgroup of M, and p>q>r

= min (tt(M)). Let R be an r-Sylow subgroup of A, hence of M; R is abelian. One

sees easily that since R = R* n M for some /--Sylow subgroup R* of G, NG(R*)

£ AG(F) so that NG(R) is abnormal in G; and NG(R)^G by the minimality of M.

By hypothesis, therefore, for N=NG(R), A/scorG A is supersolvable, hence so also

is its subgroup (NM)(scorG N)/scorG N, where NM = NM(R) = M n N. Since r =

min (t7(A7)), we see that NM/NM n scorG A~(AM)(scorG A)/scorG A, being super-

solvable, has a normal /--complement L/NM n scorG A.

Since R<]N=NG(R), we have F n scorG A<lscorG A«|G; and because G has

no normal solvable subgroups ^1, and thus no nontrivial subnormal solvable

subgroups by Lemma 3.1, R n scorG 7V= 1. This means that scorG Ais an r'-group,

so NM n scorG A also is, making L a normal /--complement of NM = NM(R). It

follows that NM(R) = RxL so that L centralizes R; and since R is abelian, we have

R*~Z(NM(R)). However, by Theorem 3-E, this implies that M is r-nilpotent and

thus has a proper characteristic subgroup, which contradicts the minimality of M.

Consequently, M is solvable; and the result now follows.

An attempt to find more structure in a nonsupersolvable group G, structure of

the kind given by Doerk in [5], by requiring that the proper normal (or nearly

normal, etc.) subgroups also be supersolvable does not seem to be as successful as

for nilpotence and p-nilpotence in §§2 and 3. There are some things one can say,

among which is the following:

Theorem 4.7. Let G be a finite nonsupersolvable group having all proper normal

subgroups supersolvable. Suppose also that the hypotheses of Corollary 4.5 or of

Theorem 4.6 hold. Then, in addition to the conclusions of these results, G has a normal

p-Sylow subgroup for p the least or the largest prime factor of\G\.

Proof. Let p = min (77(G)). Then the proper normal subgroups and subcofactors

of the self-normalizing (or abnormal) subgroups of G, being supersolvable, are
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p-nilpotent. If G is not p-nilpotent, then by the results in §3, G has a normal p-

Sylow subgroup. On the other hand, if G is p-nilpotent, say with normal p-comple-

ment F, then Fis supersolvable by hypothesis. Thus, if <7 = max (7r(G)) = max (n(T)),

then F has a characteristic ^r-Sylow subgroup which is then a normal ^-Sylow

subgroup of G.

5. A dual approach. For 77 a proper subgroup of a finite group G, corG 77 was

defined as the maximal G-normal subgroup of 77. We have been considering the

effect on G of conditions imposed on 77/corG 77 (or 77/scorG 77), where 77 ranges

over a class of proper subgroups of G. Now, one might hope to "dualize" this

approach by considering for 77<G, those subgroups which are outside 77, or at

least not contained in 77, and which are in some sense minimal with respect to the

normal structure of G. This is the thrust of the remaining three sections.

Following basically the ideas suggested by Deskins in [4], we define for 77 a

proper subgroup of the finite group G, the collection 0G(H) to be the family of

subgroups C of G which satisfy the following two conditions: (i) C*$H; (ii) each

proper G-normal subgroup of C is contained in 77. Note that if C e ®G(H) and

C<1G, then C is minimal with respect to being normal in G and not contained in 77;

thus, in a sense, we have dualized the notion of the core of 77.

In this "outer family" &G(H), we single out the following subcollections:

(1) <9<G(H) = {Ce &G(H) | C<G};

(2) <9^G(H) = {Ce&G(H)\C4G};

(3) &(sn)G(H) = {Ce(P^G(H) | Cis self-normalizing in G};

(4) <B <fG(77) = {C e 0^G(H) | C is abnormal in G}.

Lemma 5.1. Let H be a proper subgroup of the finite group G, C e GG(H), and D

the maximal G-normal proper subgroup of C. Then

(i) 7) = corG(Cn77).

(ii) IfC<SG, then 7) = corG (C n 77) = C n corG 77.

(iii) IfC4G, then 7) = corG (C n 77) = corG C.

Proof, (i) Since D is normal in G and is properly contained in C, we have 7)^ 77,

so 7J>sC n 77, and hence 7)^corG (C n 77). On the other hand, corG (C n 77) is

properly contained in C since CnT/^C, so that by the maximality of D,

corG (Cn 77) ç 7).

(ii) For C<1G, since C n corG 77 is a normal subgroup of G contained in C n 77,

we have C n corG 77£corG (C n 77). But corG (C n 77) ç C n 77ç C; and since

corG (C n 77) is normal in G and is contained in C n 77s 77, we have corG (C n 77)

ÇcorG 77, from which it follows that corG (C n 77) çC n corG 77.

(iii) Since Cn77çC, the inclusion corG (C n H)^corG C is immediate. And

since C<jlG, corG C is properly contained in C so that corG Cç 77, hence corG C

£ C n 77 so that corG C^corG (C n 77).

For 77 a proper subgroup of the finite group G, we define the following outer

cofactors of 77. If C g Gg(H), we call C/corG (C n 77) an outer cofactor of H in G.
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More specifically, for C e <P<¡G(H), we call C/corG (C n 77) = C/C n corG 77 a

normal outer cofactor of 77. If C e 0<¡G(H), we will say that C/corG (Co 77) =

C/corG C is a nonnormal outer cofactor of H; in particular, if C e í?(sn)G(77), C/corG C

is a self-normalizing outer cofactor of 77, and if C e 0xG (77), C/corG C is an

abnormal outer cofactor of 77.

6. Influence on G of the nonnormal outer cofactors of subgroups. In this section

we investigate the properties of a finite group G which arise from conditions

imposed on the self-normalizing (or the abnormal) outer cofactors of maximal

subgroups of G. One such result is given by Deskins in [4]; with the terminology

and notation of the preceding section, it can be stated as follows:

Theorem 6-A. If the finite group G contains a maximal subgroup S which is

supersolvable, and if for each CeGG(S) with C<§G or C n S= 1, C/corG (C n S)

is supersolvable, then G is solvable.

We now establish two general theorems from which results parallel to those in

§§2, 3, and 4 are immediate corollaries. In these two theorems, we assume that the

trivial group is always a 0-group, and hence, in particular, that 0-groups do exist.

Theorem 6.1. Let 6 be a subgroup-inherited homomorphism-invariant property.

If the finite group G has a maximal subgroup S such that S and its (1) nonnormal

[or (2) self-normalizing, or (3) abnormal] outer cofactors are 6-groups, then cofG 77=

77/corG 77 is a 9-group for all (1) nonnormal [or (2) self-normalizing, or (3) abnormal]

proper subgroups H of G.

Proof. Let 77 be any proper (fc)-subgroup of G, where k=\, 2, or 3 [that is,

(k) denotes any one of the three properties (1) nonnormal, (2) self-normalizing, or

(3) abnormal]. If 77c S, then trivially 77/corG 77 is a 0-group. So suppose H£S.

If corG 77c s, then 77 is an element of 0^a(S), (P(sn)G(S), or G <G(S) according as

k = 1, 2, or 3 so that, by hypothesis, 77/corG 77 is a 0-group. If corG H£S, then

S(corGH) = G, G/corG H = S(corG H)/corG H~S/S n corG 77 is a 0-group, hence

so also is its subgroup 77/corG 77.

Note. The proof shows that if S and its (Â:)-outer cofactors C/corG C with C a

maximal subgroup of G are 0-groups, then 77/corG 77 is a 0-group for all (k)-

maximal subgroups of G.

The following results are now immediate consequences of this theorem (or the

above note), Lemma 5.1, and the corresponding results of §§2, 3, and 4. Part

(b(vi)) strengthens Theorem 6-A by removing the condition "or C n S¥= 1" and

requiring supersolvability of C/corG (C n S) for only the self-normalizing C in

@G(S), and by giving information about the Fitting lengths of G' and G. These

results also show that there is nothing especially significant about the condition of

supersolvability imposed in Theorem 6-A, but that it can be replaced by a variety

of other conditions.
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Corollary 6.2. Suppose the finite group G has a maximal subgroup S for which

one of the following nine conditions holds:

(a) S and all its abnormal outer cofactors F/corG F (with T a maximal subgroup of

G) are

(i) nilpotent.

(ii) nilpotent of class fín.

(iii) solvable of derived length fin.

(b) S and all its self-normalizing outer cofactors are

(iv) p-nilpotent.

(v) a-Sylow-towered for a some fixed ordering of a set S of primes containing

77(G).

(vi) supersolvable.

(c) S and all its abnormal outer cofactors are

(vii) p-nilpotent, and either p is odd or the p-Sylow subgroups ofG are abelian.

(viii) a-Sylow-towered as in (b(v)), and the 2-Sylow subgroups ofG are abelian.

(ix) supersolvable, and either the 2-Sylow subgroups of G are abelian or the

abnormal maximal subgroups of G all have prime-power index.

Then, in the respective cases, the following hold:

(a) (i) G is solvable with G/F(G) nilpotent.

(ii) G is solvable with G/F(G) nilpotent of class fin (and the other results of

Theorem 2.3 hold).

(iii) If G is solvable, then G/F(G) has derived length fi n (and the other results

of Theorem 2.4 hold).

(b) (iv) G has a normal p-subgroup G/P0 (which may be trivial) such that G/P0 is

p-nilpotent; in particular, G is p-solvable of p-length ^2.

(v) G is solvable with G/F(G) a-Sylow-towered.

(vi) G is solvable with G/F(G) supersolvable and G/F2(G) abelian; thus/(G') = 2

and f(G) fi3.
(c) (vii) Same as (b(iv)).

(viii) Same as (b(v)).

(ix) Same as (b(vi)).

Theorem 6.3. Let 8 be a subgroup-inherited homomorphism-invariant property.

Then, the following are equivalent:

(a) For all abnormal maximal subgroups S of G, the (1) self-normalizing [or

(2) abnormal] outer cofactors of S are 8-groups.

(b) 77/corG 77 is a 8-group for all (1) self-normalizing [or (2) abnormal] proper

subgroups 77 of G.

Proof, (b) -» (a) is immediate. For (a) -> (b), suppose this to be false, and let G

be a minimal counterexample. Then there is some proper (Zc)-subgroup 77^ 1 of G

such that 77/corG 77 is not a 0-group, where k = 1 or 2.

Suppose first that corG 77= 1. Then 77 £ I\G) = the intersection of all abnormal
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maximal subgroups of G; for by a result of Gaschiitz in [6], T(G) is a normal nil-

potent subgroup ofG, so if 77c E(G), then H<¡<¡T(G)<]G, contradicting the fact

that 77 is a (&)-subgroup of G. Thus 77^ i\G), and there exists an abnormal

maximal subgroup S of G not containing 77. Since corG 77=1 SS, H belongs to

0(sn)G(S) or d^xicOS) according as k=l or 2, so that 77/corG 77 is a 0-group by

hypothesis. This, however, contradicts the choice of 77.

Suppose now that corG77#l, and consider G = G/corG77. We show that (a)

holds for G. For this, let S=S/corG 77 be any abnormal maximal subgroup of G,

and let C=C/corG 77 be any element of @lsn)C(S) or 0 ^G(S), according as k = 1 or 2.

Then S is an abnormal maximal subgroup of G, and C is a (zV)-subgroup of G;

also, C^ S since C£S. By Lemma 1.3, corG(C) = corG C/corG H; and corG(C)^5

by the definition of an outer cofactor of S. It follows that corG Cç S so that C

belongs to (°s(n)G(S) or @x¡G(S). By hypothesis, therefore, C/corG C is a 0-group,

and hence so also is C/corG (C)~C/corG G (by Lemma 1.3).

Since (a) thus holds for G and |G|<|G|, it follows from the minimality of G

that (b) holds for G. In particular, 77=77/corG 77 is a proper (zV)-subgroup of G

and corG (77)= 1 so that 77=77/corG (77) is a 0-group. This, however, again contra-

dicts the choice of 77.

We conclude, therefore, that no such group G can exist, and the result follows.

Note. An obvious modification of this proof shows that the following also are

equivalent : (a') For all abnormal maximal subgroups 5 of G, the (/V)-outer cofactors

F/corG F of S with F a maximal subgroup of G are 0-groups. (b') 77/corG 77 is a

0-group for all (fc)-maximal subgroups 77 of G.

Corresponding to Corollary 6.2, we have the following results as direct con-

sequences of the preceding theorem (or the above note), Lemma 5.1, and the

corresponding results in §§2, 3, and 4.

Corollary 6.4. Suppose that for each abnormal maximal subgroup S of the

finite group G, one of the following nine conditions holds:

(a) The abnormal outer cofactors T/corG TofS (with Ta maximal subgroup ofG) are

(i) nilpotent.

(ii) nilpotent of class f¡ n.

(iii) solvable of derived length f¡n.

(b) The self-normalizing outer cofactors of S are

(iv) p-nilpotent.

(v) a-Sylow-towered for a some fixed ordering of a set 2 of primes containing -n(G).

(vi) supersolvable.

(c) The abnormal outer cofactors of S are

(vii) p-nilpotent, and either p is odd or the p-Sylow subgroups of G are abelian.

(viii) a-Sylow-towered as in (b(v)), and the 2-Sylow subgroups ofG are abelian.

(ix) supersolvable, and either the 2-Sylow subgroups of G are abelian or the

abnormal maximal subgroups of G all have prime-power index.
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Then, in the respective cases, the conclusions (a(i)) through (c(ix)) of Corollary 6.2

hold.

1. Influence on G of the normal outer cofactors of subgroups. We consider now

the normal outer cofactors of the maximal subgroups of a finite group G and

investigate what effect properties imposed on these will have on G. Such an approach

is suggested by Deskins in [4]. As mentioned there, while every maximal subgroup

of a finite solvable group has prime-power index, the converse is not true, as the

simple group of order 168 shows. Deskins then defines the normal index of a

maximal subgroup; it is precisely this that must be of prime-power for the group

to be solvable.

For a maximal subgroup S of G, &<¡G(S) consists of all those subgroups H^G

which satisfy: (1) HS=G, (2) H<G, and (3) LS=S for all proper G-normal sub-

groups L of 77. The normal outer cofactors of S are the groups 77/corG (77 n S)

= H/H n corG S with H eO^S). Using this terminology and notation, we can

state the theorem of Deskins, the first part of which makes possible the definition

of normal index, as follows:

Theorem 7-A. Let S be a maximal subgroup of the finite group G. Then

(i) All the normal outer cofactors of S have the same order.

(ii) If [G : S] = a power of a prime, then there exists a unique 77 in @<\G(S).

The normal index of a maximal subgroup S, n(G : S), can then be defined as the

order of any normal outer cofactor of S.

The following theorem extends (i) of Theorem 7-A and also shows that if we

impose a condition on one of the normal outer cofactors of a maximal subgroup

S, then, in fact, we are imposing it on all of them.

Theorem 7.1. Let S be a maximal subgroup of the finite group G. Then all the

normal outer cofactors of S are isomorphic.

Proof. Suppose 77 and K are distinct elements of &<¡G(S); we are to show that

77/77 n corG S~ K/K n corG S.

Case 1. corG 5=1.

In this case, 77 and K are minimal normal in G. For if L<\G with L¡¿H, then

since He(P<¡G(S), we have FsS, and hence, FçcorG S=l. Similarly, A^ properly

contains no nontrivial normal subgroup of G. It follows that 77 and K centralize

each other.

Also, HnS=KnS=l. For since 77<]G, H n S<]S so that SçNG(HnS).

Now, K centralizes 77 n S since it centralizes 77, so As AG(77 n S) also. Conse-

sequently, G = KS<=NG(H n S), that is, H n S<G. But since 00^5=1, this

means that 77 n S= 1. In the same way, K n S=l.

Now from Dedekind's law, H(HKn S) = HKn HS=HKn G = HK, and

K(HKnS) = HK also. It follows that H=H/H n K~HK/K=K(KH n S)/K

~HKnS, and similarly, K~ HK n S. Thus, 77/77 n corG S=H~K= K/K n corG S.
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Case 2. corG S^\.

Consider G = G/corG S, and let S, 77, and K be the images of S, 77, and K respec-

tively in G. Then 77 and K belong to &<¡a(S). For suppose L = L/corG S is a normal

subgroup ofG properly contained in 77; then 77 n 7. is a proper G-normal subgroup

of 77 e 0<C(S), so that H n L^S, hence 77 n Lç/7 n corG S. But obviously, the

reverse inclusion holds, so 77 n L=H n corG 5. It follows that |77| |L|/|77F|

= |77n7_| = |77ncorGS| = |77| |corG 5|/|77corG S|; and since HL = H(LcorGS)

= (HcorG S)L = HcorG S, we have |7_| = |corG S\, thus L=l. This shows that

He(9<G(S); similarly, Ke &<¡G(S).

Now, since cor5 (S) = 1, it follows from Case 1 that 77 ~ K. Therefore, 77/77 n corG S

~H~K~K/KncorGS.

Theorem 7.2. Let S be a maximal subgroup of the finite group G. Then

(i) The normal outer cofactors of S are p-solvable if and only ifn(G : S) is a power

of p or is prime to p.

(ii) The normal outer cofactors of S are solvable if and only ifn(G:S) is a power

of a prime. In this case, n(G:S) = [G:S].

Proof, (i) Suppose first that the normal outer cofactors of S are p-solvable, and

let 77 e &<iG(S). As in the proof of the preceding theorem, 77=77(corG S)/corG S

belongs to <9<¡G(S), where G = G/corG S and S=S/corGS; and since corc(5)=l,

77 is minimal normal in G. By hypothesis, 77/77 n corG S is p-solvable, hence so

also is 77~77/77 n corG S. Thus n(G:S) = \H/H n corG S| = |77| is either a power

of p or is prime to p. The converse is an immediate consequence of the definition

of n(G:S).

(ii) The equivalence of the two statements follows from (i) and the fact that a

finite group is solvable if and only if it is p-solvable for all primes p dividing its

order. For the second part, let 77 e @<¡G(S) with 77/77 n corG S solvable. For G,

S, and H as above, 77 is minimal normal in G and is isomorphic to 77/77 n corG S

which is solvable, hence 77 is elementary abelian. Now 77 n S<iS since H<\G,

and 77 n §<\H since 77 is abelian ; thus, 77 n S<\HS=G. But corG (S) = 1 so that

77n5=l. Therefore, [G:S] = [G:S] = [HS:S] = \H\ = \H/Hr\covGS\=n(G:S).

The following lemma will prove useful in induction arguments.

Lemma 7.3. Let M be a normal subgroup of the finite group G, and let S/M be a

maximal subgroup of G/M. Then each normal outer cofactor of S/M is isomorphic

to every normal outer cofactor of S.

Proof. Let G=G/M, S=S/M, and let K/K n cors (S) be a normal outer cofactor

of S, where K=K/M. Then S is a maximal subgroup of G, K<\G, and K£S. It

follows that LsK for some L e &<¡G(S).

_Now, ML = K. For ML^K so that ML = ML/MçK/M=K; also ML<]G and

ML£ S since L£S. Thus, since Ke(P<G(S), we have ML = K, hence, ML = K.
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Since Mç corG S, it follows that

L/L n corG S ~ L(corG S)/corG S = LM(corG S)/corG S = K(corG S)/corG S

~ K/K n corg S;

and from Lemmas 5.1 and 1.3, we have

K/K n corG S = A/corG (A" n S)

~ (K/M)/(corG(KnS)/M) = K/corG (KnS) = K/Kn cors (S).

Therefore, the normal outer cofactor K/K n cors (S) of S=S/M is isomorphic to

the normal outer cofactor L/L n corG S of S, and hence, by Theorem 7.1, to

every normal outer cofactor of S.

In [4], Deskins states the following equivalences:

Theorem 7-B. For G a finite group, the following are equivalent:

(i) G is solvable.

(ii) Each maximal subgroup of G has prime-power normal index.

(iii) The index and normal index are equal for each maximal subgroup of G.

Beidleman and Spencer in [2] extend the equivalence of (i) and (iii), and also

establish some additional results as given in the following theorem :

Theorem 7-C. (a) The finite group G is p-solvable if and only if (n(G : S))p =

[G:S]„for each maximal subgroup S of G, where kp denotes thep-part of the integer k.

(b) If G has a solvable maximal subgroup with prime-power normal index, then G

is solvable.

(c) If G has a solvable maximal subgroup S with n(G : S) = [G : S], then G is solvable.

The following theorem gives some additional equivalences to the p-solvability

of G and provides extensions of (i) <-> (ii) in Theorem 7-B and of (b) of Theorem

7-C, plus a slight extension of (a) of Theorem 7-C.

Theorem 7.4. For G a finite group, the following are equivalent:

(i) G is p-solvable.

(ii) G Aas a maximal subgroup S such that S and its normal outer cofactors are

p-solvable.

(iii) G Aas a p-solvable maximal subgroup S with n(G:S) a power of p or prime

to p.

(iv) For each abnormal maximal subgroup S of G, the normal outer cofactors of S

are p-solvable.

(v) For each abnormal maximal subgroup S of G, n(G : S) is a power of p or is

prime to p.

(vi) For each abnormal maximal subgroup S of G, (n(G : S))p = [G: S]p.

[Note. As the proof will show, the word "abnormal" can be omitted in any of

(iv) through (vi).]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] INFLUENCE OF COFACTORS ON A FINITE GROUP 487

Proof. The equivalence of (ii) and (iii) as well as that of (iv) and (v) is immediate

from Theorem 7.2.

(i) <-> (ii). Since (i) -*■ (ii) is obvious, only the converse requires proof. For this,

let 5 be a p-solvable maximal subgroup of G with p-solvable normal outer cofactor

K/K n corG S. We use induction on |G|, and consider two cases.

Case 1. Kn corG1S'=l.

In this case, K is minimal normal in G; for if the normal subgroup L of G is

properly contained in K, then since KeO<¡G(S), it follows that As An 5, and

thusLscorG(ATn S) = K n 00^5=1. Now, K=K/K n corG S is p-solvable; and

since KS=G, we have G/K=KS/K~S/S n A is p-solvable by thep-solvability of S,

so the p-solvability of G follows.

Case 2. Kn corGS^l.

Let M be a minimal normal subgroup of G contained in K n corG S. From the

solvability of S, M is p-solvable. Now, S/M is a p-solvable maximal subgroup of

G/M, and by Lemma 7.3, the normal outer cofactors of S/M are p-solvable. By

induction, therefore, G/M is p-solvable, and the p-solvability of G follows.

(i) <-> (iv). Only (iv) ->■ (i) requires proof, since the converse is obvious. For this,

if G is simple, then every maximal subgroup of G is abnormal in G. Let S be any

such, and let HeO<G(S). Then H$S, 77<]G, and G simple imply that 77=G,

so &<¡G(S) = {G}. Therefore, since corG 5= 1, G = G/G n corG S is p-solvable.

So suppose that G is not simple, and let M be a minimal normal subgroup. Then

M is p-solvable. For if A/£ T(G) = the intersection of all abnormal maximal sub-

groups of G, then since T(G) is nilpotent (Gaschütz [6]), M is nilpotent, hence

p-solvable. If M£ T(G), then there is some abnormal maximal subgroup S not

containing M; then Me&<¡G(S) so that M=M/M n corG S is p-solvable by

hypothesis.

Now consider G/M. If S/M is any abnormal maximal subgroup of G/M, then S

is an abnormal maximal subgroup of G, hence has p-solvable normal outer co-

factors. By Lemma 7.3, the normal outer cofactors of S/M are also p-solvable.

Thus, the hypotheses hold for G/M so that, by induction, G/M is p-solvable. The

p-solvability of G now follows.

(i) <-> (vi). The implication (i) -> (vi) is a consequence of the Beidleman-Spencer

theorem (Theorem 7-C). For the converse, if G is simple, then each maximal sub-

group of G is abnormal, so the p-solvability of G follows from this same result.

So suppose G is not simple, and let M be a minimal normal subgroup. Using

Lemma 7.3, we have by induction that G/A7 is p-solvable. If G has a minimal

normal subgroup M*^M, then G/M* also is p-solvable, and thep-solvability of

G = G/MnM* follows.

So assume that M is the unique minimal normal subgroup of G; we need only

show that M is p-solvable. If M^ 0(G), this is immediate; so suppose there exist

maximal subgroups not containing M. Let S be any such; by the uniqueness of M,

S is abnormal in G. We may assume that p\ \M\. Now, n(G:S) = \M\, so, by
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hypothesis, [G:S]p = (n(G:S))P=\M\P so thatp|[G:S]. Thus Mg<¿p(G) = the inter-

section of all maximal subgroups of G with [G : S] prime to p. By a result of Deskins

in [4], 4>P(G) is solvable, so M is solvable.

In the following theorem, most of the equivalences are immediate corollaries of

Theorem 7.4; the equivalence of (i) and (iv) is part (c) of Theorem 7-C, and is

included here for completeness.

Theorem 7.5. For G a finite group, the following are equivalent:

(i) G is solvable.

(ii) G has a maximal subgroup S such that S and its normal outer cofactors are

solvable.

(iii) G has a solvable maximal subgroup S with n(G:S) a power of a prime.

(iv) G has a solvable maximal subgroup S with n(G:S)=[G:S].

(v) For each abnormal maximal subgroup S of G, the normal outer cofactors of

S are solvable.

(vi) For each abnormal maximal subgroup S ofG, n(G:S) is a power of a prime.

(vii) For each abnormal maximal subgroup S ofG, n(G:S) = [G:S].

(viii) For each abnormal maximal subgroup S of G, K n S is normal in G for all

KeO<G(S).

(ix) For each abnormal maximal subgroup S of G, K n S is subnormal in G for

all K e 0<G(S).

[Note. As in Theorem 7.4, the word "abnormal" can be omitted in any of

(v)-(ix).]

Proof. The equivalence of (i), (ii), (iii), (v), (vi), and (vii) is immediate from

Theorem 7.4 and the fact that a finite group is solvable if and only if it is p-solvable

for all primes p dividing its order. The equivalence of (i) and (iv) is the result of

Beidleman and Spencer (part (c) of Theorem 7-C).

(vii) <-> (viii). Let S be a maximal subgroup of G and Ke &<¡G(S). If K n S<1G,

then K n corG S^co^ (K r\ S) = Kn S, thus

n(G:S) = \K/KncoTGS\ = [K : K n S] = [KS:S] = [G:S].

For the converse, this argument is reversible. For if n(G: S) = [G:S], then

|tf/Â:ncor0S| = [G:S] = [KS:S] = [K : K n S];

thus since K n corG S^K n S, we have, using Lemma 5.1, that

KnS = Kn corG S = corG (K n S),

so K n S<G.

(viii) <-> (ix). We show first that if F is any subgroup of G and 77 e <P<¡G(T),

then scorG (77 n F) = 77 n scorG F. For this, since 77<1G and scorG F«1G, we

have H n scorG T<]<]G, hence 77 n scorG FçscorG (77 n F). On the other hand,

since scorG (77 n F) is contained in F and is subnormal in G, it must be contained

in scorG F; consequently, scorG (77 n F)ç77 n scorG F.
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Now let S be a maximal subgroup of G and let K e 0<|G(5). From the above and

Lemma 1.2, scorG (K n S) = K n scorG S = K n corG 5 = corG (K n S). Thus, since

Kn S«G if and only if scorG (K n S) = K n S, it follows that K n S<¡<¡G if

and only if K n S=corG (K n S) which is equivalent to K n S being normal in G.

Our last two results extend the following theorem of Deskins in [4]:

Theorem 7-D. FAe intersection of those maximal subgroups S of the finite group

G with n(G : S) divisible by two distinct primes is the largest normal solvable subgroup

of G (the intersection of an empty collection of subgroups being understood, as usual,

to be all of G).

Theorem 7.6. Let p be aprime dividing \G\, Rp(G) = the largest normal p-solvable

subgroup of G, and let J?P(G) = the collection of maximal subgroups S of G with

n(G : S) divisible by both p and some prime distinct from p, or equivalently, those

maximal subgroups S with non-p-solvable normal outer cofactors. Then

RP(G) = H {S | S e J(P(G)} = H {S e Jip(G) \ S X¡ G}.

Proof. Letting TP(G) = D {S \ S e Jfp(G)}, and T*(G) = f) {S e Jip(G) | 5X1G},

we show (i) RP(G) = TP(G), and then (ii) RP(G) = T*(G).

(i) We note first that every p-solvable minimal normal subgroup M of G (which

is thus either a p-group or ap'-group) is contained in TP(G). For suppose M^ TP(G)

for such an M; then there exists 5 e Jtp(G) with M^ 5, so M$ corG 5. Now,

Me(P<G(S), so n(G:5)=|M/Af ncorG5| = |M|; hence, |M| is divisible by both

p and some prime ^p, which contradicts M being p-solvable and minimal normal

in G.

It follows then that if TP(G) = 1, then RP(G) = 1 also. We may assume, therefore,

that FP(G)^1. Now, TP(G)<\G. For from the definition <S<G(S) for 5 a maximal

subgroup of G, if x e G then 77 e 0<G(S) if and only if 77 e &<G(Sx) ; thus, n(G : 5)

= n(G:Sx) so that 5 e J(P(G) if and only if Sx e Jip(G).

Let M be a minimal normal subgroup of G contained in TP(G). We show first

that M is p-solvable, hence is either a p-group or a p'-group and is contained in

RP(G). For suppose Mis not p-solvable. Then M ̂  F(G), so there exists an abnormal

maximal subgroup 5 of G not containing M. Then M e (9<¡G(S) and n(G : 5) = | M \.

Since M is not p-solvable, there exists a prime q^p such that both p and q divide

|Af|. Then both p and q divide n(G:5)=|M|, so SeJip(G); and since M£S,

this means that M£ TP(G), a contradiction.

Now, RP(G/M) = RP(G)/M. For clearly, RP(G)/M<=RP(G/M); and if RP(G)/M

= K/M, then AX1G and K is p-solvable from the p-solvability of K/M and M, so

KÇRP(G), hence, Rp(G/M) = K/MçRp(G)/M.

Also, we have TP(G/M) = TP(G)/M. For by Lemma 7.3, if S/M is a maximal

subgroup of G/M, then n(G/M:S/M)=n(G:S); and since M^TP(G), M^S for all

5 e Jtp(G). It follows that 5 £ Jtp(G) if and only if S/M e Jlp(G/M). Thus MP(G/M)

= {S/M | 5 g MP(G)\ so TP(G/M) = C) {S/M | 5 e J?P(G)}= [C] {S \ S e Jip(G)}]/M

= TP(G)/M.
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Now, by induction, RP(G/M) = TP(G/M); therefore, by what we have just shown,

RP(G) = TP(G).

(ii) Obviously, TP(G)^T*(G); thus, if F*(G) = 1, then FP(G)=1, so from (i),

we have T*(G) = RP(G) = 1. So suppose T*(G)¿ 1. T*(G) is normal in G; for from

the proof of (i), if x e G, then S e Jtp(G) if and only if Sx e Jip(G), and clearly,

S ̂ G if and only if SXX\G.

Let M be a minimal normal subgroup of G contained in T*(G). From (i),

RP(G/M) = RP(G)/M. Also, we have T*(G/M) = T*(G)/M. For letting J(%(G) be

the collection {SeJ(p(G) \ SXG}, we have from the proof of (i) that ,ä*(G/M)

is the collection {S/M \ S/MXG/A/and S e J?P(G)}; and since S/M is an abnormal

maximal subgroup of G/M if and only if S is an abnormal maximal subgroup of G

containing M, we have Jt*(G/M) = {S/M \ S e J(%(G) and M s 5}. But Af£ F*(G),

hence Me 5 for all 5 e J(%(G), so Jt*(G/M) = {S/M \ S e JÏ*(G)}. It now follows

that T*(G/M) = T*(G)/M.

By induction, RP(G/M) = T*(G/M); thus, by what we have just shown, RP(G)

= T*(G).

Corollary 7.7. Let R(G) be the largest normal solvable subgroup of G, and

Jt(G) = the collection of all maximal subgroups S of G with n(G:S) divisible by two

distinct primes, or equivalently, those maximal subgroups with nonsolvable normal

outer cofactors. Then R(G) = (~\{S\Se Ji(G)} = C] {S e J((G) | SXG}.

Proof. Let t(G) = {pi, .. .,pm}. From the fact that a finite group is solvable if

and only if it is p-solvable for all primes p dividing its order, it follows that R(G)

= nP=i BP.(G), where RPl(G) is the largest normal prsolvable subgroup of G. Now,

for each /= 1,..., m, if JtPi(G) = {Sii \j=\, ■ ■ -, w¡} is the collection of maximal

subgroups with normal index divisible by poth p, and some prime ^p,, then from

Theorem 7.6 we obtain R(G) = Df=1 RPt(G) = f)^y f|?Li Sw=f|{S | SeJ/(G)}.
In a similar manner, P(G) = C] {S e Ji(G) \ S XG}.
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