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COGNITIVE SCIENCE 15, 251-269 (1991) 
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A probability may be colled “default” if it is neither derived from preestablished 

probabilities nor bosed on considerations of frequency or symmetry. Default 

probabilities presumably arise through reasoning based on causality ond simi- 

larity. This article advances o model of default probobility based on o feoturol 

approach to similarity. The accuracy of the model is assessed by comparing its 

predictions to the probabilities provided by undergraduates asked to reason 

about mommols. 

1. INTRODUCTION 

One of the most fundamental cognitive acts is the attribution of a probabil- 
ity p(S) to a statement S, for example, the attribution of .7 probability to 
the claim that the economy will weaken next year. We may distinguish four 
ways in which people produce such attributions. 

1. Relative Frequency. Having observed a sample of m individuals, n of 
which have a certain property, it is common to ascribe probability n/m 
to the statement that another individual drawn from the same popula- 
tion will also possess the given property. A large literature testifies to 
the fact that people often rely in this way on relative frequency as a 
guide to probability, even in the absence of random sampling (see Estes, 
1976 for a review). 
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2. Principles of Symmetry. Given one face of a cubical and homogeneous 
die, it is natural to assign probability l/6 to the statement that this face 
will turn up after a vigorous role. Such an intuition is based on the sym- 
metry of the die and on some version of the doctrine of “insufficient 
reason.” (For justification and extension of this doctrine see Jaynes, 
1979. Myers & Osherson, in press, offer discussion from a psychologi- 
cal point of view.) 

3. Derivation from Preestablished Probabilities. People often attempt to 
deduce desired probabilities from probabilities antecedently attributed 
to statements, for example, using Bayes’ theorem. Such mental deduc- 
tions presuppose an inference procedure, perhaps implicitly held, and 
perhaps deviant from the viewpoint of classical probability theory. A 
considerable body of psychological research has been devoted to char- 
acterizing the inference procedures that underlie derivations of this 
kind. (See Baron, 1988 for a review.) 

4. Default Reasoning. If a desired probability cannot be ascertained using 
the foregoing methods, it is necessary to rely on reasoning schemas of a 
nonprobabilistic kind, involving causal inference and similarity. Collins 
and Michalski (1989) examined a variety of schemas of this kind, but 
did not connect them to probability estimation per se. 

This article addresses default reasoning about probability. In particular, 
we consider judgments about the (conditional) probability of statements 
concerning mammals, given the truth of other statements. A similarity- 
based model of such reasoning is advanced and evaluated against judgments 
elicited from undergraduates. Although numerous schemes have been ad- 
vanced for reasoning by similarity (see Vosniadou & Ortony, 1989), there 
appear to be no proposals for converting similarity into specific probabili- 
ties. A successful method of this kind would be a contribution not only to 
psychology, but also to artificial intelligence inasmuch as it would help to 
isolate analogical processes in automated reasoning, focusing them solely 
on default probabilities. Inference can then be carried out within the frame- 
work of classical probability theory. (See Pearl, 1988, Section 1.4, for the 
advantages of this strategy in automated inference.) 

Our goal is limited to showing the feasibility of converting similarity into 
probability, rather than advancing the definitive similarity model. Conse- 
quently, we shall attempt to demonstrate the predictive power of a simple 
model of this kind, treating more complex alternatives cursorily. Although 
our model is based primarily on similarity, we do not deny the importance 
of causal schemas and other nonsimilarity mechanisms in probabilistic 
reasoning. (See Collins & Michalski, 1989 for discussion of many such prin- 
ciples.) Indeed, by assessing the strengths and weaknesses of similarity 
approaches to default probability, the role of nonsimilarity mechanisms 
may be expected to emerge more clearly. 



DEFAULT PROBABILITY 253 

The underlying idea of our model can be conveyed as follows. Suppose 
that objects 01. . . on each have property P, and that none of 0,‘. . . oh have P. 
Then, in the absence of other information, the probability that some new 
object o has P is assumed to vary directly with the similarity of o to 01. . . on 
and inversely with the similarity of o to or’. . .oh. Several principles are 
needed in order to make this idea precise. For the case in which all the ob- 
jects are at the same hierarchical level, we need principles that determine (a) 
the similarity between pairs of objects; and (b) the amalgamation of multi- 
ple, pairwise similarities into an overall judgment. For the case in which 
objects are at different hierarchical levels, we need additional principles that 
determine (c) the decomposition of higher-level objects into lower-level ones. 

Principles relevant to (b) and (c) will be derived from the theory of cate- 
gory-based induction advanced in Osherson, Smith, Wilkie, Lopez, & Shafir 
(1990). Knowledge of the latter theory is not presupposed here, however, 
because the needed principles will be introduced later. With regard to (a), 
we rely on a feature-based conception of similarity. Given mammals ml, m2 

with feature sets MI, M2, the similarity of ml to mz is taken to be: 

(1) sim(ml, m2) = 
Mlf-lM2 

MlUM2 

This model has a long history in psychology and biology (see Gregson, 
1975, Section 2.5). Its accuracy in this context is documented in a separate 
experiment reported later. 

We now overview the empirical studies used to test the model. All the 
studies center on 48 mammals, chosen for familiarity and diversity; they are 
listed in Table 1. Eighty-five properties were selected to represent common 
knowledge about the 48 mammals. Abbreviations for the properties are listed 
in Table 2 (p. 254), and sample properties are given in unabbreviated form 
in Table 3 (p. 254). Subjects always worked with unabbreviated properties; 
the abbreviations are for expositional ease. With the exception of animal 
noises (bleating, roaring, etc., essentially unique to each animal), no other 
property was listed by more than a single subject from a group of 10 MIT 

TABLE 1 

Mammals 

antelope 

bat 

beaver 

blue whale 

bobcat 

buffalo 

chihuohua 

chimpanzee 

collie 

eleohant 

deer horse 

dalmation humpback whale 

fox leopard 

german shepard lion 

giont pando killer whale 

giroffe mole 

gorilla moose 

grizzly bear mouse 

hamster otter 

h’ lppopotomus OX 

persian cat 

pig 
polar bear 

robbit 

raccoon 

rot 

seal 

sheep 

Siamese cat 

skunk 

spider monkey 

squirrel 

tiger 

walrus 

weasel 

rhinoceros 

wolf 

zebra 
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TABLE 2 

Abbreviated Prooerties 

black 

red 

hairless 

flippers 

longleg 

horns 

swims 

weak 

nocturnal 

eats vegetation 

skimmer 

desert 

mountains 

fierce 

domesticated 

white 

yellow 

toughskin 

hands 

toil 

claws 

tunnels 

muscular 

hibernates 

eats insects 

stalker 

bush 

ocean 

timid 

blue 

patches 

big 

hooves 

chewteeth 

tusks 

walks 

bipedol 

agile 

forager 

newworld 

plains 

ground 

smort 

brown 

spots 

small 

pads 

meatteeth 

smelly 

fast 

quadrupedal 

eats fish 

grazer 

oldworld 

forest 

water 

group 

gray 
stripes 

bulbous 

paws 

buckteeth 

flys 

slow 

active 

eats meat 

hunter 

arctic 

fields 

tree 

solitary 

oronge 

furry 

lean 

longneck 

strainteeth 

hops 

strong 

inactive 

eats plonkton 

scavenger 

coastal 

jungle 

cave 

nestpot 

TABLE 3 

Somole. Unabbreviated Prooerties 

black: 

bulbous: 

longleg: 

chewteeth: 

vegetation: 

newworld: 

agility: 

swims: 

ocean: 

nestspot: 

the color black in its visual appearance 

having o roundish or bulky body shape 

hoving a long leg 

having molars that ore good for chewing 

commonly eats vegetation in its natural habitat 

living in the New World (North and South America) 

hoving o high degree of physical coordination 

swimming as a means of locomotion 

living in the ocean 

keeping their young in a designated, enclosed orea 

students asked to supply properties of mammals. Moreover, none of the 85 
properties were judged to be inappropriate by more than 1 student in the 
same group. These pilot studies, along with the coherence of the results 
reported later, suggest that the 85 properties capture common knowledge 
about familiar mammals. 

Three rating tasks were performed in this study, each employing a sepa- 
rate group of subjects. The first task measured the strength of association 
between each of the 48 mammals and each of the 85 properties. The second 
task obtained similarity ratings between pairs of mammals. The third task 
focussed on probability judgment. The property-rating task is described in 
Section 2. Its purpose was to build a database of mammal facts from which 
similarity between mammals could be calculated. The ability to predict simi- 
larity on this basis is tested in the similarity task, described in Section 3. The 
probability task is described in Section 4. Its purpose was to assess different 
methods for generating default probabilities by comparing generated prob- 
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abilities with the actual judgments of our subjects. Ideally, every subject 
would have rated every mammal on every property, and also completed the 
similarity and probability tasks. In practice, it was decided that subjects 
should work for no more than an hour, participating in just one of the 
tasks. This procedure minimizes fatigue and the risk of contaminating judg- 
ments in one task by recollection of another. On the other hand, the accu- 
racy of our analyses are thereby limited by the effects of between-subject 
variability, as will be pointed out later. 

The methods and results of the three tasks are now described. All sub- 
jects were MIT undergraduate volunteers, recruited through advertisements 
and paid for their participation. 

2. PROPERTY-RATING TASK 

2.1 Method 
Subjects first reviewed the list of 48 mammals and 85 properties (unabbrevi- 
ated). It was explained that a nonnegative number was to be assigned to 
each mammal-property pair; the number should reflect “the relative strength 
of association between the property and the mammal.” No upper bound 
was imposed on these ratings. Subjects were also told to expect that many of 
the properties would be negligibly associated with many of the mammals. A 
rating of 0 was to be used for these cases. 

Each subject worked for 1 hour, evaluating lo-15 randomly chosen 
mammals on all 85 properties (faster subjects evaluated more mammals). 
For each mammal evaluated, all the properties were rated for that mammal 
before the next mammal was introduced. Properties were rated in the order 
given in Table 2 (each row read from left to right). A computer terminal was 
used to present properties and record data. Subjects worked individually at 
their own speed and had the opportunity to review and revise their prior 
ratings at any time. Twenty-nine subjects participated in the property-rating 
task. Random sampling of the mammals was constrained so that each mam- 
mal was evaluated by 8 or 9 subjects. 

2.2 Results 
So that averages would not be biased by those subjects using large numbers, 
every subject’s ratings were individually normalized by a linear transforma- 
tion to range from a lowest score of 0 to a highest score of 1. For each mam- 
mal, the normalized scores of the 8 or 9 subjects rating it were averaged. 
The result is a 45 x 85 matrix whose i, j-cell approximates the degree to 
which property j is associated with mammal i in the minds of MIT under- 
graduates. Henceforth this matrix will be denoted by M. The ith row of A4 
corresponds to the ith mammal of the 48 used in the study; this mammal 
will be denoted by mi. 
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The following statistics provide some information about the variability 
of the ratings for the different mammals. The overall association to mi is 
defined as 

.qi , M(i, j). 

The average overall association to the 48 mammals is 17.76 (SD = 2.63). The 
number of nontrivial associations to m; is defined to be the number ofjl85 
such that M(i, j) 2 .l. The average number of nontrivial associations to the 
48 mammals is 41.9 (SD = 5.64). 

3. SIMILARITY TASK 

3.1 Method 
To test the psychological reality of similarity model (1) as well as the inter- 
subject stability of our Mammal x Property matrix, 30 subjects were asked 
to rate the similarity of pairs of mammals drawn from the initial stock of 
48.’ None of the 30 subjects had participated in the property-rating task. 
The following instructions were employed: 

This experiment concerns your judgment about the biological similarity of 
different mammals. The similarity of two mammals depends on how alike they 
are in physiology, anatomy, diet, behavior, habitat, appearance, etc. For each 
pair of mammals that is presented, you will assign a value between 0 and 100 
(decimals allowed) that reflects the similarity that you perceive between the 
mammals mentioned in the pair. Numbers closer to 100 should reflect greater 
similarity, numbers closer to 0 should reflect lesser similarity. 

For each subject 40 pairs of mammals were individually randomly selected 
with the sole constraints that (a) no identity pairs (e.g., zebra-zebra) be in- 
cluded; and (b) no two pairs of the form x-y and y-x be included. A given 
subject’s 40 pairs were sequentially presented for rating on a computer ter- 
minal in randomized order. The mammals of a pair appeared on the same 
line, the choice of left-most mammal being determined randomly. Subjects 
worked at their own speed and could review and revise earlier ratings at any 
time. The procedure typically lasted 30 minutes. 

3.2 Results 
We define the following function sim from pairs of mammals to [0, 11. 
Given mammals mi, Mk. 

(2) sim(mi, mk) = 
$2 I minimum {M(i, j), M(k, j) } 

T$z, maximum {M(i, j), M(k, j)} 

’ Two additional subjects were excluded from the experiment because they responded in- 

correctly to at least 3 of 10 elementary questions about mammals administered in a preexperi- 

mental interview. 
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The sim function (2) reduces to the sim function (1) of Section 1 if the associ- 
ation M(i, j) of propertyj to mammal i is conceived as consisting of “micro- 
features” that sum toM(i, j); the greater the number of such microfeatures, 
the greater the level of association. The minimum of {M(i, j), M(k, j)} may 
then be conceived as the intersection of two sets of microfeatures, and the 
maximum as their union. The intersection represents the commonality of 
mi. Mk, whereas the union is the sum of commonality and distinctiveness. 
[Distinctiveness is computed by 

Definition (2) has three features that render it more appropriate to this 
study than Tversky’s (1977) well-known contrast model of similarity, which 
places commonality and distinctiveness in linear combination. First, defini- 
tion (2) ensures that similarities, like probabilities, are numbers in [0, 11. In 
comparison, the contrast model allows similarities to be any number, posi- 
tive or negative. Our attempt to derive probability from similarity will be 
facilitated by the restricted range of the similarity function (2). Second, 
definition (2) implies that for every mammal m;, sim(mi, m;)= 1, which 
corresponds to the maximum informativeness of m; in inferences about mi. 
In comparison, the contrast model allows sim (m;, mi) to be any positive real 
number, and sim(mi, mi)#sim(mj, mi) is possible for distinct mammals 
mi, mj. There seems to be no fact about inference that corresponds to this 
variability in self-similarity. Finally, no free parameters appear in definition 
(2), whereas three are required for the contrast model. The absence of param- 
eters simplifies the evaluation of models in what follows. 

For each of the 30 subjects we computed the Pearson correlation between 
(a) the similarity values assigned by that subject to the 40 pairs of mammals 
he or she evaluated, and (b) the values of sim for those same pairs, com- 
puted from (2). Note that sim values do not depend on any data from the 
similarity subjects, because only the matrix M enters their calculation and 
M was constructed from the data of the property-rating task. As a conse- 
quence, between-subject variability in opinions about mammal features can 
be expected to lower the correlation between observed similarity values and 
predicted sim values. Nevertheless, the average of these 30 correlations is 
.64 (p< .OOl, SD = .123). We interpret this result as supporting the psycho- 
logical reality of the Mammal x Property matrix A4 as well as definition (2) 
of similarity.* 

4. PROBABILITY TASK 

The probability task consisted of a categorization procedure followed by a 
judgment procedure. The purpose of the first procedure was to identify the 

’ Because each subject received an individually randomized set of pairs for rating, no analy- 

sis using pooled data is possible. 
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superordinate categories that the subject recognizes among mammals. 
These superordinates figured in the probability questions to which the sub- 
ject responded in the’second procedure. Thirty new subjects completed the 
probability task.’ Before describing the two procedures we discuss the 
nature of the probability questions used. 

4.1 Probability Questions Used 

4.1. I General Form of the Questions. In the judgment procedure subjects 
evaluated conditional probabilities like those appearing in the following 
questions. 

(3) (a) What is the probability that horses require biotin for hemoglobin syn- 
thesis assuming that giraffes do? 

(b) What is the probability that all canines use norepinephrine as a regula- 
tor of sexual drive assuming that wolves do and felines do not? 

(c) What is the probability that all mammals can regulate their feeding 
cycle in conditions of constant illumination assuming that bears can? 

The statement “All canines use norepinephrine as a regulator of sexual 
drive” will be called the conclusion of question (3 b), whereas the succeed- 
ing statements about wolves and felines will be called premises, and similarly 
for other questions. As illustrated in (3 b), some questions included negative 
premises. Conclusions were always affirmative. 

The premises and conclusion of a given question always invoke the same 
predicate and have one of the following logical forms: (a) all members of 
category X have property P, or (b) all members of category X do not have 
property P. The predicates figuring in the questions, for example, “requires 
biotin for hemoglobin synthesis,” may be termed blank inasmuch as sub- 
jects are unlikely to attach prior probabilities to conclusions involving such 
properties. The use of blank predicates thus allows all relevant background 
information to appear explicitly in the premises of a probability question. 
This study is limited to blank predicates; extension to nonblank predicates is 
briefly discussed in Section 6.2. Probability questions will henceforth be 
abbreviated by (a) omitting their predicates, (b) writing premises above con- 
clusion with a separating line, and (c) indicating premise polarity by +- or 
- . Thus, (3 b) is abbreviated to: 

+ wolves 
_ felines 

canines 

’ One additional subject was excluded from the experiment because he failed the preexperi- 

mental test described in Footnote I. Another additional subject was dropped because of highly 

bizarre superodinates (his data were not analyzed). 
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Question (3 b) illustrates the presence of superordinate categories likefeline 
and canine among premises and conclusions. These superordinates do not 
figure among our list of 48 mammals but rather include subsets of them. 
Pilot studies revealed that superordinates recognized by M.I.T. undergrad- 
uates are variable in both name and membership. Consequently, with the 
exception of mammal (assumed common to everyone), the superordinates 
figuring in a given subject’s questions were drawn exclusively from the set 
established in that subject’s categorization procedure. 

A vast number of probability questions may be generated from the 48 
mammals plus associated superordinates. Each subject responded to an 
individually randomly selected subset of questions that met certain criteria. 
One criterion excluded defective questions; other criteria included questions 
of suitable type. The next two subsections set forth these criteria. 

4. I.2 Exclusion of Defective Questions. Three kinds of defective probability 
questions are now defined. (The definitions are relative to the superordinate 
categories established by a particular subject.) A question is contradictory if 
its premises cannot all be true. Suppose, for example, that both the superor- 
dinatesfeline and man-eating contain lion. Then question (4) is contradictory. 

(4) + felines 
-man-eaters 
rhinos 

A question is redundant if one of its premise categories includes another. 
For example, (5) is redundant if canine is the standard category. 

(5) + canines 
f German shepards 
rabbits 

Similarly, { + /ion, + lion} is a redundant premise set. 
A question is trivial if its premises logically imply its conclusion, or the 

negation of its conclusion. For example, the following are trivial (assuming 
that canine is the standard category). 

(6) - collies 
+ foxes + canines 
canines wolves 

We also consider trivial any question whose conclusion is implied by its 
premises under the assumption that our 48 instances exhaust the category 
mammal. By this criterion (7) is trivial, if the union ofpredator andprey in- 
cludes all 48 mammals. 

(7) +predalors 
+ Prey 
mammals 
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All probability questions posed to subjects were noncontradictory, non- 
redundant, and nontrivial. 

4.1.3 Inclusion of Suitable Types. A premise or conclusion may be called 
“specific” if its category is one of the 48 mammals of Table 1; it is “super- 
ordinate” if its category is defined by the subject as including at least 2 but 
not all of the 48 mammals; and it is “general” if its category is mammal. We 
distinguish four types of premises: either specific or superodinate, and either 
affirmative or negative (general premises are excluded by nontriviality). We 
distinguish three types of conclusion, either specific, superordinate, or 
general (all conclusions are affirmative). Two probability questions are said 
to be of the same type just in case (a) their conclusions are of the same type; 
and (b) the number of premises of each type are equal across the two ques- 
tions. For example, the following pairs of questions are of the same type: 

+ bobcat -feline 

-canine + rat 

seal skunk 

+ elephant -lion 

- sheep t hamster 

+ primate + canine 

canine feline 

+ beaver + collie 

mammal mammal 

A counting argument shows that there are exactly 47 types of questions 
meeting the following conditions: 

(8) (a) the question has 1, 2, or 3 premises; 
(b) it has at least 1 positive premise; and 
(c) it has at most one negative premise. 

Any question of one of these 47 types-provided that it is neither contradic- 
tory, redundant, nor trivial-was potentially available for use in the proba- 
bility task. We now describe the categorization and probability procedures 
that constituted the task. 

4.2 Categorization Procedure 
Subjects first read the following instructions: 

This part of the experiment concerns your judgment about how to distribute 
mammals into natural categories. Your task will be to create biologically mean- 
ingful groups, and then for each group to indicate which of the 48 mammals 
belongs to it. It is permitted to leave a mammal uncategorized if there are no 
other mammals in the list with which it forms a biologically natural group. 
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Groups can be of any size, and it is permissible to have overlap of members 
For each group, you will need to devise a short, descriptive label. 

Categorization was carried out on a computer terminal. Subjects devised 
category names and indicated which mammals among the 48 were included 
in it. Review and revision of previous choices of category name and mem- 
bership was possible at any time. The superordinate name “mammal” was 
not allowed. The categorization procedure lasted roughly 30 minutes. 

4.3 Judgment Procedure 
Subjects first read the following instructions: 

This part of the experiment concerns your judgment about the probability that 
a category of mammals possesses a given, biological property. The properties 
in question might involve any biologically meaningful aspect of mammals, 
including their physiology, anatomy, diet, behavior, habitat, appearance, etc. 
Examples of these properties are the following: 

l requires biotin for hemoglobin synthesis; 
l has sesamoid bones; 
l can regulate their feeding cycle in conditions of constant illumination; 
l blood salinity declines from infancy to maturity; 
l uses norepinephrine as a regulator of sexual drive. 

Imagine that a biological property like one of these has recently come under 
investigation. You know nothing about the property except that it is biological 
in character, and called “f” for short. You will be asked to judge the proba- 
bility that one kind of mammal has property P, assuming it to be known that 
other kinds of mammals do-or do not-have P. 

Forty-seven probability questions were then randomly generated for each 
subject. The superordinates appearing in the questions were drawn from the 
list established by the same subject in the preceding categorization proce- 
dure. Each question exemplified a distinct type from the set of 47 types 
satisfying (8). No question was either contradictory, redundant, or trivial. 
Within these constraints, the mammals and superordinates appearing in a 
given question were chosen randomly for each subject individually. For 
multiple-premise questions, the order of premises was determined randomly. 
The order in which a given subject’s 47 questions were presented for evalua- 
tion was also determined randomly. 

The judgment procedure was carried out on a computer terminal. Ques- 
tions appeared in the form exemplified by (9). 

(9) Given that: 
(1) Rats have the property P, 
(2) no canines have the property f, 
(3) felines have the property P, 
what is the probability (O-100%) that all primates have the property P? 
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After responding to the 47 questions, subjects reviewed their answers and 
could revise any of them. 

5. RESULTS OF THE PROBABILITY TASK 

5.1 Global Statistics 
The average number of superordinates generated by the 30 subjects in the 
categorization procedure was 11.4 (SD= 3.49), with a minimum of 5 and a 
maximum of 20. Over all 30 subjects, the average number of mammals in- 
cluded in a given superordinate was 5.8 (SD = 4.66). The average probability 
assigned by a given subject in the judgment procedure ranges from .220 to 
.620. Over all subjects, the mean of these averages is .477 (SD= .118). 

5.2 Assessing Default Reasoning Models: General Remarks 
We now consider several models for predicting the probabilities assigned by 
an individual subject. All the models are assessed as follows. One question 
is selected from the 47 evaluated by a given subject. It is the probability 
assigned to this “target” question that must be predicted. The prediction is 
generated by whatever computation is prescribed by the model at issue. This 
computation may use as input no more than: (a) the subject’s answers to the 
46 remaining questions; (b) information about membership in the subject’s 
superordinate categories (as established in the categorization procedure for 
that subject); and (c) the Mammal x Property matrix M established in the 
property-rating task. The absolute difference between predicted and assigned 
probabilities for the target is determined. A new target question is then 
selected and the remaining 46 questions (including the old target question) 
are used to generate a prediction about the new target. This procedure is 
repeated for all 47 possible target questions. The performance of the model 
for the given subject is measured by the average, absolute deviation over all 
47 questions between predicted and assigned probabilities. This average is 
called the discrepancy for the chosen subject. We seek a model that mini- 
mizes the average discrepancy across all 30 subjects. 

5.3 An Actuarial Model 
In order to establish baseline performance for comparison with other models, 
an actuarial model for generating default probabilities was assessed. To 
predict the probability assigned by the subject to the target question we used 
the average probability assigned by that subject to the remaining 46 ques- 
tions. The average discrepancy for this model across all 30 subjects is .191 
(SD = .047).’ 

‘ Because each of the 47 questions that a subject answered was of unique type (in the sense 

of Section 4.1.3). it is not possible to predict a target question by averaging over the subset of 

remaining questions of the same type. Such an averaging scheme might be the best actuarial 

model in a context where multiple questions of the same type were evaluated by a single subject. 
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5.4 A Similarity Model 
Our similarity model was briefly discussed in Section 1, and may be described 
as follows. Let a target question Q be given. We first determine the similarity 
of Q’s positive premises to its conclusion as well as the similarity of Q’s 
negative premises to its conclusion. The probability assigned to Q is taken 
to be a linear combination of these latter two similarities. The coefficients 
of the linear combination are derived by regression over the remaining 46 
questions. We now describe this procedure precisely. 

The sim function of definition (2) applies to pairs of mammals. To imple- 
ment our model of probability judgment we must extend sim to a function 
SIh4 defined on pairs X, Y of subsets of mammals. Intuitively, SIM(X, Y) 
measures the extent to which X “covers” Y, specifically, the extent to which 
every member of Y is near to some member of X. SIM is defined as follows. 

(10) Let X, Y be subsets of mammals, and lety be a particular mammal. 
(a) S1M(X,y) = muximum{sim(x,y) ] xEX}; 
(b) SIM(X, Y)=mean{SIM(X,y) 1 yE Y}. 

Thus, SIM(X,y) is the maximum similarity of a member of X toy, and may 
be termed “the similarity of X to y. ” SIM(X, Y) is the average similarity of 
X to members of Y. [Note that SZM(X, Y) need not equal SIM(Y,X).] 

As a means of predicting our subjects’ assigned probabilities, SIM has 
some noteworthy properties. Three of these are now discussed, Let Q be a 
probability question whose premises are positive and specific, and whose 
conclusion is superordinate. Let X = xi . . .xn be the mammals figuring in the 
premises, and let Y=yi . . .ym be the mammals included in the conclusion 
category. 

1. 

2. 

SIM(X, Y) is monotone in n, as easily seen. Likewise, the probability 
that subjects actually assign to Q usually does not decline with expan- 
sion of the premise set X. Exceptions to this generalization are docu- 
mented in Osherson et al. (1990) under the term “nonmonotonicity.” 
The exceptions are rare enough, however, to warrant the monotonicity 
of szA4. 
SIMis not monotone in m; The mean operator in (10 b) allows SIM (X, Y) 
either to increase or decrease as Y is expanded. Normatively, we expect 
the probability of Q to decline monotonically with increasing m. But 
subjects often violate this principle when faced with questions like the 
following, judging the first to be more likely than the second. 

+ mouse + mouse 
mammal hippo 

This pattern of judgment is documented in Osherson et al. (1990) under 
the term “inclusion fallacy.” In contrast to nonmonotonicity with 
respect to premises, the inclusion fallacy is prevalent in ordinary reason- 
ing (see Shafir, Smith, & Osherson, in press). The use of mean in (10 b) 
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3. 

is a simple mechanism for representing this feature of naive judgment. 
For example, SIM( { mouse}, mammal)> SZM( { mouse}, {hippo}), be- 
cause almost all mammals resemble mice more than hippos do.’ 
SIM conforms to the “diversity effect,” namely, the tendency for the 
probability assigned to Q to rise as the average similarity between mem- 
bers of X declines. This effect is documented in Osherson et al. (1990); 
it has also been discussed by philosophers of science (e.g., Horwich, 
1982). I’t is easy to see that SZM(X, Y) also tends to rise with the diversity 
of X (because of the maximum operator in (10 a). For further discus- 
sion of these and other properties of SIM, see Osherson et al. (1990). 

We now describe our similarity model for generating default probabilities 
for a given subject. The model first associates a positive similarity factor 
and a negative similarity factor with each of the subject’s 47 questions. For 
each question Q, these factors are calculated in the following three steps. 

Step 1: Segregate the affirmative and negative premises of Q so as to 
form two subquestions, denoted Q’ and Q-. For example, if Q is: 

(11) +0x 
- canine 
+ feline 
seagoing 

then Q+ and Q- are as follows: 

(12) +0x 
+ feline -canine ____ ~ 
seagoing seagoing 

If Q contains no negative premises, then Q- is null. (By (8 b), Q has at least 
one positive premise.) 

Step 2: “Explode” Q’ and Q- by replacing superordinate categories 
with their members (according to the subject’s categorization data). Thus, 
assuming natural memberships for feline, canine and seagoing, Q+ and Q - 
from (12) become: 

(13) +0x 
+ bobcar 
+ leopard 
+ lion 
+ persian cat 

- chihuohua 
- collie 
- dalmatian 
-fox 

’ It is easy to see that use of minimum in (10 b) rather than freon would block the inclusion 

fallacy, and hence, is more normatively acceptable. Thus, in modeling the probability judg- 
ment of experts instead of undergraduates, a model based on minimum would presumably be 
more descriptively accurate than one based on mean. 
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+ Siamese cat - german shepard 
+ tiger - wolf 
bluewhale bluewhale 
.humpback whale humpback whale 
killer whale killer whale 
seal seal 
walrus walrus 

Q- remains null if Q contains no negative premises. If Q’s conclusion is 
general (i.e., contains mammal) than all 48 mammals appear in the conclu- 
sion set of its exploded arguments. If a premise or conclusion is specific, 
then explosion does not affect it. 

Step 3: Calculate SZM(X+,C) where Xi is theset of mammals appearing 
in Q+ ‘s exploded premises, and C is the set of mammals appearing in Q + ‘s 
conclusion. Zf Q- is not null, calculate SZM(X-,C) in the same fashion. 

Q’s positive similarity factor is SZM(X+,C) from Step 3. If Q- is null, 
then Q’s negative similarity factor is defined to be zero; otherwise, it is 
SZM(X-,C). We let Qpos be Q’s positive similarity factor and Qnes be Q’s 
negative similarity factor. It is expected, of course, that QPoS vary directly 
with the judged probability of Q and that Qnes vary inversely. 

Finally, given target question Q and remaining questions Qi (is 46), this 
model assigns a default probability to Q in the following manner. Using 
standard techniques from the theory of linear regression, real coefficients a, 
P, y are found such that 

(14) i;, (aQ? + bQyg + Y - i);)* 

is minimized, where Qi is the probability assigned by the subject to Qi. The 
probability predicted for Q is then: 

(15) crQJ”= + fiQneg + y  

The average discrepancy (in the sense of Section 5.2) for this model across 
all 30 subjects is .I52 (SD= .041).” A t test for related measures shows this 
performance to be significantly superior to that of the actuarial model of 
Section 5.3 (t = 9.09, p< .OOl). The discrepancy for 29 of the 30 subjects 
was lower using the similarity model than using the actuarial model. 

A related analysis of the similarity model was carried out as follows. For 
each subject we calculated the multiple correlation between the probability 
assigned to a given question Q and the values of QPoS and Q”es for that 

6 It is possible for (15) to fall outside the interval (0, I]. However, this occurs so seldomly 
that no truncation step was employed to convert negative values to 0 or values greater than 1 to 
I. We note as well that in virtually every case, a turned out to be positive and p turned out to be 
negative, as expected. 
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question as given in Step 3 above. Thus, for each of the 30 correlations (1 
per subject), N= 47, which is the number of questions randomly generated 
for each subject. The average of these 30 correlations is .60 (SD = .124). The 
mean value of the regression coefficient for QPoS was .93; for Qneg it was 
- .25. The discrepancy in absolute value suggests that subjects paid more 
attention to positive than to negative premises.’ 

As before, it is well to note that the predictions of the similarity model 
rest heavily on the data of the subjects who rated mammal properties. Spe- 
cifically, the calculation of Qpos and Q neg for a given question Q depends 
only on the superordinate categories elicited from the subject in question 
plus the matrix M used to calculate G/n. As a consequence, between-subject 
variability in opinions about mammal properties can only depress the fit of 
the similarity model to the data of the probability task. 

5.5 A Pure Category Model 
To gauge the role of similarity per se in the accuracy of the similarity model, 
we devised a rival model that exploits information about superordinate cate- 
gories provided by each subject in the probability task, but does not depend 
on similarity. Thus, the rival model uses only data provided by the subject 
being modeled, because no recourse is made to sim and the matrix M upon 
which it is based. 

Given question Q, let Q prem denote the number of premises in the ex- 
ploded version of Q+ minus the number of premises in the exploded version 
of Q-. Let QCO”’ denote the number of conclusions in the exploded version 
of Q+ or Q-. Thus, Qprem measures the weight of evidence in favor of Q’s 
conclusion, whereas Qconc measures the generality of that conclusion. Qprent 
and Qconc are based entirely on a given subject’s category information; simi- 
larity does not intervene. 

Our category model is the same as the similarity model except that Qprem 
and Q’*“’ are used in place of QPDS and Q”eg respectively.’ The average dis- 
crepancy for this model across all 30 subjects is .179 (SD = .044). A t test for 
related measures shows this performance to be significantly superior to that 
of the actuarial model (t = 3.57, p < .Ol), but significantly worse than that of 
the similarity model (t= 7.61, p< .OOl). The discrepancy for 27 of the 30 
subjects was lower using the similarity model than using the pure category 
model. 

5.6 Other Models 
We have tried other methods for generating default probabilities, but they 
either work less well than the similarity model or are more complicated and 
work no better. The variations that were investigated include the following: 

’ Because each subject received an individually randomized sample of 47 arguments, no 

analysis is possible using pooled data. 

’ Truncation in the sense of Footnote 6 was employed to limit predictions to [0, I]. 



1. 
2. 

3. 

4. 

5. 
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Substitution of a linear similarity function for definition (2) of sim; 
Differential weighting of common and distinctive properties in calcu- 
lating sim; 
Enhanced weighting of properties that are shared by several premises in 
calculating similarity; 
Replacement of maximum by sum in (10 a) and replacement of mean by 
either minimum or maximum in (10 b); and 
Averaging techniques of various sorts in order to create “prototype vec- 
tors” from positive premises, negative premises, and conclusions. 

The foregoing variations were also tried in combinations. 

6. DISCUSSION 

This investigation is preliminary in two respects. First, the experimental 
procedure limits the accuracy that can be expected of any model of default 
probability. Second, blank rather than interpretable predicates figured in 
the probability questions. These topics are now discussed in turn. 

6.1 Limits on Accuracy in This Study 

6.1. I Division of Tasks. One set of subjects constructed the Mammal x 
Property matrix M and a different set of subjects responded to probability 
questions. This circumstance allows between-subject variability in knowl- 
edge about mammals to interfere with predictions of probability judgment. 
In an application of the similarity model for purposes of generating default 
probabilities automatically, information about objects and properties would 
be based on judgments made by the same person whose probabilities are to 
be predicted. 

6.1.2 Limited Number of Mammals. Only 48 mammals figured in this 
study. As a result, categories like canine are likely to include members (e.g., 
poodle) that fall outside the 48 mammals that subjects categorized. The 
exploded arguments generated in Step 2 of Section 5.4 are, therefore, im- 
perfect representations of questions involving categorical premises and con- 
clusions. A more comprehensive set of instances is likely to arise in a realistic 
setting. Similarly, realistic databases might code information about property 
variability (see Nisbett, Krantz, Jepson, & Kunda, 1983; Rips, 1989) and 
about the typicality of instances; these are potentially useful variables in 
similarity calculations. 

6. I. 3 Number of Predictive Variables. Only two variables-namely, posi- 
tive and negative factors of similarity-appear in the predicting formula 
(15) of Section 5.4. Other variables might be linearly combined with these 
two in the hope of increasing predictive accuracy beyond the .152 average 
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discrepancy achieved. In particular, the theory of category-based induction 
advanced in Osherson et al. (1990) posits additional variables related to the 
superordinate categories that subjects recognize among mammals. 

It is usually self-defeating, however, to incorporate additional variables 
into (15) because of the limited number of probability questions evaluated 
by each subject. For practical reasons, and in order to avoid stereotypical 
responding,, each subject in the judgment procedure responded to only 47 
questions. As a consequence, our attempts to add additional predictive 
variables were foiled by the emergence of ad hoc solutions to the regression 
equations based on 46 items. Use of these solutions to predict the probability 
assigned to target questions results in greater average discrepancy than 
obtained with just two variables, or else yields little improvement at the 
expense of a more complicated method. 

In a more realistic setting, a larger number of judgments would be avail- 
able, so extrapolation to a new probability can be based on methods incor- 
porating more variables. Nonlinear use of these variables might also be 
worthwhile. 

6.1.4 Minimization of Absolute Differences. The regression analysis used 
to fix the parameters (Y, /3, and y in (15) minimizes the squared deviation 
(14). In contrast, it is more natural to define average discrepancy in terms of 
absolute deviation, as we have done. The average discrepancy of the simi- 
larity method could thus be further reduced by minimizing 

(16) ;z, 1 CXQP” + /3Qfeg + y - 6; 1 

rather than (14) when fixing (Y, /3, and y. Minimization of absolute differ- 
ences is computationally difficult, which is why familiar regression techniques 
were employed here. However, we have employed numerical techniques to 
estimate values of CY, 0, y that minimize (16). Using these estimates, the 
average discrepancy of the similarity model is diminished by nearly 10%. 

6.2 Nonblank Predicates 
Extension of our results to probability questions with meaningful predicates 
is nontrivial because interactions can arise between a property explicitly 
ascribed to a given object and other properties it possesses (cf., Murphy & 
Medin, 1985). An initial approach to meaningful predicates is to limit them 
to properties already represented explicitly in prestored information about 
instances (e.g., size, habitat, color, etc. in this study). Attribution of such a 
property to an instance would change or confirm the value of the property 
initially represented for that instance. To reflect the greater importance of 
an explicitly attributed property, its weight in similarity calculations would 
be increased. A similar technique yielded positive results in a study of typi- 
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cality and conceptual combination (see Smith, Osherson, Rips, & Keane, 
1988). Stern (1991) applies mechanisms of this character to modeling default 
probability in the context of meaningful predicates. 
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