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D A N I E L  O S H E R S O N ,  E D W A R D  E.  S M I T H ,  T R A C Y  S. M Y E R S ,  
E L D A R  S H A F I R  A N D  M I C H A E L  S T O B  

E X T R A P O L A T I N G  H U M A N  P R O B A B I L I T Y  

J U D G M E N T  

ABSTRACT. We advance a model of human probability judgment and apply it to the 
design of an extrapolation algorithm. Such an algorithm examines a person's judgment 
about the likelihood of various statements and is then able to predict the same person's 
judgments about new statements. The algorithm is tested against judgments produced by 
thirty undergraduates asked to assign probabilities to statements about mammals. 

Keywords: Probability, judgment, psychology. 

The present paper advances a model of human probability judgment 
and applies it to the design of an extrapolation algorithm. Such an 
algorithm examines a person's judgment about the likelihood of 
various statements and is then able to predict the same person's 
judgments about new statements. 

Section 1 describes the kind of extrapolation task for which our 
model is designed. The model itself is presented in Section 2. Section 3 
shows how the model may be used to extrapolate human probability 
judgment. Concluding remarks occupy Section 4. 

1. E X T R A P O L A T I O N  T A S K S  

The extrapolation tasks we consider are built around object-names and 
predicates. In our experiments, the former refer to mammals, like 
'Lions', 'Rabbits', and 'Deer' whereas the latter express biological 
properties like 'have three layers of lipid tissue surrounding vital 
organs'. A pair (O, P)  consisting of object O and predicate P defines a 
statement attributing P to O. By an argument is meant a statement s 
associated with a (possibly empty) set {Sl"''Sm} of statements such 
that sJ~ {s 1 .--sin}: s is the argument's conclusion, and s l . . . s  m are its 
premises. Arguments may be written in the form (s[ sl---sin) or 
vertically as in (1). 

Theory and Decision 36: 103-129, 1994. 
© 1994 Kluwer Academic Publishers. Printed in the Netherlands. 
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TABLE I 

Number of m-premise arguments based on five objects and 1 
predicate. 

m m-premise arguments 

0 5 
1 20 
2 30 
3 20 
4 5 

total: 80 

5" 1 

Sm 

s (1) 

We refer to (1) as an 'm-premise' argument. 0-premise arguments 
are just statements. Note that the premises of an argument are an 
unordered set. To write an argument, the premises are ordered 
arbitrarily. 

For simplicity in what follows attention is limited to arguments in 
which only a single predicate appears. Negations and other connectives 
are also absent. The model can be extended in a natural way to 
arguments of greater complexity, but this is not done here. For present 
purposes, the general form of an argument is thus: 

( o l , p )  

(O m, P) 

(O, P) 

Any choice of sets 

(2) 

of objects and predicates induces a 
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corresponding set of arguments. For  example, if O has five members 
and ~ has one, then there are five statements and eighty distinct 
arguments,  as described in Table I. 

By an agent A for G and ~ we mean any system that maps the set of 
arguments generated by O and N into the interval [0, 1]. Given such an 

argument (s I s l . .  "Sin) , A(S[ $1"" "Sin) may be conceived as the prob- 
ability that A assigns to s while assuming the truth of s 1 - • "sin, i.e., the 
conditional probability for A of s given s l . . . s m .  In the case of a 
0-premise argument s, A(s) is just the (unconditional) probability that 
A attributes to s. Since the agent in question may be human, we do not 
assume that A's  probabilities conform to the standard probability 
calculus (except for being representable by the interval [0, 1]). 

Now suppose that a set of objects G, a set of predicates N, and a 
class of agents ~d for G and ~ have been specified. The extrapolation 
problem for ~, ~ ,  and s4 is to find an algorithm aig that behaves as 
follows. An agent A ~ s~ and a finite set of arguments a l -  • • ag based 
on 0, ~ are chosen arbitrarily. The pairs (al, A(a~)) . . .  (a~, A(ak) ) are 
fed to alg (each pair can be interpreted as a message of the form: 'To 
such-and-such argument the chosen agent attributes such-and-such 
probability ') ,  alg Then performs a calculation over the input and 
enters a state that allows it to compute A to some reasonable 
approximation in the sense that for all remaining arguments a, A(a) ~- 
alg(a). 

Many versions of the extrapolation problem can be distinguished, 
depending on the number  and diversity of the pairs exhibited to alg, on 
the quality of the approximation required, on the likelihood that alg 
delivers the desired approximation, and on the time allowed for alg to 
finish its calculations. It is not necessary in what follows to establish 
terminology for all these cases. We aim simply to present evidence that 
the extrapolation problem is solvable - in a general, qualitative sense - 
when objects and predicates are drawn from a familiar domain like 
mammals,  and when potential agents are limited to college students. 

Our extrapolation algorithm rests on a specific model of human 
probability judgment.  The input data are used to fix the parameters of 
this model so as to simulate the psychology of the unknown agent. 
Once the parameters have been fixed, the model is used to predict new 
judgments. 
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We now consider the model in question. 

2. THE GAP MODEL OF PROBABILITY JUDGMENT 

2 .1 .  Vector ia l  R e p r e s e n t a t i o n s  

As indicated in the last section our model concerns judgments elicited 
by arguments like the following. 

Lions have three layers of lipid tissue surrounding vital organs. 
Rabbits have three layers of lipid tissue surrounding vital organs. 
Deer have three layers of lipid tissue surrounding vital organs. (3) 

A central assumption of the model is that people's beliefs about 
objects and predicates in natural domains can be represented by real 
vectors in an appropriate attribute space. (See [33, 3, 32] for similar 
assumptions in other models.) Suppose for illustration that a given 
subject distinguishes three attributes of mammals, namely: s i z e ,  

f e r o c i t y ,  and f r ig idness -o f -hab i ta t .  Then the objects of argument (3) 
might be represented in this mind as shown in Table II. 

We assume that predicates can be evaluated along the same 
dimensions as objects. The predicate of argument (3), for example, 
might give rise to the last column in Table II. The value '4' in this 
column represents the size required of mammals to have vital organs 
surrounded by three layers of lipid tissue, according to the conceptions 
of our given subject. 

It is not assumed that attributes are independent, either conceptually 
or stochastically. In particular, one attribute might represent the 

TABLE II 

Hypothetical vectors associated with the three objects and one predicate figuring in 
argument (3). 

Lions Rabbits Deer 3 lipid layers 

attributes 
1) size 3 1 3 4 
2) ferocity 6 0 1 0 
3) frigid-habitat - 3  3 4 5 
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interaction of two others, for example, as the product of their values. 
The psychological reality of interactions among attributes has been 
noted in [15, 16, 17]. 

Henceforth we use variables like O and P to denote not only 
grammatical entities like objects and predicates, but also the vectors 
assumed to be associated with them. 

2.2.  P r o b a b i l i t y  o f  S ta tements  

For a statement (O, P)  to be probable, the values in the vector O 
should be at least as great as the corresponding values in P. This idea 
may be quantified with the 'cut-off' operator - ' ,  defined over real 
numbers by: 

x "-- y = m a x { O ,  x - y }  

(Thus, 5 ' - 3  = 2 and 3"--5 = 0.) Now suppose that the underlying 
attribute space has dimension n. Then the probability of (O, P)  is 
estimated to be: 

1 q- ~in_l (el = Qi) 
(4) 

where Pi and O~ are the values at the ith coordinate of the vectors P 
and O. To illustrate, according to (4) and Table II, the probability that 
deer have three layers of lipid tissue surrounding vital organs is: 

1 + ((4 --" 3) + (0 -" 1) + (5 = 4)) 
-o.33 (5) 

It is easy to see that formula (4) yields a number in [0, 1] whatever 
vectors are associated with O, P. Probability 1 is attained if O i i> Pi for 
all attributes i ~ n; the surplus of O i over Pi plays no role in the 
calculation. Observe as well that an attribute disappears from the 
calculation of (4) to the extent that P~ is small; intuitively, such a value 
represents a nonstringent condition for possession of the predicate P. 
The relative salience, or importance, of an attribute is reflected in the 
spread of its values across objects and predicates. 
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An attribute like ferocity might be accompanied in a subject's mind 
by a contrasting attribute like tameness, and animals with high values 
on the former might have low values on the latter (and vice versa). 
Such pairs introduce an element of symmetry into the calculation of 
probability. Suppose, for example, that a given property P has the 
value 3 at both ferocity and tameness. Then according to (4), highly 
ferocious animals have little chance of possessing P (since their 
tameness value is too low) and likewise for highly tame animals (since 
their ferocity value is too low). 

Pi "-Oi may be conceived as the 'gap' separating object O from 
predicate P with respect to attribute i. Formula (4) exhibits the 
probability of (O, P) as a function of these gaps, hence the name 'Gap 
Model' for the present theory. 

2.3. Conditional Probability: One Premise Case 

Probabilities are associated with arguments like (2) in two steps. First 
the premises (01, P ) . . .  (0  m, P) provoke modifications in the vector 
representation of P, yielding a new vector P'. The statement (O, P ' )  is 
then taken as the 'revised conclusion' of (2), and its probability is 
evaluated via formula (4). This latter probability is attributed to the 
argument as a whole. The transition from P to P'  represents the 
impact of the information that our subject acquires by assuming the 
truth of premises (01, P) . . .  (0 m, P). To explain the nature of this 
impact according to the Gap Model, we first analyze the 1-premise 
argument that results from suppressing the first premise of (3). It may 
be abbreviated as follows. 

(RABBITS, LAYERS) 
(DEER, LAYERS) 

(6) 

To evaluate (6) our subject must assume the truth of (RABBITS, 
LAYERS) and judge the probability of (DEER, LAYERS). For this purpose 
the Gap Model posits the following train of reasoning. Table II shows 
that LAYERS 1 -- RABBn'S 1 = 3, signifying that rabbits do not have the size 
required of mammals with property LAYERS. However, 
(RABBITS, LAYERS) is a premise, hence assumed to be true. Therefore, 
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the proper ty  LAYERS does not require size-value 4 in order  for an 
animal to have it. We are thus led to lower LAYERS1, but only to the 
extent  that rabbits resemble deer. Similarity between objects is 
assumed to govern the extent to which information obtained from the 
premise is brought to bear on the conclusion. Thus, in altering LAYERS 
as it applies to DEER, the Gap Model  lowers LAYERS I by: 

(LAYERS 1 "-- RABBITS I ) X similarity(RABBITS, DEER) (7) 

For  the similarity function in formula (7) we choose a simple measure 
of proximity between n-dimensional vectors, v, w, namely: 

1 
similarity(v, w) = 1 + distance(v, w) (8) 

where d&tance is Euclidean distance in n-space. The range of similarity 
is seen to be [0, 1]. To illustrate, according to Table II: 

simitarity(1L~BBITS, DEER) 

1 

1 + ~ / ( 1  - 3 )  2 + ( 0  - 1)  2 + (3  - 4 )  2 
= 0.290 

Thus, according to (7) the impact of the gap LAYERS 1 ~'  RABBITS t on the 
vector LAYERS is at tenuated by a factor of 0.290, so only 3 x 0.290 is 
subtracted from LAYERS1, leaving 4 - (3 x 0.290) = 3.13. 

The  gap for the second attribute, ferocity, is LAYERS 2 "~ RABBITS 2 = 0. 
The second coordinate of LAYERS is therefore reduced by 0 x 
similarity(RABBITS, DEER) and so retains its original value. 

Finally, LAYERS 3 is reduced by 

(LAYERS 3 "-':- RABBITS3) X similarity(RABBITS, DEER) 

= (5 - 3) x 0.290 = 0.580 

a n d  b e c o m e s  LAYERS 3 -- 0 . 5 8 0  = 5 -- 0 . 5 8 0  = 4 .42 .  

The  premise (RABmTS, LAYERS) of argument (6) has thus modified the 
vector LAYERS from its original state shown in Table II to the new 
values LAYERS ' =  (3.13, 0, 4.42). It remains only to calculate the prob- 
ability of (DEER, LAYERS') according to formula (4). This yields: 
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1 1 
1 + (3.13 - 3) + (0--" 1) + (4.42-" 4) - t + 0.13 + 0 + 0.42 

= 0.65. 

Observe that the latter probability exceeds the unconditional probabili- 
ty of (DEER, LAYERS) computed in (5). The difference is due to the 
impact of the premise (RABBITS, LAYERS), which changes our subject's 
interpretation of LAYERS, bringing it into greater conformity with the 
vector underlying DEER. 

Intuitively, a statement (O, P) that gives rise to large gaps Pi - O; is 
implausible, since O fails to meet conditions embodied in P. By the 
same token, such a statement constitutes a surprising premise, and 
thus tends to raise the probability of associated conclusions. 1 The dual 
role of gaps is represented by (4) for statements and by gap-reduction 
as discussed above for premises. The impact of premise gap is 
modulated in our theory by multiplication with the similarity obtained 
between premise and conclusion categories. Greater similarity is thus 
assumed to increase the relevance to the conclusion of the information 
contained in the premise. 2 

2.4. Conditional Probability: Multiple Premises 

The Gap Model's analysis of multiple-premise arguments is motivated 
by the following principle. 

PRINCIPLE OF PREMISE DIVERSITY. Adding a new premise 
(0  re+t, P) to an argument 

(O a, p)  

( 0  m, P) 

(0 ,  P) (9) 
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raises the probability of (O, P) only to the extent that 0 m+l differs 
frorn 0 1- , • 0 m. 

Documentation of (9) in human reasoning may be found in [23]. 3 The 
Gap Model takes account of premise diversity by a maximum-principle 
for calculating the impact of multiple premises on the predicate 
vector. 

We may illustrate with argument (3), abbreviated to: 

(LIONS, LAYERS) 

(RABBITS, LAYERS) (10) 

(DEER, LAYERS) 

The potential impact of the premise (RABBITS, LAYERS) on the size- 
value of LAYERS is defined by (7), yielding 3 × 0.290 = 0.870. Likewise, 
the potential impact of (LIONS, LAYERS) on the size-value of LAYERS is 

(LAYERS 1 ~ LIONS 1) × similarity( LIONS, DEER). 

This number is: 

(4 - '  3) x 
] -t- 5~//0 2 "t- 5 2 + 7 2 

- 0 . 1 0 4 .  

Since the potential impact on size of (RABBITS, LAYERS) exceeds that 
of (LIONS, LAYERS), the size-value of LAYERS is decreased by the 
former rather than by the latter. Hence LAYERS 1 declines by 0.870 to 
3.13. 

On the psychological level, the (assumed) fact that rabbits have 
three layers of lipid tissue surrounding vital organs provides more 
information about the minimal size required for deer to possess this 
property than does the corresponding fact about lions. Indeed, 
according to Table II (LIONS, LAYERS) provides little information since 
lions are already assumed to have nearly the required size; additional- 
ly, lions have low resemblance to deer. On the other hand, 
(RABBITS, LAYERS) is quite informative since rabbits have much less of 
the size previously thought to be necessary; additionally they resemble 
deer more than lions do (once again, according to the table). 
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The third attribute provides a contrasting case. The potential impact 
of (LIONS, LAYERS) on frigid-habitat equals 

(LAYERS 3 --" LIONS3) X similarity(LIONS, DEER) 

= 8 × 0.t04 = 0.832. 

This exceeds the potential impact of (RABBITS, LAYERS) o n  frigid-habitat, 
which is: 

(LAYERS 3 ~" RABBITS3) X similarity(RABBITS, DEER) =- 2 

× 0.290 = 0.580. 

Hence, it is the gap provoked by (LIONS, LAYERS) and attenuated by 
similarity(HoNs, DEER) that decreases LAYERS 3. 

The foregoing process yields a modified predicate-vector LAYERS'. 
The probability associated with argument (10) is then computed as 
before from formula (4). On the basis of Table II this number is 0.77, 
which is higher than for the 1-premise argument (6). 

Our use of maximization ensures that an argument (s ! s~, s2) whose 
premises bear on highly similar objects will be assigned roughly the 
same probability as (s I sl). In contrast, if s 1, s 2 involve dissimilar 
objects, then the potential impact induced by a given attribute has an 
additional chance to exceed its potential impact in (s[ sl). Diversity of 
premises thus tends to increase the probability of (s I s 1, s2) compared 
to (sis1). In this sense maximization implements principle (9). 

2.5. Summary of the Model 

Operative formulas. Let A, B, and P be real vectors of length n 
(conceived as two object vectors and a predicate vector, respectively). 

1 
prob(A, P) - 1 + Ein_l (Pi "~ Ai) (11) 

1 
similarity(A, B) - 1 + distance(A, B) (12) 

(where distance is Euclidean distance). 
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For the next formula we conceive of (A, P)  as a premise and (B, P)  
as the conclusion of a given argument. Let  i ~< n be given. 

potential impact(A, B, P, i) = (Pi "- Ai) x similarity(A, B) 

(13) 

Evaluation of arguments. Let argument 

(0 1 p) 

(Om, p )  

(o, P) 

be given, and suppose that its objects and predicate are represented by 
real vectors of length n. The (conditional) probability associated with 
this argument is calculated as follows. 

If m = 0 then the probability is prob(O, P). 
If m i> 1 then the probability is prob(O, P'), where P '  is the length n 

vector whose ith coordinate is calculated as follows: 

PI = Pi - potential impact(A, O, P, i), where 

A ~ { 0 1 . . . O  m} and 

potential impact(A, O, P, i) >~ potential impact(B, O, P, i) 

for all B E {O 1--- Ore}. (14) 

2.6. Alternative Realizations of the Gap Model 

The Gap Model rests on five psychological hypotheses, which may be 
formulated as follows. 

(0 The mental representation of objects and predicates can in large 
part be summarized by real vectors in an appropriate attribute 
space. 
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(b) A statement (O, P) is perceived to be probable to the extent that 
attributes evoked by the predicate are present in the object. 

(c) An argument's premises increase the probability of its conclusion 
by lowering the attribute values presumed necessary for possession 
of the property in question. 

(d) The impact of a premise depends on (i) the disparity between its 
attribute-levels and those of the predicate, and (ii) the similarity of 
the premise-object to the conclusion-object. 

(e) The impact of multiple premises is governed by the maximum 
principle of Section 2.4 (which entails, in practice, the diversity 
principle (9)). 

The formulas of our model realize hypotheses (a)-(e) in an extremely 
simple way, and alternatives naturally come to mind. For example, the 
arbitrary constant '1' in both (11) and (12) could be replaced by larger 
constants in order to decelerate the descent of these functions towards 
zero. Or, (11) might be replaced by 

1 
prob(A,  P) = 1 + ~ E~=I (P,. "- A~) (15) 

where n is the dimension of the underlying attribute space. The 
advantage of (15) is that adding dimensions to a space would not have 
a tendency to lower the probabilities of statements since probability 
according to (15) depends on average gaps rather than on their sum. A 
similar modification could be made to (12). 

As another example, the similarity function chosen for (12) is based 
on the Euclidean metric, but it is well known that human similarity 
judgment violates the metric axioms (see [36,37]). The Contrast 
Model of similarity ([36, 21]) is known to have greater psychological 
fidelity in this regard, and has figured in other studies of probability 
judgment (e.g. [24, 35]). It might thus be usefully substituted for the 
function defined in (12). 

As a third example, our maximum principle implies that the 
probability of a conclusion monotonically increases with additions to 
the premise-set. However, counterexamples to monotonicity in human 
judgment have been demonstrated in [23, 30]. Principles of 'coverage' 
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discussed in [23] could be adjoined to the maximum principle in order 
to account for such counterexamples. 

Finally, a more sophisticated elaboration of the model would 
supplement its vectorial representation of knowledge with the frame- 
based architecture discussed in [1, 18, 19]. Evidence for the psychologi- 
cal reality of frames is considered in [28, 34]. 

We have investigated a variety of proposals like these, applying 
elaborated versions of the Gap Model to the data described below. It 
will be more revealing here, however, to retain the simple version of 
the model, as summarized in Section 2.5. The positive results obtained 
for extrapolation will then be more easily interpreted as favorable to 
the general approach we advocate. 

In more general terms, it is not the purpose of the present paper to 
insist on the particular choices embodied by the Gap Model. It is 
enough at present to show that solution to the extrapolation problem 
can at least be envisioned, and to document some predictive success 
for a simple model. 

2. 7. Normative Status of the Gap Model 

Numerical analysis of the Gap Model suggests that it assigns prob- 
abilities to arguments in a manner consistent with the standard 
probability axioms. This feature of the model, however, is an artifact 
of the restricted form of arguments to which it currently applies. When 
the model is extended to a broader class of arguments, it becomes 
normatively deviant. Minor modifications of the current version also 
bring it into conflict with the probability axioms. This results, for 
example, if probability function (11) is replaced by (15) (we omit the 
details). 

Fidelity to the probability calculus is a mixed blessing for models of 
the kind at issue in this paper. It is an advantage for applications to 
objective probabilities (generated, for example, by a database). In 
contrast, it can be an impediment to modeling human judgment, which 
in many contexts does not strictly adhere to the probability axioms 
([12, 38, 30]). Indeed, it will be seen that subjects in our extrapolation 
experiments sometimes violated a simple law of probability. 

Finally, it is worth pointing out that no normative theory currently 
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exists relating similarities among categories to the probabilities of 
statements. People nonetheless exploit similarity for just this purpose 
on a daily basis (see [31] for discussion). It may be hoped that 
reflection on the extrapolation problem will generate insight into the 
normative role of similarity in probability assessment. 

3. E X T R A P O L A T I O N  E X P E R I M E N T  

Our experiment was performed on 52 undergraduates from the 
University of Michigan, recruited by advertisement and paid for their 
participation. 

3.1. Method 

The experimental protocol may be divided into three parts. First, 
subjects were presented with a set of objects and predicates. Second, 
they assigned probabilities to every argument of form (2) induced by 
the set. Third, as a reliability check, they made the same judgments a 
second time - on the same arguments but in a different random order. 
We consider these parts in turn. 

Presentation of objects and predicates. Subjects were randomly as- 
signed one of the two sets of stimuli in Table III. A stimulus set 

Objecu: 

TABLE III 

Sets of objects and predicates available as options. 
Set 1 

Bears, Beavers, Squirrels, Monkeys, Gorillas 

Predicate 1: 

Predicate 2: 

Objects: 

have 3 distinct layers of fat tissue 
surrounding vital organs 
have over 80% of their brain surface 
devoted to neocortex 

Set 2 
Lions, Housecats, Camels, Elephants, Hippos 

Predicate 1: 

Predicate 2: 

have a visual system that fully adapts 
to darkness in less than 5 minutes 
have skins more resistant to 
penetration than most synthetic fibers 
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consisted of five mammal species to serve as objects plus two predi- 
cates. It was verified for each subject that the mammals of the chosen 
option were familiar and easily distinguishable, and that the chosen 
predicates were interpretable and meaningful. The sets were con- 
structed so as to manifest a range of similarity among the five 
mammals (at least, in the judgment of the experimenters). 

The five objects and either one of the two predicates assigned to the 
subject generate 80 arguments, as described in Table I. Since only one 
predicate may appear in a given argument, these two sets of 80 
arguments exhaust the possibilities. 

Assignment of probabilities. Each subject assigned probabilities to his 
160 arguments, delivered in random order via computer. For multi- 
premise arguments, the order of premises was determined randomly. 
To illustrate, a typical 2-premise argument was presented as follows. 

What is the probability that 
Bears have over 80% of brain surface 
devoted to neocortex 

given that this is true of: 
squirrels and beavers. 

Probability: 

The 'given that' clause did not appear for 0-premise arguments. In 
prior instructions it was emphasized that probabilities must be assigned 
while assuming the truth of given premises (if any). On the other 
hand, each question was to be treated separately, with no assumptions 
carried forward. 

The first two parts of the procedure were performed in immediate 
succession, and required roughly one hour to complete. 

Reliability check. One to three days later subjects returned to evaluate 
their 160 arguments for a second time. The arguments were delivered 
in a new random order; premise-order within multi-premise arguments 
was also freshly randomized. The subject's previous responses were 
not made available to him. 
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3.2. Preliminary Analyses 

For each subject the Pearson correlation was computed between his 
responses to corresponding arguments in parts 2 and 3 of the proce- 
dure. This correlation was less than 0.7 for 22 of the subjects, who 
were dropped from all further analyses. The median reliability for the 
remaining 30 subjects is 0.80. In all ensuing analysis we use the 
average of a subject's two responses to the same argument as the 
'official' probability he assigns to that argument. 

The following analysis indicates the degree to which the judgments 
of our 30 subjects deviate from the probability calculus. It is well 
known that for any two statements p, q the axioms of probability 
require: 

Pr(p ^ q) >/Pr(p) + Pr(q) - 1 (16) 

Since Pr(p] q) = Pr(p A q)/Pr(q), (16) implies: 

Pr(p[ q) × Pr(q)/> Pr(p) + Pr(q) - 1 (17) 

Each subject evaluated forty 1-premise arguments of form (Plq) 
along with the corresponding statements p, q. Hence, each subject had 
forty occasions to violate inequality (17). In fact, 22 of the 30 subjects 
violated (17) at least once. The average number of violations over all 
30 subjects is 6.7. 

3.3. Extrapolation Based on the Gap Model 

Extrapolation analyses using the Gap Model were performed on a 
within-subject basis via the following five steps. 

Step 1. The 160 arguments evaluated by a given subject were 
segregated into two sets of 80 according to the predicate appearing 
therein. Each set of 80 arguments was treated separately, thereby 
dividing each of the thirty subjects into two halves. In the sequel we 
shall refer to these 60 data-sets (two per subject) as 'half-subjects'. 

Step 2. The 80 arguments of a given, half-subject were partitioned 
into two sets. One set was used to fix the parameters of the Gap Model 
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TABLE IV 

Extrapolation using correlation as a measure of fit. Columns 2 and 3 describe the 
arguments used to fix the parameters of the model, and those predicted subsequently. 
Columns 4-6 present the median correlations obtained in the testing phase for the 
original Gap Model, the model with similarity set uniformly to 1.0, and the model with 
the maximum-principle replaced by addition. The medians are computed over sixty, 
half-subjects. 

Arguments Median Correlation 
used for fixing used for testing Gap NoSim NoMax 

1) 60 non-3-premise 20 3-premise 0.88 0.74 0.82 
2) 60 random remaining 20 0.85 0.76 0.86 
3) 50 non-2-premise 30 2-premise 0.88 0.75 0.85 
4) 50 random remaining 30 0.84 0.77 0.85 
5) 30 2-premise 50 non-2-premise 0.79 0.70 0.79 
6) 30 random remaining 50 0.77 0.70 0.80 
7) 20 3-premise 60 non-3-premise 0.73 0.49 0.65 
8) 20 random remaining 60 0.72 0.60 0.76 

(as described below); the other set tested the predictions of the model 

once its parameters were fixed. Eight kinds of partitions were em- 

ployed, listed in Table IV. For example, row (1) of Table IV refers to 

the partition in which the 60 arguments were chosen randomly for 

parameter-fixing, and the remaining 20 were used for testing. Such 

random partitions were generated afresh for each of the 60 half- 

subjects. 

Step 3. A dimensionality n for the underlying attribute space was 

chosen. In the example of Section 2, n = 3. For the present analyses 

we used both n = 2 and n = 3. Small values of n are suggested by 

multidimensional scaling solutions to judgments of similarity among 

members  of natural categories like mammals or birds. Typically, two 

or three dimensions suffice to approximately represent such judge- 

ments in euclidean space (see [27, 2]). For brevity, we discuss only the 

choice n = 2; the results for n = 3 are entirely comparable. Thus, in 

what  follows we assume that the five objects and one predicate 

appearing in the 80 arguments of a half-subject are each associated 
with real values on two attributes. Twelve (= 2(5 + 1)) parameters 

must therefore be fixed in order for the Gap Model to make 
predictions about new arguments. No attempt was made to identify the 

two attributes (size, ferocity, etc.) presumed to underlie subjects' 
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representations of objects and predicates. These attributes are simply 
formal place-holders in what follows. 

Step 4. For each half-subject, an iterative procedure was employed 
to find values of the 12 free parameters that maximize the Gap Model's 
fit to the initial, fixing set of arguments (the testing arguments play no 
role in this step). To illustrate, consider the partition described by the 
first row of Table IV. Choice of the 12 parameters causes the Gap 
Model to assign probabilities to each of the sixty arguments with 
0, 1, 2, or 4 premises. These sixty probabilities may be compared to 
those selected by a given subject. As a measure of goodness-of-fit, we 
calculated the Pearson correlation between the corresponding prob- 
abilities assigned by model and subject to each of these 60 arguments. 
(A different measure of fit is discussed below.) The set of 12 
parameters that maximize this correlation was retained. Independent 
maximization was carried out for each of the sixty, half-subjects with 
respect to each of the eight partitions in Table IV (480 maximizations 
in all). The maximization algorithm employed was based on the 
'direction set' method described in [26, Chapter 10]. Twenty starting 
points were tried, chosen uniformly-randomly within [ -2 ,2]  12 . The 
best set of parameters over all twenty runs was retained. 

Step 5. Once the best set of 12 parameters - associated with a given, 
half-subject and a given partition of arguments- was obtained, the 
Gap Model with those parameters was applied to the 'testing' argu- 
ments of the partition in question. The probabilities generated by the 
model in this way were then compared to the corresponding prob- 
abilities assigned by the subject. The Pearson correlation between 
these sets of probabilities was used as a measure of fit. 

For each of the eight partitions, the column headed 'Gap' in Table 
IV shows the median correlation obtained in step 5 over all 60 
half-subjects. 4 Note that even when the information fed into our 
extrapolation algorithm is limited to 20, randomly chosen arguments, it 
predicts the remaining 60 arguments up to a correlation of 0.72. Figure 
1 shows the scatter plot for the half-subject whose correlation is at the 
median value 0.88 with respect to the partition described in the first 
row of Table IV. 5 Likewise, Figure 2 shows the scatter plot for the 
half-subject at the median value with respect to partition 2. 
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3.4. Extrapolation Based on Variants' of the Gap Model 

As a further test of the psychological reality of the Gap Model, we 
considered two variant models differing from the original in selected 
ways. The first variant removed considerations of similarity from the 
Gap Model by uniformly imposing the value 1.0 as the outcome of all 
similarity calculations; in other respects the first variant is the same as 
the original. Thus, the new model-ca l led  NoSim-results from 
replacing formula (12) by: 

similarity(A, B) = 1.0 for all objects A, B .  

The second, variant model results from replacing the maximum 
principle (14) by a principle of addition, formulated as follows. Let an 
m-premise argument 

(O 1, p )  

( O ' ,  P)  

(O, P) 

with m t> 1 be given. The probability assigned to this argument is 
prob(O, P') where: 

P~ = Pi - ~ potential impact(O i, O, P, i) 
1=1 

(The function potential impact is defined in formula (13).) Thus, 
the present variant-called NoMax-lowers the values of P 
by the total impact of the premiscs, rather than by their maxi- 
mum. 

The same extrapolation analyses performed on the Gap Model were 
repeated on these two variants. The results are summarized in columns 
5 and 6 of Table IV. The Gap Model performs better than NoSim, thus 
giving indirect support to the role of similarity in probability judgment. 
The comparison with NoMax, however, offers little evidence for the 
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TABLE V 

Direct comparison of the Gap Model and its two variants, using correlation as a measure 
of fit. Columns 2 and 3 summarize the partitions used. Column 4 shows the number of 
half-subjects (out of 60) whose correlation in step 5 favors the Gap Model over NoSim. 
Column 5 provides the same information with respect to NoMax. 

Arguments Comparison of models 
used for fixing used for testing Gap vs. NoSim Gap vs. NoMax 

1) 60 non-3-premise 20 3-premise 50 41 
2) 60 random remaining 20 37 38 
3) 50 non-2-premise 30 2-premise 49 37 
4) 50 random remaining 30 41 32 
5) 30 2-premise 50 non-2-premise 46 33 
6) 30 random remaining 50 46 30 
7) 20 3-premise 60 non-3-premise 51 39 
8) 20 random remaining 60 41 28 

max imum principle. Grea ter  support  emerges from the finer analysis 
summarized  in Table V. Column 4 of the table shows the number  of 

half-subjects (out of  60) for whom the Gap  Model provides a higher 
correlat ion in step 5 than does NoSim. Column 5 provides the same 

compar ison with respect to NoMax. 

3.5. Absolute Deviation as a Measure o f  Fit 

Ins tead of maximizing correlation coefficients, as above,  another  
natural  measure  of  fit between model  and data is the average,  absolute 

deviation between predicted and observed probabilities. To illustrate, 
consider again the first partition of Table  IV. Fixing the Gap  Model 's  

12 free parameters  causes it to assign probabilities p~ to each of the 
sixty arguments  with 0, 1, 2, or 4 premises. A given subject assigns 

probabili t ies qi to the same arguments.  As a measure  of  fit, we now 

use the average over  I p i -  qit, instead of correlation. The same 
measure  of  fit is used in step 5, to test the model.  Of  course, we now 
seek to minimize the average absolute deviation, compared  to max- 

imizing the correlation. Otherwise the details of the optimization 

procedure  are the same. 
All of  the preceding analyses were repeated  using absolute deviation 

in place of correlation. The  results are summarized in Tables VI  and 
VII .  To  illustrate, the number  '0.075' in row 1, column 4 of Table  VI  
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TABLE VI 

Extrapolation using absolute deviation as a measure of fit. Columns 2 and 3 describe the 
arguments used to fix the parameters of the model, and those predicted subsequently. 
Columns 4-6 present the median, average, absolute deviation obtained in the testing 
phase for the original Gap Model, the model with similarity set uniformly to 1.0, and the 
model with the maximum-principle replaced by addition. The medians are computed 
over sixty, half-subjects. 

Arguments Median Deviation 
used for fixing used for testing Gap NoSim NoMax 

1) 60 non-3-premise 20 3-premise 0.075 0.169 0.087 
2) 60 random remaining 20 0,080 0.174 0.094 
3) 50 non-2-premise 30 2-premise 0.074 0.174 0,085 
4) 50 random remaining 30 0.084 0,173 0,098 
5) 30 2-premise 50 non-2-premise 0,096 0,190 0,109 
6) 30 random remaining 50 0,102 0.188 0.118 
7) 20 3-premise 60 non-3-premise 0,132 0.267 0.144 
8) 20 random remaining 60 0.118 0.203 0.130 

TABLE VII 

Direct comparison of the Gap Model and its two variants, using absolute deviation as a 
measure of fit. Columns 2 and 3 summarize the partitions used. Column 4 shows the 
number of half-subjects (out of 60) whose average, absolute deviation in step 5 favors 
the Gap Model over NoSim. Column 5 provides the same information with respect to 
NoMax. 

Arguments Comparison of models 
used for fixing used for testing Gap vs. NoSim Gap vs, NoMax 

1) 60 non-3-premise 20 3-premise 60 34 
2) 60 random remaining 20 54 31 
3) 50 non-2-premise 30 2-premise 57 35 
4) 50 random remaining 30 55 32 
5) 30 2-premise 50 non-2-premise 60 39 
6) 30 random remaining 50 59 38 
7) 20 3-premise 60 non-3-premise 59 39 
8) 20 random remaining 60 52 37 

indicates  the absolute  size of the error  commi t t ed  by the G a p  Model  

w h e n  it is used to ext rapola te  3-premise a rguments  f rom the rest. In  

t e rms  of absolute  devia t ion ,  the Gap  Model  is seen to ou tper fo rm bo th  

the  N o S i m  and  N o M a x  variants .  

We  no te  tha t  maximiz ing  the corre la t ion  in Step 4 of our  extrapola-  

t ion  analysis  tends  no t  to min imize  the med ian ,  absolute  devia t ion  in 
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Step 5; nor does minimizing the latter maximize the former. It thus 
appears necessary to choose in advance the desired kind of extrapola- 
tion. 

4. C O N C L U D I N G  R E M A R K S  

Despite its simplicity, the Gap Model enjoys nonnegligible success in 
extrapolation. We interpret this result as encouraging the view that 
successors to the Gap Model could eventually provide reasonably 
accurate models of probability judgment in natural domains of reason- 
ing. 

The practical interest of such models is highlighted by recent 
progress in the theory of influence diagrams [8] and belief nets [25, 14] 
(see [20, 29] for an introduction). This work provides a set of tools for 
constructing efficient systems of decision-making and analysis that are 
grounded in the theory of utility and probability. Use of the tools, 
however, often requires large numbers of conditional probabilities to 
be elicited from an external, human agent (for example, many 
thousands in the systems built by Heckerman [4]). A successful 
method of extrapolation might allow fewer judgments to be elicited; 
the remaining judgments would be estimated. Likewise, a small set of 
missing probabilities - unforeseen at the outset of a project - could be 
extrapolated at a later stage from stored probabilities. 

Extrapolation might also be used to enlarge the set of conditional 
probabilities that can be estimated from a database. To explain, 
suppose that data are available about the occurrence and co-occur- 
rence of binary categories A 1 . - - A  n. The data might be numerous 
enough to empirically estimate conditional probabilities of form 
Pr(Ai I Aj) but not of forms Pr(Ai I Aj, A~), Pr(A~ I Aj, A~, Al), etc. 
This situation will occur whenever the number of categories A i is too 
large for the number of records in the database, since complex 
conditioning events will occur too infrequently to allow meaningful 
estimates of the probability of their subevents. 

Extrapolation might nonetheless provide a subjectively plausible 
guess about the missing probabilities. This would be achieved by the 
use of a 'dummy' predicate P asserting that a record drawn randomly 
from the database falls into whatever category is associated with it. 
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Thus (A, P) is the statement that a given record falls into category A, 
and the probability attached to this statement can be estimated directly 
from the database. Similarly, the argument 

(A1, P)  
(A2, P) 

represents the proportion of records in category A 2 among those in 
category A 1. These numbers in hand, an extrapolation algorithm 
provides conjectures about the conditional probabilities embodied in 
arguments of arbitrary complexity. Application of the Gap Model, for 
example, would proceed by seeking featural representations for the 
categories at issue, as well as for the dummy P. The features sought for 
P would be those representing a typical or modal record in the 
database, giving rise thereby to appropriate gaps with respect to the 
categories A 1- • • A, .  Whatever the extrapolation algorithm employed, 
if it is based on an adequate psychological theory, its conjectures will 
enjoy the plausibility of human judgment. The objective accuracy of 
these judgments can then be compared to those delivered by more 
familiar principles of 'ampliative inference' such as maximizing entropy 
(see [10, 11, 13,221) 2 

More fundamentally, the kind of model envisioned in this paper 
would be able to convert information about object- and predicate- 
attributes into conditional probabilities of arguments. Suppose, for 
example, that a database contained 100 objects and 100 predicates, 
each coded along five attributes; it would thus contain 5 x (100 + 100) 
or 1000 values. In contrast, 100 objects and 100 predicates generate an 
astronomical number of arguments, any of whose probabilities might 
be needed in an associated system of automated reasoning. Construc- 
tion of the reasoning system would be facilitated by an algorithm that 
could examine the available database and supply reasonable approxi- 
mations to the probabilities a human agent would attribute to the 
arguments in question. Such an algorithm would be particularly useful 
in any attempt to automate the synthesis of reasoning systems whose 
performance need not exceed the standard of common sense. 
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N O T E S  

1 For discussion of surprise in evaluating the probability of arguments, see [9, Chapter 
41. 
2 The role of similarity in induction is reviewed in [31]. Evidence that similarity is 
evaluated along multiple dimensions within reasoning tasks is presented in [51. 
3 The plausibility of (9) from a normative, epistemological point of view is discussed in 
[6,71. 
4 As expected, the correlations obtained in the retrodictive step 4 are systematically 
higher than those obtained in prediction. 
5 Because there are an even number of half-subjects, the median value is actually 
straddled by two subjects. We show the plot for the lower subject. 
6 Note that entropy principles cannot be applied to our psychological data because the 
latter are not consistent with the probability calculus (see Section 3.2). 
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