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Abstract

In this paper, we introduce a strategy for studying simplicial commutative algebras over general
commutative rings R. Given such a simplicial algebra A, this strategy involves replacing A with
a connected simplicial commutative k(˝)-algebra A(˝), for each ˝∈ Spec(�0A), which we
call the connected component of A at ˝. These components retain most of the Andr4e–Quillen
homology of A when the coe6cients are k(˝)-modules (k(˝)=residue 8eld of ˝ in �0A). Thus,
these components should carry quite a bit of the homotopy theoretic information for A. Our aim
will be to apply this strategy to those simplicial algebras which possess Noetherian homotopy.
This allows us to have sophisticated techniques from commutative algebra at our disposal. One
consequence of our e:orts will be to resolve a more general form of a conjecture of Quillen
that was posed in Invent. Math. 142 (3) (2000) 547. c© 2002 Elsevier Science B.V. All rights
reserved.

MSC: Primary: 13D03; 18G30; 18G55; secondary: 13D40

0. Overview

Our focus, in this paper, is to take the view that the study of Noetherian rings
and algebras through homological methods is a special case of the study of simplicial
commutative algebras having Noetherian homotopy type. Our goal is to show that such
simplicial algebras can be given a suitably rigid structure in the homotopy category,
which then allows us to bring in methods from commutative algebra. Such methods
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should enable more facile techniques from homological algebra to be ferried in for the
purpose of elaborating the global structure of such simplicial algebras.

To begin, we de8ne for a simplicial commutative algebra A to have Noetherian
homotopy provided:

(1) �0A is a Noetherian ring, and
(2) each �mA is a 8nite �0A-module.

If, more strongly, �∗A is a 8nite graded �0A-module, we that A has 6nite Noetherian
homotopy.

In order to achieve a more systematic study of simplicial algebras with Noetherian
homotopy, particularly to allow us a straighter path to proving our main result, Theorem
B below, we 8rst seek to rigidify the action of �0 from the homotopy groups to the
simplicial algebra. This is accomplished by the following:

Theorem A. Any simplicial commutative algebra A is weakly equivalent to a con-
nected simplicial supplemented �0A-algebra.

Theorem A provides the means to import in methods from commutative algebra,
most notably localizations and completions. In particular, we use these methods as a
means to provide a proof of a conjecture posed in [12] which generalizes a conjecture
of Quillen regarding the vanishing of Andr4e–Quillen homology. Our larger interests lie
in providing an understanding of the homotopy type of a simplicial commutative alge-
bra A with Noetherian homotopy over a Noetherian ring R through its Andr4e–Quillen
homology D(A|R;−). Here we shall view this homology as a functor of �0A-modules.
This enables us to be speci8c about the homology’s rigidity properties.

Before stating our result, we 8rst need a homotopy invariant notion of complete
intersection. To obtain one, we 8rst de8ne a map A → B of simplicial commutative
R-algebras, augmented over a 8eld ‘, to be virtually acyclic provided D¿1(B|A; ‘)=0.
Also, if W is a graded ‘-module, de8ne the simplicial ‘-algebra S•(W ) by

S•(W ) =
⊗
n

S(Wn; n);

where S(V; n) is the free commutative ‘-algebra generated by the Eilenberg–MacLane
space K(V; n).

De8ne a simplicial commutative R-algebra A over ‘ to be a homotopy n-intersection,
for n¿ 1, provided there is a commutative diagram

R −→ R′

�

� ��′

A −→ A′� �
‘ =−→ ‘
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with the horizontal maps being virtually acyclic over ‘ and in the homotopy category
there is an isomorphism.

A′ ⊗L
R′ ‘ ∼= S•(W )

with W a graded ‘-module satisfying W¿n = 0. We call a general simplicial commu-
tative R-algebra A a locally homotopy n-intersection if, for each L̋ ∈Spec(�0A), A is
a homotopy n-intersection over the residue 8eld k(˝).

Recall that the :at dimension of an R-module M to be the positive integer fdR M
such that

fdR M6m ⇔ TorRi (M;−) = 0 for i¿m: (0.1)

Theorem B. Let A be a simplicial commutative R-algebra with 6nite Neotherian
homotopy; char(�0A) �= 0; and fdR(�∗A) 6nite. Then Ds(A|R;−) = 0 for s�0 if and
only if A is a locally homotopy 1-intersection.

This resolves a conjecture posed in [12] generalizing a conjecture of Quillen [10,
5.7].

Notes:

(1) Theorem B fails when char(�0A) = 0, as shown in [12].
(2) Theorem B fails for general simplicial algebras having Noetherian homotopy. The

case of a simplicial algebra S(V; n) over a 8eld of non-zero characteristic provides
counterexample, by computations of Cartan [5].

(3) A homomorphism between Noetherian rings is a locally complete intersection if
and only if it is a locally homotopy 1-intersection, as shown in [2,12].

Quillen further conjectured a more general result [10, 5.6] which drops the 8nite Oat
dimension condition. We would like to indicate a possible simplicial version of this
conjecture. To formulate it, we 8rst indicate a special vanishing result for Andr4e–
Quillen homology that we will prove.

Theorem C. Let A be a simplicial commutative R-algebra with Noetherian homotopy.
Then Ds(A|R;−) = 0 for s¿ 3 if and only if A is a locally homotopy 2-intersection.

This now leads us to pose the following:

Conjecture. Let A have 6nite Noetherian homotopy with char(�0A) �= 0. Then
Ds(A|R;−) = 0 for s�0 implies that A is a locally homotopy 2-intersection.

The strategy for proving Theorem B is to show that Ds(A|R; k(˝)) = 0 for s¿ 2
for each ˝∈Spec(�0A). This is su6cient by a result of Andr4e [1, S.30]. Following
a strategy of Avramov [2], we use Theorem A coupled with commutative algebra
techniques developed in [3] to replace A with A(˝), its connected component at ˝,
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which has the following properties:

(1) A(˝) is a connected simplicial supplemented k(˝)-algebra;
(2) fdR(�∗A)¡∞ implies that A(˝) has 8nite Noetherian homotopy; and
(3) Ds(A|R; k(˝)) ∼= Ds(A(˝)|k(˝); k(˝)) for s¿ 2.

Theorem B now follows from the algebraic version of a theorem of Serre established
in [12].

1. Postnikov systems and Theorem A

Throughout this paper, we 8x a commutative ring with unit � and let Alg� be
the category of (unitary) commutative rings augmented over �. Finally, we denote by
�Alg� the category of �-algebras in Alg�.

We will also be assuming the reader has an acquaintance with closed (simplicial)
model category theory. Our main resource is [9]. We will further need speci8c results
on the model category structure for simplicial commutative rings and algebras, our
primary sources being [9,12,6].

1.1. Postnikov systems

Let A be an object in the category sAlg� of simplicial commutative rings over �.
We review the construction of a Postnikov tower for A derived from [4,7] which we
will be use in the proof of Theorem A.

Following [7, Section 5], de8ne the nth Postnikov section of A as follows: for 8xed
k, let In;k → Ak be the kernel of the map

d :Ak →
∏

 : [m]→[k]

An;

where  runs over all injections in the ordinal number category with m6 n; d is
induced by the maps  ∗ : Ak → Am, and

∏
denotes the product in the category of

algebras augmented over �. De8ne

A(n)k = Ak=In;k : (1.1)

Notice that there is a quotient map in sAlg�; A → A(n), and that if k6 n; A(n)k =Ak .
There are also quotient maps

qn : A(n) → A(n− 1) (1.2)

and A ∼= lim A(n). Let F(n) be the 8bre of qn, i.e.

F(n) = ker(qn :A(n) → A(n− 1)): (1.3)

Note that F(n) → A(n)
qn→A(n−1) forgets to a 8bration sequence as simplicial abelian

groups. As such, the following can be proved just as in [7, 5.5].
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Lemma 1.1. The homotopy groups of F(n) are computed as follows:

�kF(n) =

{
�nA k = n;

0 k �= n:

1.2. Eilenberg–MacLane objects

Following [4, Section 5], de8ne an object A of sAlg� to be of type K� if �0A ∼= �
and the higher homotopy groups of A are trivial. Suppose M is a �-module. We say
that a map A → B is of type K�(M; n) n¿ 1, if A is of type K�; �0B ∼= �, �nB ∼= M
(as a �-module), all other homotopy groups of B are trivial, and the map A → B is a
�0-isomorphism.

For a general map f :A → B in sAlg�, let C be the pushout of the diagram
B′←A′ → A(0)′ obtained by using a functorial construction to replace A by a co8brant
object and the two maps A → B and A → A(0) by co8brations. There is then a
commutative diagram

A
f−−−→ B

∼
� �∼
A′

f′
−−−→ B′� �

A(0)′
&n(f)−−−→ C(n + 1)

(1.4)

The bottom map &n(f) is called the di=erence construction of f. The following can
be proved just as in [4, 6.3].

Proposition 1.2. Suppose that A → B is a map of simplicial commutative algebras
which is a �0-isomorphism and whose homotopy 6bre F is (n − 1)-connected. Let
M = �nF . Then M is naturally a �-module for � = �0B and &n(f) is a map of type
K�(M; n + 1). If �kF vanishes except for k = n; then the right-hand square in 1.4 is
a homotopy 6bre square.

1.3. Di=erentials functor

For an object A in Alg�, de8ne its �-di=erentials to be the �-module

D�A = J=J 2 ⊗A �;

where J is the kernel of the product A ⊗ A → A. As a functor to the category of
�-modules, D� posseses a right adjoint—the functor

(−)+ : Mod� → Alg�

de8ned by M+ = M ⊕ � with the usual twisted product

(x; a) · (y; b) = (bx + ay; ab):
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An equivalent identi8cation of the di:erentials functor

D�
∼= I=I 2 ⊗A �; (1.5)

where I is the augmentation ideal of A, which can be seen to follow from Yoneda’s
lemma.

The next proposition is proved in [9, Section II.5].

Proposition 1.3. The prolonged adjoint pair of functors

D� : sAlg� ⇔ sMod� : (−)+

induces an adjoint pair on the homotopy categories

LD� : Ho(sAlg�) ⇔ Ho(sMod�) : R(−)+:

Finally, the following useful property of the derived functor of di:erentials follows
from [11, 7.3].

Proposition 1.4. If f :A → B is a �6n-isomorphism; then LD�(f) is a �6n-
isomorphism.

1.4. Characterizing K�(M; n)-type

Fix a �-module M . In sMod�, the 8bration pn :E(M; n) → K(M; n) is determined
by the Dold–Kan correspondence to correspond to the map of normalized chain com-

plexes {M 1→M} → {M} with the source concentrated in degrees n and n − 1, the
target concentrated in degree n, and the map being the identity in degree n and trivial
otherwise.

Applying (−)+ to pn gives a K�(M; n)-type 8bration in sAlg�

(pn)+ :E�(M; n) → K�(M; n);

which we call the canonical map of type K�(M; n).

Proposition 1.5. Let A → B be of type K�(M; n) between co6brant objects in sAlg�.
Then there is a commuting diagram in sAlg�

A ∼−→ E�(M; n)� �pn

B ∼−→ K�(M; n)

with the horizontal maps being weak equivalences.
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Proof. To begin; note that the canonical map B → � is (n − 1)-connected. Thus the
induced map D�B → 0 is (n− 1)-connected by Proposition 1.4. Let I = ker(B → �).
Filtering B by powers of I we note that B co8brant implies that

I q=I q+1 = S�
q (I=I 2) ∼= S�

q (D�B);

where the last identity always holds when the augmentation is surjective; by (1.5).
Thus there is a convergent spectral sequence

E1
p;q = Hp+q[S�

q (D�B)] ⇒ �p+qB:

From the connectivity indicated above and [11; 7.40]; E1
p;q = 0 for 0¡p + q6

2(q− 2) + n. Thus we obtain

M ∼= �nB ∼= �nD�B:

Thus there is an n-connected map D�B → K(M; n) and its adjoint B → K�(M; n) will
be a weak equivalence by the computations above and the assumption that A → B is
of type K�(M; n).

Finally, A → � is a weak equivalence, hence D�A → 0 is a weak equivalence by
Proposition 1.4. Since A, and hence D�A, are co8brant, the composite D�A → D�B →
K(M; n) lifts to a map D�A → E(M; n), whose adjoint A → E�(M; n) is necessarily a
weak equivalence.

1.5. Proof of Theorem A

Fix an object A in sAlg�. We will show, by induction, that there is a map X → Y
in s�Alg� and a commutative diagram in Ho(sAlg�)

A(n) ∼−−−−−−→ X

qn

� �
A(n− 1) ∼−−−−→ Y

(1.6)

with the horizontal maps being equivalences. It is clear for n = 0 as A(0) → � is a
weak equivalence.

Using 1.4, some closed model category theory and induction, we may assume that
there is a trivial 8bration 1 : A(n − 1)′ → Y with the target Y a co8brant object in
s�Alg�.

Lemma 1.6. Let M = �nA. Then there is a commuting diagram in Ho(sAlg�) of the
form

A(n− 1)′−−−−−−−−→ C(n + 1)

∼
� 1

� ∼
Y −−−−−−−−−−−→K�(M; n + 1)

with the top arrow from 1.4.
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Proof. First; note that since 1 :A(n − 1)′ → Y is a trivial 8bration between suitably
co8brant objects (see above) it follows from that and from 1.5 that

D�1 :D�A(n− 1)′ → D�Y

is a trivial 8bration between co8brant objects in s Mod�. By [9; I.1.7]; D�1 has a
homotopy left inverse i (i ◦ D�1 � IdD�A(n−1)).

Next, utilizing Lemma 1.6, let t :A(n − 1)′ → K�(M; n + 1) be the composite of
A(n− 1)′ → C(n + 1) → K�(M; n + 1). Let w :D�Y → K(M; n + 1) be the composite
(D�t) ◦ i. Then w ◦ D�1 � D�t and the result now follows from Proposition 1.3.

From the previous lemma, we may form the homotopy pullback diagram in s�Alg�

X −→ E�(M; n + 1)� � (pn)+

Y −→ K�(M; n + 1):

(1.7)

By Proposition 1.2, the diagram below is also a homotopy pullback in sAlg�

A(n)′ −→ A(0)′

q′n

� � &[qn]

A(n− 1)′ −→ C(n + 1):

(1.8)

By Proposition 1.5 and Lemma 1.6, there is an induced map of diagrams (1.8) to (1.7)
in the category Ho(sAlg�). Since 8brations and pullbacks in sAlg� are 8brations and
pullbacks as simplicial groups, a computation of homotopy groups can be performed
utilizing Lemma 1.1 to show that the induced map A(n)′ → X is a weak equivalence.
This completes the induction step.

2. Andr&e–Quillen homology and Theorems B and C

2.1. Base change property of AndrAe–Quillen homology

Recall that the cotangent complex of a simplicial R-algebra A is de8ned to be the
object of Ho(ModA)

L(A|R) := 3P|R ⊗P A; (2.9)

where the T -module 3T |S =J=J 2; J =ker(T⊗S T → T ), denotes the Kahler di=erentials
of an S-algebra T , and P → A is a co8brant replacement of A as a simplicial R-algebra.
Note: As in Section 1.3, 3T |S is left adjoint to the functor M �→ M ⊕ T where the

image has a T -algebra structure with M 2 = 0.
Also recall that given another simplicial R-algebra B, the derived tensor product of

A and B to be the object of Ho(sModR)

A⊗L
R B := P ⊗R Q;

where Q → B is a co8brant replacement of B.
We now derive a base change property for the cotangent complex following [11].
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Lemma 2.1. If TorRq (Ak; Bk) = 0 for all k¿ 0 and all q¿ 0 then A⊗L
R B � A⊗R B.

Proof. This follows immediately from the spectral sequence [9; Section II.6]

E2
p;q = �pTorRq (A; B) ⇒ �p+q(A⊗L

R B):

Lemma 2.2. 3A⊗RB|B ∼= 3A|R ⊗R B.

Proof. Let A′ = A⊗R B and 8x an A′-module M . Then

homA′(3A′|B;M) ∼= homBAlgA′ (A
′; M ⊕ A′)

∼= homRAlgA
(A;M ⊕ A)

∼= homA(3A|R;M)
∼= homA′(3A|R ⊗R B;M):

The result now follows from Yoneda’s lemma.

Proposition 2.3. L(A⊗L
R B|B) � L(A|R) ⊗L

R B.

Proof. Fix co8brant replacements P and Q for A and B; respectively. Then

L(A⊗L
R B|B) = 3P⊗RQ|Q ∼= 3P|R ⊗R Q (2.10)

by Lemma 2.2. Since P is projective as a simplicial R-module then 3P|R is a projective
P-module. Thus; by Lemma 2.1; the map 3P|R

∼→3P|R ⊗P A is a weak equivalence.
Since Q is projective; Lemma 2.1 further tells us that

3P|R ⊗R Q ∼→ (3P|R ⊗P A) ⊗R Q ∼= L(A|R) ⊗L
R B (2.11)

is a weak equivalence. The result now follows by combining 2.10 with 2.11.

Corollary 2.4. As a functor of A⊗R B-modules; D∗(A⊗L
R B|B;−) ∼= D∗(A|R;−).

Proof. This follows from Proposition 2.3 and the identity D∗(T |S;M) := �∗[L(T |S)⊗T

M ].

2.2. Proof of Theorem B

We 8rst recall the main result of [12].

Theorem 2.5. Let A be a homotopy connected simplicial supplemented commutative
algebra over a 6eld ‘ of non-zero characteristic. Then Ds(A|‘; ‘)=0 for s�0 implies
that there is an equivalence S‘(D1(A|‘; ‘); 1) ∼= A in the homotopy category.

We now begin by establishing a special case of Theorem A. To that end let A
be a simplicial commutative R-algebra and assume that the unit R → �0A = � is
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a surjection. For ˝∈Spec�, de8ne the connected component of A at ˝ to be the
connected simplicial supplemented k(˝)-algebra

A(˝) = A⊗L
R k(˝):

Lemma 2.6. Let A be as above. Then

(1) D∗(A|R; k(˝)) ∼= D∗(A(˝)|k(˝); k(˝)); and
(2) if A also has 6nite Noetherian homotopy and fdR(�∗A)¡∞ it follows that A(˝)

has 6nite Noetherian homotopy.

Proof. (1) follows from Corollary 2.4. For (2); [9; Section II.6] gives a spectral se-
quence

E2
s; t = TorRs (�tA; k(˝)) ⇒ �s+t(A⊗L

R k(˝)):

From the 8niteness conditions; each E2
s; t is a 8nite k(˝)-module and vanishes for

s; t�0. Thus A⊗L
R k(˝)) has 8nite Noetherian homotopy.

Corollary 2.7. Let A be as in Lemma 2.6(2) and further assume that char(k(˝)) �= 0.
Then Ds(A|R; k(˝)) = 0 for s�0 implies that Ds(A|R; k(˝)) = 0 for s¿ 2.

Proof. This follows from Lemma 2.6 and Theorem 2.5

Now assume that the simplicial algebra A in question is a homotopy connected sim-
plicial supplemented �-algebra, by Theorem A. We further assume that A has Noethe-
rian homotopy.

Fix ˝∈Spec� and let (̂−) denote the completion functor on R-modules at ˝. De8ne
the homotopy connected simplicial supplemented �̂-algebra A′ by

A′ = A⊗L
� �̂:

Proposition 2.8. Suppose A is a simplicial commutative R-algebra; with R a Noethe-
rian ring. Then �∗A′ ∼= �̂∗A and there exists a (complete) Noetherian R′ that 6ts
into the following commutative diagram in Ho(sRAlg)

R
�−→ A

 

� �  

R′
�′−→ A′

with the following properties:

(1)  is a :at map and its closed 6bre R′=˝R′ is weakly regular;
(2)  is a D∗(−|R; k(˝))-isomorphism;
(3) �′ induces a surjection �′∗ :R′ → �0A′;
(4) fdR(�∗A) 6nite implies that fdR′(�∗A′) is 6nite.
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Proof. First; Quillen’s spectral sequence [9; II.6] Tor�∗ (�∗A; �̂) ⇒ �∗A′ collapses to
give the 8rst result since �̂ is Oat over � and each �mA is 8nite over � [8; 8.7 and 8.8].

Next, by [3, 1.1], the unit ring homomorphism R → �̂ factors as R
 →R′

�′∗→ �̂ with
 having the properties described in (1) and �′∗ is a surjection. Thus the induced map
�′ :R′ → A′ induces a surjection on �0, giving (3) and the desired diagram commutes.

Now, by the transitivity sequence [11, 4.12] applied to R → A → A′; (2) follows
from the isomorphism

D∗(A′|A; k(˝)) ∼= D∗(�̂|�; k(˝)) ∼= 0

which follows from Corollary 2.4.
Finally, (4) follows from [3, 3.2], as A has Noetherian homotopy.

Now, let A have 8nite Noetherian homotopy with Ds(A|R;−) = 0 for s�0. From
Proposition 2.8, Theorem 2.5, Corollary 2.7, and [1, Section S.30], if fdR(�∗A)¡∞
then A(˝) ∼= Sk(˝)(D1(A|R; k(˝); 1), for each ˝∈Spec(�0A), if and only if D2(A|R;−)=
0. Thus Theorem B follows from the de8nition of locally homotopy complete inter-
section (see introduction) and a transitivity sequence argument.

2.3. Proof of Theorem C

Let A be a simplicial commutative R-algebra with Noetherian homotopy. It follows
from Lemma 2.6(1), Proposition 2.8, and [1, Section S.30], that D¿3(A|R;−) = 0 if
and only if D¿3(A(˝)|k(˝); k(˝)) = 0, for all ˝∈Spec(�0A). From the de8nition
of locally virtual homotopy complete intersection (see introduction), Theorem C will
follow if we can show that, for each prime ideal ˝; A(˝) ∼= S•(D62(A|R; k(˝))) in
the homotopy category. But this in turn follows from [12, (2.2)].
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