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OPERATIONS AND SPECTRAL SEQUENCES. I

JAMES M. TURNER

Abstract. Using methods developed by W. Singer and J. P. May, we describe
a systematic approach to showing that many spectral sequences, determined
by a filtration on a complex whose homology has an action of operations,
possess a compatible action of the same operations. As a consequence, we
obtain W. Singer’s result for Steenrod operations on Serre spectral sequence
and extend A. Bahri’s action of Dyer-Lashof operations on the second quadrant
Eilenberg-Moore spectral sequence.

1. Introduction

Overview. This is intended to be the first in a series of papers to address the
question of finding a systematic approach for determining when spectral sequences
possess a “good” action of operations, provided it comes from a filtration on a chain
complex whose homology has an appropriate action of operations. In this paper, we
focus on those filtrations which give us either second quadrant homology spectral
sequences or first quadrant cohomology spectral sequences. Since the latter type
can be interpreted as a third quadrant homology spectral sequence, we can capture
both of these notions under the rubric of left plane spectral sequences.

We accomplish our goal, in this situation, by defining the notion of a Dold
algebra. This is essentially a chain complex with product which is “commutative
up to homotopy”. The definition and subsequent methods rely on the algebraic
machinery developed by J. P. May in [8]. From this definition, it is easy to see
that the homology of a Dold algebra has well defined action of operations. In order
to relate this to a spectral sequence coming from a filtration on a Dold algebra,
we define the notion of a µ-filtration. We then show that the resulting spectral
sequence has a compatible action of operations, defined in a way that captures the
type of action originally constructed by W. Singer in [12] and [14].

With this in hand, we then focus our attention on bicomplexes and the spectral
sequences arising from the standard filtration on their total complexes. Again,
using the approach developed in [12] and [14], we give conditions on the bicomplex
so that this standard filtration is a µ-filtration. We then analyze the E2-term.

To demonstrate the usefulness of our work, we recover W. Singer’s action of
Steenrod operations on the Serre spectral sequence, along with all the other appli-
cations he makes in [12] and [14]. We also extend A. Bahri’s action of Dyer-Lashof
operations on the Eilenberg-Moore spectral sequence associated to the pullback

Received by the editors October 21, 1996.
1991 Mathematics Subject Classification. Primary 18G40, 55S05, 55U15; Secondary 18G30,

55S10, 55S12, 55T10, 55T20.
Key words and phrases. Spectral sequences, Dold algebras, Steenrod operations, Dyer-Lashof

operations, cosimplicial spaces, infinite loop spaces.

c©1998 American Mathematical Society

3815

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3816 JAMES M. TURNER

of infinite loop spaces ([1]), and generalize it to the homology spectral sequence
associated to a cosimplicial infinite loop space. For further applications see [15].

In the sequel [16] to this paper, we focus on the notion of truncated Dold algebras
which serve to model, for example, the structure associated to the total complex
for the bicomplex coming from a cosimplicial iterated loop space. We also examine
right plane spectral sequences where we model phenomena such as occurs in [7].

Organization of this paper. In section 2, we review the needed material about
chain complexes, filtrations, and spectral sequences. In section 3, we stipulate what
we mean by an action of operations on homology and how it should behave in the
spectral sequence coming from a filtration. We then define Dold algebras and µ-
filtrations and then show that operations behave well in the associated spectral
sequence. All this is then applied, in section 4, to bicomplexes where we give
conditions so that the total complex is a µ-filtered Dold algebra. We close the
section by examining the E2-term. Finally, in section 5, we give our applications.
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2. Preliminaries on Chain Complexes

For simplicity all modules are over F2. By a chain complex we mean a sequence
of F2-modules and maps

· · · → Ci+1
∂i+1−→ Ci

∂i−→ Ci−1 → · · ·
for all integers i such that

∂i∂i+1 = 0, i ∈ Z,(2.1)

and write (C, ∂) for shorthand (or just C when the boundary maps ∂i are under-
stood). As usual, the homology of C of degree i is defined as

Hi(C) =
ker ∂i

im ∂i+1
.(2.2)

This definition we use in order to capture the classic notion of homology and coho-
mology in one (see, e.g., [17]). We denote by Ch the category of chain complexes.

We now recall the definition (see, for example, [8]) of a key chain complex,
denoted W , and review its properties. Let π be the group {1, σ : σ2 = 1} and
Λ = F2[π], the group ring of π over F2. We then let

Wj =

{
Λ〈ej〉, j ≥ 0,

0, j < 0,
(2.3)

and define ∂i by setting

∂iei = (1 + σ)ei−1, i > 0.(2.4)
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W is in fact a differentially graded coalgebra, that is, there is a map of chain com-
plexes

∆ : W →W ⊗W(2.5)

making W a (graded) associative coalgebra. We define (2.5) by setting

∆em =
∑

i+j=m

ei ⊗ σiej .(2.6)

Note that ∆ is a map of chain complexes over Λ.
Recall that given chain complexes C and C′ their tensor product C ⊗ C′ is

defined by setting

(C ⊗ C ′)m =
⊕

i+j=m

Ci ⊗ C′
j ,(2.7)

whose mth boundary map is
∑

i+j=m

(∂i ⊗ 1 + 1⊗ ∂j).

If C and C ′ are furthermore chain complexes over Λ, we define the π-product
C ⊗

π
C′ to be the chain complex defined by the coequalizer

C ⊗ C′ σ⊗1
⇒
1⊗σ

C ⊗ C′ → C ⊗
π

C′.(2.8)

An easy calculation shows that W is an acyclic chain complex and that H0W ∼=
F2. Let ε : W → F2 be the induced augmentation. Then W is a Λ-free resolution
of F2.

When filtering a chain complex C, it will be of the form

· · · ⊆ F sC ⊆ F s+1C ⊆ · · · ⊆ C,

where s ∈ Z. Given such a filtration there is an associated spectral sequence
{Er, dr}, bigraded with

E0
m,t =

Fm

Fm−1
(C)m+t,(2.9)

with d0 induced by ∂|F mC . This shows that

E1
m,t = Hm+t

[
Fm

Fm−1
(C)
]

.(2.10)

In general, we can explicitly determine Er as follows: define the bigraded module
Zr by

Zr
m,t = {x ∈ FmCm+t : ∂x ∈ Fm−rC};(2.11)

it is then a standard exercise (see [17]) to show that

Er
m,t =

Zr
m,t[

∂Zr−1
m+r−1,t−r+2 + Zr−1

m−1,t+1

] ,(2.12)

and the differential ∂ on C induces

dr : Er
m,t → Er

m−r,t+r−1.(2.13)

Letting Zr
m,∗ =

⊕
t Zr

m,t then Zr+1
m,∗ ⊆ Zr

m,∗ and Zr
m+1,∗ ⊆ Zr+1

m,∗ for all r. Set
Z∞

m,∗ =
⋂

r Zr
m,∗. Letting

Br
m,t = ∂Zr−1

m+r−1,t−r+2 + Zr−1
m−1,t+1
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3818 JAMES M. TURNER

and B∞
m,∗ =

⋃
r Br

m,∗ we have

E∞
m,∗ =

Z∞
m,∗

B∞
m,∗

.(2.14)

In order to compare the spectral sequence to H∗C we define a filtration {F sH∗C}
by

F sH∗C = ker
(

H∗C → H
( C

F sC

))
.

There is then a map

λ : FmHm+tC → E∞
m,t,

which induces

λ̄ :
Fm

Fm−1
(Hm+tC)→ E∞

m,t.

In general, we will say that a spectral sequence (Er, dr) is abutting to H∗C if
there is a filtration, {F sH∗C}, together with a map λ, inducing λ̄. We say such a
spectral sequence converges when λ̄ is an isomorphism (see [17]).

We note that if C and C ′ are filtered, then C ⊗ C′ is filtered by setting

Fm(C ⊗ C′) =
∑

i+j=m

F iC ⊗ F jC′.(2.15)

Finally, recall that a bicomplex is a doubly Z-graded module B which, for each
s, Bs,∗ and B∗,s is a chain complex. We denote by ∂h the horizontal differential
for B (i.e., ∂h : Bs,t → Bs−1,t) and by ∂v the vertical differential for B (i.e.,
∂v : Bs,t → Bs,t−1). Thus ∂h∂v = ∂v∂h and ∂h∂h = 0 = ∂v∂v.

Given a bicomplex B, recall that its total complex T (B) is defined by setting

T (B)m =
∏
i≥0

B−i,m+i,

with total differential defined as the formal sum

∂T = ∂h + ∂v.

We filter T (B) by setting

F−sT (B)m =
∏
i≥s

B−i,m+i,

which we call the natural filtration of T (B).

3. Operations, Dold Algebras, and Spectral Sequences

In this section, we focus on chain complexes whose homology possesses an action
of operations. In particular, we give conditions so that a chain complex has this
property. This is done through the notion of a Dold algebra, the definition of which,
and its relationship to operations, is due originally to A. Dold in [6] and generalized
by J. P. May in [8]. Once established, we will be able to give conditions for a
filtration on a Dold algebra so that a compatible well-behaved action of operations
occur on the spectral sequence. This utilizes an approach pioneered by W. Singer
in [12] and [14].

Definition 3.1. A chain complex C possesses an action of operations if
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(1) H∗C is a graded commutative algebra (not necessarily with unit);
(2) for all integers i there are homomorphisms

Qi : HnC → Hn+iC

such that
(a) Qi = 0, i < n,
(b) Qnx = x2.
We further call C unstable if, in addition,
(c) Qi = 0, i > 0,
and define, for i ≥ 0, the Steenrod operation

Sqi : HnC → Hn−iC

by setting

Sqi = Q−i.

We next make the

Definition 3.2. A Dold algebra is a chain complex C together with a map of
chain complexes

θ : W ⊗
π

(C ⊗ C)→ C,

where C ⊗ C is a Λ-module by having π act by permutation. We denote a Dold
algebra by (C, θ) (or just C when θ is understood).

Given a Dold algebra (C, θ) and m ≥ 0 define a map of graded modules

θm : C ⊗ C → C(3.16)

of degree m, defined by setting

θm(x⊗ y) = θ
(
em ⊗

π
(x⊗ y)

)
.(3.17)

For m ≥ 0, define the set map

qm : C → C(3.18)

of degree m, by setting, for x ∈ Ck,

qm(x) = θm−k(x ⊗ x) + θm−k+1(x ⊗ ∂x).(3.19)

An easy exercise shows that

∂qm = qm∂.(3.20)

Furthermore, one can check that for each k the induced map

Qm : HkC → Hk+mC(3.21)

is a homomorphism. Since we have a natural map

H∗(C)⊗H∗(C)→ H∗(C ⊗ C),

given by [u]⊗ [v]→ [u⊗ v], then θ0 induces

µ : H∗C ⊗H∗C → H∗C,(3.22)

which is a commutative product for H∗C. It is now easy to check that
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3820 JAMES M. TURNER

Proposition 3.3. Let (C, θ) be a Dold algebra. Then, using (3.21) and (3.22),
C possesses an action of operations. We call this action the induced action of
operations.

We now present a useful context under which Dold algebras arise. Let E and F
be two categories. Given a functor

F : E × E → F
define its twisting to be the functor

F σ : E × E → F
given by F σ(C, D) = F (D, C). We then say that the group π acts on F if there
are natural maps

σ∗ : F ↔ F σ : σ∗,

such that σ∗σ∗ = 1F and σ∗σ∗ = 1F σ .
Given two functors F, G : E × E → F on which π acts, then a natural map

f : F → G is equivariant if the diagram

F
f−→ G

σ∗

yxσ∗ σ∗

yxσ∗

F σ fσ

−→ Gσ

commutes.

Definition 3.4. A triple (E , ⊗̄, C) is called a complex tensor category if E is
an abelian tensor category (or symmetric monoidal category) with tensor product⊗̄

: E × E → E
and C : E → Ch is a fixed functor.

Example. Let M be the category of (graded) F2-modules with the usual tensor
product

⊗
. Then the category of simplicial modules sM becomes a tensor category

under the simplicial tensor product
⊗̄

where

(V ⊗̄W )s = Vs ⊗Ws

The functor C : sM→ Ch can be chosen to be the normalization functor, which
is an equivalence by the Dold-Kan theorem (see [17]). Unfortunately, C(V ⊗̄W )
and C(V ) ⊗ C(W ) are only isomorphic after passing to the homotopy category
via the Eilenberg-Zilber theorem. This theorem was extended by Dold in [6] to
extract more information from this relationship. We now follow Dold’s approach
for constructing Dold algebras.

Fix the natural transformation (of graded abelian groups) of degree q

αq :
⊗
◦(C × C)→ W ⊗ (

⊗
◦(C × C)),

which is essentially eq ⊗ 1. Thus αq∂ = (1⊗ ∂)αq.
We now make the
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Definition 3.5. A homotopy deviation, associated to a complex tensor category
(E , ⊗̄, C), is an equivariant chain map

O : W ⊗ (
⊗
◦(C × C))→ C ◦

⊗̄
where π acts diagonally on the left, such that:

(1) For each q the natural composite

C(−)−q ⊗ C(−)−q → (
⊗
◦(C × C))−2q

αq−→

(W ⊗ (
⊗
◦(C × C)))−q

O−→ (C ◦
⊗̄

)−q

is a monomorphism.
(2) For any i, j the natural composite

C(−)−i ⊗ C(−)−j → (
⊗
◦(C × C))−i−j

αq−→

(W ⊗ (
⊗
◦(C × C)))q−i−j

O−→ (C ◦
⊗̄

)q−i−j

is trivial if either q > i or q > j.

Let (E, µ) be a commutative algebroid in a complex tensor category (E , ⊗̄, C)
possessing a homotopy deviation O. Then we have a chain map

θ : W ⊗
π

(C(E) ⊗ C(E))→ C(E)

which is induced from the composite

[W ⊗ (
⊗
◦(C × C))](E, E) O−→ (C ◦

⊗̄
)(E, E)

C(µ)−→ C(E)

since O is equivariant and µ is commutative. Thus (C(E), θ) is a Dold algebra and

Proposition 3.6. The induced action on (C(E), θ) gives C(E) an unstable action
of operations.

Proof. From above, we just need to check instability, but this follows easily from
the definitions and (2) of Definition 3.5.

We now turn to spectral sequences. We will assume, for the remainder of this
paper, that a spectral sequence {Er, dr} will be left plane spectral sequence, i.e.,
Er

s,∗ = 0, s > 0. We thus assume that for any chain complex C, a filtration {F s}
must be a left filtration, i.e., F sC = 0, s > 0. We now stipulate when operations
should behave well with respect to a left plane spectral sequence.

Definition 3.7. Let C be a chain complex possessing an action of operations and
{Er, dr} a left plane spectral sequence abutting to H∗C with induced filtration
{F sH∗C}. We then call the action of operations well behaved with respect to
{Er, dr} if for any r ≥ 2 there exist homomorphisms

µ : Er
−m,t ⊗ Er

−q,u → Er
−m−q,t+u;

Qs
v : Er

−m,t → Er
−m,t+s,

and

Qs
h : Er

−m,t → Ew
−m−t+s,2t,

for some 2r−2 ≥ w ≥ r (see [14]), such that the following hold for a fixed x ∈ Er
−m,t.
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(1) Qs
vx = 0, for s < t, Qs

hx = 0, for s < t−m or s > t, and Qt
hx = Qt

vx.
(2) Suppose x survives to [x] ∈ E`, ` ≥ r. Then Qs

vx survives to E` and Qs
v[x] =

[Qs
vx]. Further, if ` ≥ w, then Qs

hx survives to E` and Qs
h[x] = [Qs

hx]. Finally,
if y ∈ Er

−q,u survives to E`, then µ(x ⊗ y) survives to E` and µ([x] ⊗ [y]) =
[µ(x ⊗ y)].

(3) For drx ∈ Er
−m−r,t+r−1 we have that

(a) If y ∈ Er−q,u, then

drµ(x⊗ y) = µ(drx⊗ y) + µ(x ⊗ dry) +

{
Qt−m−1

h y, y = drx,

0, otherwise.

(b) Both Qs
vx and Qs

hdrx survive to EN and

dNQs
vx = Qs

hdrx

where

N =

{
2r − 1 + t− s, t ≤ s ≤ t + r − 1,

2r − 1, t− s ≤ s ≤ t.

(c) If t + r − 1 ≤ s, then drQs
vx = Qs

vd
rx.

Furthermore, under the map

λ : F−mHtC → E∞,

we have that for x ∈ F−mHtC the following holds.
(4) If y ∈ F−qHuC, then µ(x⊗ y) ∈ F−m−qHt+uC, and λµ(x⊗ y) = µ(λx⊗λy).
(5) For any s, if

(a) t ≤ s ≤ t + m, then Qsx ∈ F−2m−t+sHt+sC and λQsx = Qs
hλx.

(b) If t + m ≤ s, then Qsx ∈ F−mHt+sC and λQsx = Qs
vλx.

If {Er, dr} is induced by a left filtration {F sC}, we call the action of operations
well behaved with respect to {F sC} if it is well behaved with respect to {Er, dr}.

We now turn to Dold algebras and determine when a filtration is well behaved
with respect to the induced action of operations. First, note that if C and D are
filtered chain complexes over Λ, then we filter C ⊗

π
D by letting Fm(C ⊗

π
D) be the

image of Fm(C ⊗D). Next we filter W by setting

(F jW )q =

{
Wq, 0 ≤ q ≤ j;
0, otherwise.

Nonetheless, we use this to define Fm
(
W ⊗

π
(C⊗C)

)
, for any filtered chain complex

C, as before. We then call a Dold algebra (C, θ) filtered if there is a filtration
{FmC} such that, for each m, θ induces

θ : Fm
(
W ⊗

π
(C ⊗ C)

)→ FmC.

Unfortunately, this is insufficient for our needs. To accomplish our goal we define
the µ-filtration of W ⊗

π
(C ⊗ C) by setting

(3.23) Fm
µ

(
W ⊗

π
(C ⊗ C)

)
=

∑
i<−m−1

F iW ⊗
π

Fm−i(C ⊗ C) + W ⊗
π

F 2m+1(C ⊗ C).
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We then call a filtered Dold algebra (C, θ) µ-filtered if for all m

θ(Fm
µ

(
W ⊗

π
(C ⊗ C)

)
) ⊆ FmC.

We now proceed to prove

Theorem 3.8. Let (C, θ) be a µ-filtered Dold algebra. Then the induced action of
operations on C is well behaved with respect to this filtration.

We first prove

Proposition 3.9. Let (C, θ) be a µ-filtered Dold algebra. Let {Er, dr} be the as-
sociated left plane spectral sequence. Suppose r ≥ 2 and x ∈ Zr

−m,t. Then, if

(1) t − m ≤ s ≤ t, there exists an integer w, with r ≤ w ≤ 2r − 2, such that
qsx ∈ Zw

−m−t+s,2t and the correspondence

x→ qsx

passes to a homomorphism

Qs
h : Er

−m,t → Ew
−m−t+s,2t;

(2) if t ≤ s, we have qsx ∈ Zr
−m,t+s and the correspondence

x→ qsx

passes to a homomorphism

Qs
v : Er

−m,t → Er
−m,t+s.

Proof. (1) Since x ∈ Zr
−m,t, then x⊗x ∈ F−2m(C⊗C). We have es−t+m⊗

π
(x⊗x) ∈

F−m−t+s
(
W ⊗

π
(C ⊗C)

)
; thus θs−t+m(x⊗ x) is in F−m−t+sC, since C is a filtered

Dold algebra. Also, ∂x ∈ F−m−rC, so

θs−t+m+1(x ⊗ ∂x) ∈ F−m−r−t+s+1C ⊆ F−m+t+sC, r ≥ 1.

Thus qsx ∈ F−m−t+sC and by (3.20)

∂qsx = θs+m−t+1(∂x⊗ ∂x) ∈ F−m−2r−t+s+1C

⊆ F−m−t+s−wC,

for any 2r − 2 ≥ w ≥ r; hence qsx ∈ Zw
−m−t+s,2t. By a similar analysis, w can be

finessed so that qsx ∈ Bw
−m−t+s,2t. See [14] for further details.
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Next, given x, y ∈ Zr
−m,t we show qs(x+y)−qsx−qsy represents 0 ∈ Er

−m−t+s,2t.
Let k = t−m,

qs(x + y)− qsx− qsy = θ
(
es−k ⊗

π
(1 + σ)(x ⊗ y)

)
+ θ
(
es−k+1 ⊗

π
(x⊗ ∂y)

)
+θ
(
σes−k+1 ⊗

π
(∂x⊗ y)

)
= θ

(
∂es−k+1 ⊗

π
(x⊗ y)

)
+ θ
(
es−k+1 ⊗

π
(x⊗ ∂y)

)
+θ
(
σes−k+1 ⊗

π
(∂x⊗ y)

)
= ∂θ

(
es−k+1 ⊗

π
(x⊗ y)

)
+θ
(
∂es−k+1 ⊗

π
(∂x⊗ y)

)
= ∂θ

(
es−k+1 ⊗

π
(x⊗ y)

)
+θ
(
es−k+1 ⊗

π
(1 + σ)(∂x⊗ y)

)
.

One can check, using the fact that C is a µ-filtered Dold algebra, that the last part
of the equation is an element of

∂Zr−1
−m−t+s+r−1,∗ + Zr−1

−m−t+s−1,∗ (r ≥ 2),

as required.
(2) This is essentially the same as (1) except that for s ≥ t and x ∈ Zr

−m,t we
have e.g., es−t+m⊗

π
(x⊗x) ∈ F−m

µ

(
W ⊗

π
(C⊗C)

)
, and so qsx ∈ Zr

−m,t+s, as before,

and the rest of the proof follows the same path.

Proof of 3.8. One can easily check that since θ0 : C ⊗ C → C is a map of chain
complexes, it induces

µ : Er
−m,t ⊗ Er

−q,u → Er
−m−q,t+u

from the definitions. Also the existence of Qs
h and Qs

v follows immediately from
Proposition 3.9. We now confirm the axioms.

(1) This is immediate from Proposition 3.9.
(2) This is also immediate from Proposition 3.9 and the above.
(3)(a) This follows from the definitions and the equation

∂θ0(x⊗ y) = θ0(∂x⊗ y) + θ0(x⊗ ∂y).

(c) Let u ∈ Er
−m,t, and x ∈ Zr

−m,t represent u. Then if x ∈ F−mC and
∂x ∈ F−m−rC, since t ≤ s ≤ t + r − 1, then qs∂x = θs−t+m+1(∂x ⊗ ∂x) is in
F−m−t+s−2r+1C = F−m−NC ⊆ F−m−rC, using the fact that C is a filtered Dold
algebra. By (3.20) and the fact that C is a µ-filtered Dold algebra qsx ∈ ZN−m,t+s,
and so Qs

vu survives to EN . Next observe that Qs
hdru is represented by qs∂x which

lies in ZN
−m−N,∗ since ∂qs∂x = qs∂∂x = 0. Hence Qs

hdru survives to EN and (3.20)
tells us that dNQs

vx = Qs
hdrx.
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Cases (b) and (d) are similar.
(4) and (5). Let u ∈ F−mH∗C. Then we can represent u by x ∈ F−mC such

that ∂x = 0. Thus qsx = θs−t(x ⊗ x), which is in F−2m−t+sC, for s ≤ t + m, and
in F−mC for s ≥ t + m, since C is µ-filtered Dold algebra. Thus this result (and
the result for µ) follows from the definitions.

4. Bicomplex Tensor Categories

In this section, we present a context which gives rise to bicomplexes whose total
complexes are µ-filtered Dold algebras. We will assume that all our bicomplexes
B · · are left bicomplexes, that is, Bs, · = 0 for s > 0. We denote by BCh the
category of (left) bicomplexes. We also let

⊗
and

⊗
π be the obvious generalization

to BCh of tensor product and π-tensor product that occurs on Ch.

Definition 4.1. (1) A (left) bicomplex tensor category is a triple (Ē , ⊗̂, B)
where (Ē , ⊗̂) is a tensor category, with Ē abelian, and B : Ē → BCh a fixed
functor.

(2) A bicomplex extension of a complex tensor category (E , ⊗̄, C) is a bicom-
plex tensor category (Ē , ⊗̂, B) where Ē is a subcategory of grE , the category
of graded objects over E , and for s ∈ Z we have
a. For E, E′ ∈ Ē then, in E ,

(E⊗̂E′)s = Fs(E⊗̄E′)

where E⊗̄E′ is the object of bigrE , the category of bigraded objects over
E , such that (E⊗̄E′)m,t = Em⊗̄E′

t and the functor Fs : bigrE → E is
additive exact together with a natural monomorphism fs : Fs → diags,
where diags : bigrE → E is given by diagsE = Es,s.

b. There is a naturally monic quasi-isomorphism

ϕs : B · ,s → C ◦ prs

where prs : grE → E is given by prs(A) = As.

Next we define bicomplexes W h and W v by Wh
∗,0 = W = W v

0,∗ and Wh
∗,s = 0 =

W v
s,∗, s 6= 0, with the differentials induced by the one on W . We now make the

Definition 4.2. Let (Ē , ⊗̂, B) be a bicomplex tensor category.

(1) A Dold complex is a pair (E, θ) consisting of an object E ∈ Ē and a map
of bicomplexes

θ : W v ⊗
π

B(E⊗̂E)→ B(E).

(2) A complex homotopy deviation is an equivariant map

γ : W h ⊗ (
⊗
◦(B ×B))→ B ◦

⊗̂
such that, for each s, the induced map

W ⊗ (
⊗
◦(B ×B)) · ,s → (B ◦

⊗̂
) · ,s

satisfies conditions 1 and 2 of 3.5
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(3) If Ē is a bicomplex extension of a complex tensor category (E , ⊗̄, C), with
homotopy deviation O, then a map of bicomplexes

γ : W h ⊗ (
⊗
◦(B ×B))→ B ◦

⊗̂
is an extension of O if, for each s, the diagram

W ⊗ (
⊗ ◦(B · ,s ×B · ,s))

γ−→ (B ◦ ⊗̂) · ,s

1⊗(ϕs×ϕs)

y ϕ̄s

y
W ⊗ (

⊗ ◦(C ◦ prs × C ◦ prs))
O−→ C ◦ ⊗̄ ◦ (prs × prs)

commutes, where ϕ̄s is induced from ϕs and fs, using 2 of 4.1.

Lemma 4.3. Let (Ē , ⊗̂, B) be a bicomplex extension of the complex tensor category
(E , ⊗̄, C). Then any extension γ of a homotopy deviation O is a complex homotopy
deviation.

Proof. This is just a diagram chase using the definitions.

Now, given a functor B : E → BCh define TB : E → Ch by TB(E) = T [B(E)].
Next, given A, B left bicomplexes there is a natural inclusion

i : T (A)⊗ T (B)→ T (A⊗B).(4.1)

Indeed, for each m, n, i is given by the composite(∏
j

A−j,m+j

)
⊗
(∏

k

B−k,m+k

)
→
∏
j,k

(A−j,m+j ⊗B−k,m+k)(4.2)

⊆
∏

`

(A⊗B)−`,m+n+`.

Now let (Ē , ⊗̂, B) be the bicomplex extension of the complex tensor category
(E , ⊗̄, C) and γ an extension of a homotopy deviation O. Define the twisting of
γ to be the natural map

τ(γ) : W ⊗ (
⊗
◦(TB × TB))→ T ◦ (W v ⊗ (B ◦

⊗̄
))

which for (E, E′) ∈ Ē × Ē is defined by the composite

W ⊗ TB(E)⊗ TB(E′) ∆⊗i−→W ⊗W ⊗ T (B(E)⊗B(E′))

φ1−→ W ⊗ T (Wh ⊗B(E)⊗B(E′))
1⊗T (γ)−→ W ⊗ TB(E⊗̄E′)

φ2−→ T (W v ⊗B(E⊗̄E′)),(4.3)

where φ1, φ2 are defined in an obvious way.

Lemma 4.4. For γ an extension of a homotopy deviation O, the twisting τ(γ) is
equivariant.

Proof. This is immediate from the definition and properties of the various maps.
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For the rest of this section, we fix a (left) bicomplex extension (Ē , ⊗̂, B) of the
complex tensor category (E , ⊗̄, C) and γ an extension of a homotopy deviation O.
Let (E, θ̄) be a Dold complex in this bicomplex tensor category. Then define

θ(γ) : W ⊗
π

(
TB(E)⊗ TB(E)

)→ TB(E)(4.4)

as induced by the composite

(W ⊗ (
⊗
◦(TB × TB)))(E, E)

τ(γ)−→ (T ◦ (W v ⊗ (B ◦
⊗̂

)))(E, E)

−→ T
(
W v ⊗

π
(B(E)⊗̄B(E))

) T (θ̄)−→ TB(E),(4.5)

which is π-equivariant by Lemma 4.4.

Theorem 4.5.
(
TB(E), θ(γ)

)
is a µ-filtered Dold algebra with respect to the natural

filtration.

Proof. Let B = B(E). Since the filtration is naturally defined, it is sufficient to
show that the twisting induces

τ(γ) : F−m
µ

(
W ⊗ TB(E)⊗ TB(E)

)→ F−mT (W v ⊗B(E⊗̂E))

for all m. Let x ⊗ y ∈ F−qTB(E)s ⊗ F−rTB(E)t. Then we may assume x ∈
B−i,s+i, i ≥ q and y ∈ B−j,t+j , j ≥ r. Let e ∈ Wp, which we may assume is ep, by
equivariance, for which

∆ep =
∑

a+b=p

ea ⊗ σaeb;

thus, since γ is an extension of O, we can write

τ(γ)(ep ⊗ x⊗ y) =
∑

a+b=p

ea ⊗ O(σaeb ⊗ x⊗ y).

By definition, O(σaeb⊗x⊗y) ∈ B(E⊗̄E)−i−j+b,s+t+i+j , which is trivial for b > i
or b > j by (2) of Definition 3.5, and so is trivial for q + r + 2b > 2i + 2j. Thus,
since i+j−b ≥ q+r−p we have that O(σaeb⊗x⊗y) is in both F−r−q+pTB(E⊗̄E)
and F−`TB(E⊗̂E), where

` = least integer greater than
r + q

2
.

Now, if p < m − 1, then 2p < m + p − 1 < r + q and so 2r + wq − 2p > r + q,
i.e., ep ⊗ x ⊗ y ∈ F−m

µ

(
W ⊗ TB(E) ⊗ TB(E)

)
; otherwise p ≥ m − 1, for which

ep ⊗ x ⊗ y ∈ F−m
µ

(
W ⊗ TB(E) ⊗ TB(E)

)
by definition, and by the analysis above

we have

τ(γ)(ep ⊗ x⊗ y) ∈ F−mT (W v ⊗B(E⊗̄E)),

since we may assume q + r = m + p, and so q + r ≥ 2m − 1, so that ` ≥ m.
Conclusion follows.

We now analyze the E2-term of the spectral sequence associated to a Dold com-
plex. Recall that for any left bicomplex B the E2-term has the form

E2
−m,t = Hh

−mHv
t (B)(4.6)
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where Hv
∗ denotes homology with respect to ∂h. If E is a Dold complex and

B = B(E), then for each m, B−m,∗ is a Dold algebra, and therefore there are chain
homomorphisms

µ̄ : Hv
q (B)⊗Hv

t (B)→ Hv
q+t(B),(4.7)

and for each s,

Q̄s : Hv
m(B)→ Hv

m+s(B),(4.8)

which is the induced action of operations on B−m,∗ for each m. Next for each
t, Ht(B) is an unstable Dold algebra by Proposition 3.6. Thus (4.7) induces

µ : Hh
−mHv

t (B)⊗Hh
−qH

v
u(B)→ Hh

−m−qH
v
t+u(B),(4.9)

(4.8) induces

Qs : Hh
−mHv

t (B)→ Hh
−mHv

t+s(B)(4.10)

and (4.7) and h induce

Sqs : Hh
−mHv

t (B)→ Hh
−m−sH

v
2t(B).(4.11)

Lemma 4.6. For x ∈ Hh−mHv
t (B) we have

SqsQ
i
2 x = QiSqsx

provided Q̄k
v satisfies the Cartan formula on products in Hv

∗ (B).

Proof. Since Q̄i : Hv
t (B)→ Hv

t+i(B) is a map of chain complexes, then representing
x by u in Hv

t (B) we have that Sqsx is represented by µ̄O(es−m⊗u⊗u) in Hv
2t(B).

By the assumption we compute, using naturality, that

Q̄iO(es−m ⊗ u⊗ u) =
∑

k+`=i

O(es−m ⊗ Q̄ku⊗ Q̄`u)

= O(es−m ⊗ Q̄
i
2 u⊗ Q̄

i
2 u)

+
∑
2k<i

O
(
es−m ⊗ (1 + σ)

(
Q̄ku⊗ Q̄i−ku

))
.(4.12)

Therefore, QiSqsx is represented by

µ̄O
(
es−m ⊗ Q̄

i
2 u⊗ Q̄

i
2 u
)

+ ∂µ̄O
(

es−m+1 ⊗
(∑

k<i

Q̄ku⊗ Q̄ku
))

,

which also represents SqsQ
i
2 x.

Theorem 4.7. Let E be a Dold complex. Then in the natural spectral sequence
{Er, dr} associated to the Dold algebra

(
TB(E), θ(γ)

)
the induced algebra structure

on E2 coincides with the one on Hh
∗Hv

∗ (B), and for each x ∈ E2
−m,t we have for

each s,

Qs
hx = Sqt−sx,

and

Qs
vx = Qsx.
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Before we prove this we develop some technical devices. Again we let B = B(E).
First define

F j : B−m,t ⊗B−q,u →W ⊗ TB(E)⊗ TB(E)

by F j(x⊗ y) = ej ⊗ x⊗ y. Then, for any i + j = p, let

τp
i,j : B−m,t ⊗B−q,u → (W ⊗B(E⊗̂E)−m−q+i,∗)t+u+j

be the composite

B−m,t ⊗B−q,u
Fp−→W ⊗ TB(E)⊗ TB(E)

τ(γ)−→ T (W v ⊗B(E⊗̂E))

projection−−−−−−→ (W ⊗B(E⊗̂E)−m−q+i,∗)t+u+j .

We then define

θp
i,j : B−m,t ⊗B−q,u → B−m−q+i,t+u+j

as θ(γ)τp
i,j . Then θp : TB(E)⊗ TB(E)→ TB(E) satisfies

θp =
∑

i+j=p

θp
i,j .

Lemma 4.8. Let u ∈ E2
−m,t be represented by x ∈ B−m,t, so that ∂vx = 0 and

∂hx = ∂vω, for some ω ∈ B−m−1,t+1. Then, letting n = t−m, if

(1) t − m ≤ s ≤ t, Qs
hu ∈ E2

−m−t+s,2t is represented by θs−n
0,s−n(x ⊗ x) in

B−m−t+s,2t.
(2) If t ≤ s, Qs

vu ∈ E2
−m,t+s is represented by θs−n

s−n,0(x⊗ x) in B−m,t+s.

Proof. (1) By (2.12) u = x + y where y ∈ F−m−1TB(E) and Qs
hu is represented by

qs(x + y), which lies in
∑
i≥m

B−i,j , which when written out has the form

θs−n(x ⊗ x) + θs−n((1 + σ)x ⊗ y) + θs−n+1(x⊗ ∂y)

+θs−n+1(y ⊗ ∂x) + θs−n+1(x⊗ ∂x) + θs−n+1(y ⊗ ∂y)

+θs−n(y ⊗ y).

Now x ⊗ y ∈ F−2m−1+j ⊆ F−m−t+s−1TB(E), since j ≤ s − n and TB(E)
is µ-filtered. By a similar argument we have that θs−n

i,j (y ⊗ y), θs−n+1
i,j (x ⊗ ∂y),

θs−n+1
i,j (y⊗∂x), θs−n+1

i,j (y⊗∂y), and θs−n+1
i,j (x⊗∂x) all lie in F−m−t+s+1TB(E). Fi-

nally, x⊗x ∈ F−2m
(
TB(E)⊗TB(E)

)
so θs−n

i,j (x⊗x) ∈ F−2m+j ⊆ F−m−t+s+1TB(E)
only for j < s−n, and so only θs−n

0,s−n(x⊗x) remains to represent Qs
hu in E2

−m−t+s,2t.
Case (2) is similar.

Proof of Theorem 4.7. One can easily check that for u ∈ E2−m,t = Hh−mHv
t (B)

represented by x ∈ B−m,t, ∂x = 0, then

θs−n
s−n,0(x⊗ x) = θs−n(x⊗ x),

where the right-hand side is the Dold algebra structure for B−m,∗. Letting [x] ∈
Hv

t (B) be the associated element, then one can check that
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θs−n
0,s−n([x]⊗ [x]) = µ̄O(es−n ⊗ [x]⊗ [x]).

The result follows from Lemma 4.8.

5. Applications

Recall that a cosimplicial object over a category E is a sequence of objects
C0, C1, . . . , together with maps:

dj : Cn−1 → Cn,

and

sj : Cn+1 → Cn,

for 0 ≤ j ≤ n such that

djdi = didj−1,

sjdi =


disj−1,

id,

di−1sj ,

sjsj = si−1sj ,

i < j,

i < j,

i = j, j + 1,

i > j + 1,

i > j.

Suppose C =M, the category of (possibly graded) F2-modules. Define
⊗̄

on cM
by

(M⊗̄L)s = M s ⊗ Ls

with diagonal cofaces and codegeneracies. We also define the functor

C : cM→ Ch

by setting C(M)n = M−n and ∂ : C(M)n+1 → C(M)n by ∂ =
n∑

j=0

dj . We then

define the cohomotopy groups of M by

πnM = H−nC(M)

for n ≥ 0.

Definition 5.1. A cosimplicial Eilenberg-Zilber map {Dk} is a sequence of
natural maps

Dk :
⊗
◦(C × C)→ C ◦

⊗̄
,

each of degree k such that
(1) Dk = 0, k < 0;
(2) D0 = id :

(⊗ ◦(C × C)
)
0
→ (

C ◦ ⊗̄)
0
;

(3) k ≥ 0, ∂Dk + Dk∂ = Dk−1 + σDk−1σ.
In addition, we call {Dk} special if for each pair M, L in cM,

(4) Dk : C−j(M)⊗C−i(L)→ C−j−i+k(M)×C−j−i+k(L) is trivial if either k > i
or k > j;

(5) Dn : C−n(M)⊗ C−n(L)→ C−n(M)× C−n(L) is the identity.

Proposition 5.2. There exists a cosimplicial Eilenberg-Zilber map
{Dk}. In addition, we can choose {Dk} to be special.
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Proof. For simplicial vector spaces, Dold, in [6], established the dual result. To
obtain the cosimplicial result, the Eilenberg-Mac Lane map exists, by dualizing,
for finite-type cosimplicial vector spaces. The general case can be obtained by a
colimit argument (see the proof of Lemma 3.2 in [7]) .

We note that for x ∈ C−s(M) and y ∈ C−t(L) with s + t > 0, then

D0(x⊗ y) = ds+t · · · ds+1x⊗ ds−1 · · · d0y

in C(M⊗̄L)−s−t (see [3]). Also, by naturality, if we define

N−sM = M s ∩ ker s0 ∩ · · · ∩ ker ss−1

as the normalized chain complex, then {Dk} defines

Dk : N−sM ⊗N−tL→ N−s−t+k(M⊗̄L)

for each k. We now define a cosimplicial deviation to be a homotopy deviation
O : W ⊗ (

⊗ ◦(C × C)) → C ◦ ⊗̄ for the complex tensor category (cM,
⊗̄

, C).
Given a cosimplicial Eilenberg-Zilber map {Dk} and M, N in cM define

O(eq ⊗ x⊗ y) = Dq(x⊗ y),(5.1)

and

O(σeq ⊗ x⊗ y) = σDq(y ⊗ x).(5.2)

Then one can check from the definitions that

∂O(eq ⊗ x⊗ y) = Dq−1(x⊗ y) + σDq−1(y ⊗ x) + Dq∂(x⊗ y)

= O(eq−1 ⊗ x⊗ y) + O(σeq−1 ⊗ x⊗ y)

+O
(
eq ⊗ ∂(x⊗ y)

)
= O((1 + σ)eq−1 ⊗ x⊗ y) + O

(
eq ⊗ ∂(x⊗ y)

)
= O(∂eq ⊗ x⊗ y) + O

(
eq ⊗ ∂(x⊗ y)

)
= O∂(eq ⊗ x⊗ y).

Thus O is a map of chain complexes and therefore a cosimplicial deviation provided
{Dk} is special. Conversely, given a cosimplicial deviation O (5.1) and (5.2) defines
a special cosimplicial Eilenberg-Zilber map. We sum this up in

Proposition 5.3. (5.1) and (5.2) determines a one-to-one correspondence{
cosimplicial
deviations

}
←→

 special cosimplicial
Eilenberg-Zilber

maps

 .

Next, let X be a bicosimplicial object overM, i.e., for each s, X ·,s and Xs,· are
cosimplicial objects overM and the vertical operators commute with the horizontal
operators. Let {Dk

h} be a cosimplicial Eilenberg-Zilber map in the horizontal di-
rection and {Dk

v} a cosimplicial Eilenberg-Zilber map in the vertical direction. Let
bicM be the category of bicosimplicial modules and let

⊗̂
and B be the obvious

generalizations of
⊗̄

and C to this category.

Lemma 5.4. (bicM,
⊗̂

, B) is a bicomplex extension of (cM,
⊗̄

, C).
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Proposition 5.5. Suppose X is a bicosimplicial commutative F2-algebra. Then
{Dk

v} makes X a Dold complex in (bicM,
⊗̂

, B). Furthermore, the obvious exten-
sion of the homotopy deviation associated to {Dk

h} makes TB(X) a µ-filtered Dold
algebra and, at the E2-term, the operation

Qs : Hh
−mHv

t

(
B(X)

)→ Hh
−mHv

t+s

(
B(X)

)
is unstable and satisfies the Adem and Cartan relations, as also does

Sqs : Hh
−mHv

t

(
B(X)

)→ Hh
−m−sH

v
2t

(
B(X)

)
.

Proof. This follows immediately from Proposition 3.6 and Theorem 4.5, Theorem
4.7, and the results of [6].

Corollary 5.6 (see [12] and [14]). Suppose Z is a bisimplicial cocommutative F2-
coalgebra and N an F2-module. Then the third quadrant spectral sequence {Er, dr}
converging to H∗(diag Z; N) possesses, for each r, a differential graded algebra
structure and an action of Steenrod operations

Sqs
h : Er

−m,−t → Er
−m+t−s,−2t,

and

Sqs
v : Er

−m,−t → Er
−m,−t−s,

satisfying all the usual relations and compatible at E∞ with the induced filtration
on H∗(diag Z; N).

Proof. Apply Proposition 5.5 to Hom(Z, N).

This has various topological applications gotten by starting with a bisimplicial
set Y and letting Z be the free bisimplicial module on Y . The diagonal Y → Y ×Y
induces a cocommutative coalgebra structure on Z. In this context, Corollary 5.6
applies to the Serre spectral sequence and the bar spectral sequence. For details on
this and other applications, see [12] and [14].

Next, let A be a simplicial object overM. Let NA be the Moore complex of A,
i.e.,

NsA = As ∩ ker d1 ∩ · · · ∩ kerds,

and ∂ = d0. For example, the chain complex W is a chain homotopy equivalent to
N [F2Eπ] where F2Eπ is the free simplicial module on Eπ (see [8]).

Consider now the category J of infinite loop spaces (where space = simplicial
set). By [9], the infinite loop structure on an object X in J is determined by, among
other things, a map θ̄ : Eπ×

π
(X ×X)→ X . By the Eilenberg-Zilber theorem (see

[17]), there is a natural chain homotopy equivalence

W ⊗N(F2X)⊗N(F2X)→ N
(
F2(Eπ ×X ×X)

)
,

which induces

W ⊗
π

(
N(F2X)⊗N(F2X)

)→ N
(
F2

(
Eπ ×

π
(X ×X)

))
.

Now, define an E2
∞-algebra in sM to be a pair (M, θ) consisting of a simplicial

module M and a map of simplicial modules

θ : F2(Eπ)⊗̄
π
(M⊗̄M)→M

It is clear that for X ∈ J then F2[X ] is an E2
∞-algebra.
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Lemma 5.7. For each M an E2
∞-algebra, N(M) is a Dold algebra. As a conse-

quence, for X in J , N(F2X) is a Dold algebra.

Now consider (csM,
⊗̂

, B), where
⊗̂

is the obvious generalization of tensor
product from cM and sM, and

B : csM→ BCh

is defined by B(M) = C̄[N(M)], where C̄ : cCh→ BCh is the prolongation of C.

Lemma 5.8. (csM,
⊗̂

, B) is a bicomplex extension of (cM,
⊗̄

, C). Furthermore,
any cosimplicial deviation induces an extension through the simplicial Eilenberg-
Zilber map.

Corollary 5.9. Given a cosimplicial object Z over J then F2(Z) is a Dold complex
in csM and TB(F2Z) is a µ-filtered Dold algebra.

Proof. This follows immediately from 5.8 and 4.5.

We now have enough to prove

Theorem 5.10. Let X · be a cosimplicial infinite loop space and
{Er, dr} the second quadrant spectral sequence associated to the total complex of
B(F2X). Then H∗(X ·; F2) is a cosimplicial graded commutative F2-algebra with
a compatible action of Dyer-Lashof operations (see [5]), and so π∗H∗(X ·; F2) is a
bigraded commutative algebra possessing an action of the Dyer-Lashof operation

Qs : πmHt(X ·; F2)→ πm+sH2t(X ·; F2),

satisfying Adem, Cartan, instability, etc., for all s, and the relations of Lemma
4.6. Under the identification E2−m,t = πmHt(X ·; F2), this product and action of
operations is well behaved, in the sense of Definition 3.7, with the spectral sequence
{Er, dr}.
Proof. The action of Dyer-Lashof operations follows from [5] and naturality. By
Proposition 3.6 and Proposition 5.3 the action of Steenrod operations occurs and
is independent of choice of cosimplicial Eilenberg-Zilber map as shown in [6]. The
relationship to the spectral sequence follows from Corollary 5.9, Theorem 4.5, and
Theorem 4.7.

Next, recall that given a cosimplicial space X · there is an associated total space
(see [4]) Tot(X ·) which for q ≥ 0,

Tot(X ·)q = Hom(∆· ×∆[q], X ·),

where ∆· is the standard cosimplicial space with ∆m = ∆[m]. From [2] there is a
filtration

{
F−sH∗

(
Tot(X ·); F2

)}
, together with natural maps

ξ : F−sH∗
(
Tot(X ·); F2

)→ F−sH∗TB(F2X
·).

Proposition 5.11. If X · is a cosimplicial infinite loop space, then Tot(X ·) is an
infinite loop space, and for x ∈ F−mHt

(
Tot(X ·); F2

)
if

(1) t ≤ s ≤ t + m, then Qsx ∈ F−2m−t+sHt+s

(
Tot(X ·); F2

)
and ξ(Qsx) =

Qs
h(ξx).

(2) t + m ≤ s, then Qsx ∈ F−mHt+s

(
Tot(X ·); F2

)
and ξ(Qsx) = Qs

v(ξx).
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Proof (sketch). The following proof is due to J. McClure in [10]. Let

D2 : sS → sS
be the functor D2X = Eπ×

π
(X×X). By [5] it is enough to compute H∗

(
D2 Tot(X ·)

)
= H∗

(
Tot(D2X

·)
)

from the spectral sequence. From section 5 of [3] there is a cosim-
plicial space A(s,t) for each t ≥ s ≥ 0 which is universal for elements of the E∞-term
of the homotopy spectral sequence associated to a cosimplicial space. From their
results we have

E2
−l,m(A(s,t)) =

{
F2, l = s, m = t,

0, otherwise.
(5.3)

and from [2] this spectral sequence converges to show that Tot(A(s,t)) = St−s up
to 2-completion. Thus Hn

(
Tot(D2As,t)

)
= F2 for n ≥ 2(t− s) (see [5]). From the

universality of A(s,t) we are reduced to showing that

E2
−l,m(D2A(s,t)) =


F2, 2s ≥ l ≥ s, m = 2t,

F2, l = s, m ≥ 2t,

0, otherwise.
(5.4)

but this is a straightforward computation utilizing the definition of A(s,t).

As an application, let

M −→ Ey p

y
X

f−→ B

be a fibre square of infinite loop spaces and maps. Then the geometric cobar
construction B is a cosimplicial infinite loop space such that

Bs = X ×B × · · · ×B × E

with s copies of B in this product. The resulting homology spectral sequence is the
Eilenberg-Moore spectral sequence (see e.g. [2])

E2
−m,t = Cotorm

H∗B(H∗X, H∗E)t =⇒ Ht−mM

As a consequence of 5.10 we have operations

Qi : Cotorm
H∗B(H∗X, H∗E)t → Cotorm

H∗B(H∗X, H∗E)t+i

and

Sqi : Cotorm
H∗B(H∗X, H∗E)t → Cotorm+i

H∗B(H∗X, H∗E)2t

which is well behaved in the spectral sequence and is compatable with the action
of Dyer-Lashof operations on H∗M , as described by 5.11.

Note: In [1], the vertical Dyer-Lashof operations were shown to exist in the
Eilenberg-Moore spectral sequence for a fibre square of infinite loop spaces. Further,
the work of Rector, in [11], and Smith, in [13], shows that the horizontal Steenrod
operations exist in the above way. Here we have given them a unified meaning.
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