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EMBEDDINGS OF LOCALLY CONNECTED COMPACTA
BY

GERARD A. VENEMA1

Abstract. Let A' be a ^-dimensional compactum and /: X -» M" a map into a

piecewise linear n-manifold. n > k + 3. The main result of this paper asserts that if

X is locally (2k - ^-connected and / is (2k - n + l)-connected, then / is

homotopic to a CE equivalence. In particular, every ^--dimensional, /-connected,

locally /--connected compactum is CE equivalent to a compact subset of R2*~r as

long as r < k - 3.

Introduction. Let X be a ^-dimensional compactum. In this paper we study the

problem of finding an embedding of X into Euclidean H-space R". Specifically, we

wish to investigate conditions under which we can embed X in R" when n is less

than the classical dimension 2k + 1.

In case X is a manifold, it has long been known that such improvements are

possible. Whitney [Wh] showed that every smooth rc-dimensional manifold embeds

in R". His techniques were later generalized to codimension three embedding

theorems for piecewise linear (PL) manifolds by Irwin [Ir] and Hudson [Hd] who

showed that if the manifold is /--connected, then it is possible to PL embed it in
R2k~r.

The situation for polyhedra is different. In order to accomplish the embedding

into a lower-dimensional space it is necessary to identify certain contractible sets to

points and this changes the homeomorphism type of the polyhedron. Thus the map

produced is not a topological embedding, but rather a simple homotopy equivalence.

So the appropriate theory for polyhedra is a theory of embedding up to simple

homotopy type and this theory was worked out by Stallings [St]. It follows from his

main theorem that every fc-dimensional, /--connected polyhedron is simple homotopy

equivalent to a subpolyhedron of R2*"'.

The purpose of this paper is to prove a theorem like that of Stallings, but for more

general compacta rather than polyhedra. In moving from polyhedra to compacta it is

necessary to add an additional hypothesis: We must assume that the polyhedra are

locally /--connected as well as globally /--connected. In addition, we must use an

appropriate generalization of the (strictly polyhedral) concept of simple homotopy

equivalence. We substitute CE equivalence. This is the natural thing to do because
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614 G. A. VENEMA

every CE map of polyhedra induces a simple homotopy equivalence [Ch] and a

simple homotopy equivalence is made up of a sequence of maps, each of which

shrinks out cell-like sets of a particular kind.

Before stating our main theorem we give a definition of CE equivalence.

Definition. A compact space A is said to be a cell-like set if, for some embedding

of A into an absolute neighborhood retract (ANR), A has the property that A is

contractible in every neighborhood of itself. A map /: X -* Y of compacta is said to

be a CE map if / is onto and f~l(y) is a cell-like subset of X for every y e Y. We

say that / is a CE equivalence if there exists a compactum Z and CE maps g:

Z -+ X and h: Z -> Y such that h = fg.

Theorem 1. Suppose X is a locally r-connected, k-dimensional compactum and M"

is a PL n-manifold, k < n — 3, r > Ik — n. If f: X -* M is an (r + \)-connected

map, then f is homotopic to a CE equivalence; i.e., there exist k-dimensional compacta

Y and Z such that Y c M" and CE maps Z -> X and Z -» Y such that

X     ->      M

t u
Z      ^       Y

commutes up to homotopy. Furthermore, ifr^k — 2 then Y is locally r-connected.

Corollary. // X is a k-dimensional, r-connected, locally r-connected compactum,

r < k — 3, then X is CE equivalent to a compact, k-dimensional, locally r-connected

subset of R2k-r.

We note that Theorem 1 has precisely the same connectivity conditions as are

found in Stallings' theorem, except that we assume local connectivity as well as

global connectivity. The local connectivity is automatic in the case of polyhedra and

the example in [D-H] shows that it is a necessary hypothesis in the case of compacta.

There have been other generalizations of [St] to compacta. One such generaliza-

tion involves the use of shape equivalence instead of CE equivalence. The main

results of that type are contained in [H-I]. It is interesting to note that the

hypotheses used in [H-I] are equivalent (by [Fel]) to the assumption that X has the

shape of an LCr compactum for precisely the same value of r as is used here.

In addition, Husch [Hs] has proved a metastable range theorem similar to ours but

using a condition which is stronger than the LCr hypothesis. He proves that if Zcan

be expanded as the inverse limit of an inverse sequence of /c-dimensional polyhedra

with UV bonding maps, r > 2k — n, k < n — 3, and k < (2/3)(n - 1), then any

(/- + l)-connected map /: X -* M" is homotopic to a CE equivalence. Ferry [Fel]

has shown that if X can be written as an inverse limit of an inverse sequence with

UV bonding maps, then X is LC (while the converse is not true). Thus Husch's

theorem follows from Theorem 1. But the proof of Theorem 1 given in this paper is

based on Husch's construction.
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1. Definitions. A space X is said to be r-connected if every map of the w-sphere

S"', m ^ r, into A'extends to a map of the (m + l)-ball Bm + 1 into X. We say that

X is locally r-connected (abbreviated LC) if for every x e X and for every

neighborhood U of x there exists a neighborhood V of x such that any map of Sm

into V extends to a map of Bm + l into U, m < r. A map /: X -* 7 is said to be an

r-connected map if ■nj(M(f), X) = 0 for / < /-. Here M(/) denotes the mapping

cylinder of /.

Let e be a positive number. A homotopy /: X X [0,1] -> Y is said to be an

e-homotopy if diam(/({x} X [0,1])) < e for every x e X. A collapse of one poly-

hedron to another induces a strong deformation retraction in a natural way. The

collapse is said to be an e-collapse if the induced homotopy is an E-homotopy. A

regular neighborhood TV of a polyhedron K is said to be an e-regular neighborhood if

N collapses to K via an e-collapse.

All polyhedra considered in this paper are compact. If L is a polyhedron

equipped with a triangulation, then L(r) denotes the /--skeleton.

Inverse limits are useful in this paper. If {X^ is a sequence of spaces and /,:

Xi+1 -» Xt, we consider )im{Xi,fi} to be the subset of the product space Y\Xj

consisting of all sequences (x() such that ft(xi+1) = xt.

It is also convenient to use shape theory occasionally to prove that certain sets are

cell-like. We use only the most elementary facts which can be found in any book on

the subject (see [D-S], for example).

Finally, we mention taming theory. We follow [Ed and St] and say that a

/c-dimensional compactum X in a PL manifold is tame if for every e > 0 there exists

a neighborhood N of X such that N is an e-regular neighborhood of a /c-dimen-

sional polyhedron.

2. Neighborhoods. Let X denote a A>dimensional, compact, LC metric space

which is a subset of the interior of a PL «-manifold M. In this section we will build

neighborhoods of X in M which reflect the local connectivity of X. Specifically, this

means that the neighborhoods should contain small homotopies pushing polyhedra

of appropriate dimension into X.

Definition. Let e be a small positive number. We will call a neighborhood N of

X an (e, r)-deformation neighborhood if for every (r + l)-dimensional polyhedron L

and every map f: L -* N there exists an e-homotopy //. L -* N such that /0 = /

and /,(L) c X. We say that TV is a strong (e, r)-deformation neighborhood if N has

the additional property that if L0 is a subpolyhedron of L such that /(L0) c X,

then we can require that ft\L0 = f\L0 for every t.

In this section we will prove that, under suitable hypotheses, LC compacta have

arbitrarily small strong (e, r)-deformation neighborhoods. The converse is also true:

if X has strong (e, /^-deformation neighborhoods for arbitrarily small e, then X is
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LC. This is because a map of Sm into a small subset of X extends to a map of Bm + l

into a small subset of M. If m < r, a strong (e, /-)-deformation neighborhood can

then be used to push the image of Bm +1 into X.

It seems simplest to begin by proving the existence of (weak) (e, r )-deformation

neighborhoods. The proof of the following lemma was communicated to the author

by M. Bestvina.

Lemma 2.1. Suppose X is a k-dimensional compactum which is tamely embedded in

the PL n-manifold M. If X is LCr, r < k — 2, k + r + 3 < n, then for every e > 0

there is an (e, r)-deformation neighborhood N of X in M such that N is an e-regular

neighborhood of a k-dimensional polyhedron K.

Proof. The proof is by induction on r and begins with the case r = — 1 (in which

case there is something to prove even though there is no restriction on X).

Choose 5 > 0 such that for any point x e NS(X) there exists a path of diameter

< e/5 from x to a point of X. Let TV, be a neighborhood of X such that TV, is an

(e/5)-regular neighborhood of a ^-dimensional polyhedron K1 and TV, c NS(X).

Take a triangulation of Kl having mesh less than e/5.

For each vertex v of Kv choose an (e/5)-arc Bv from otoa point of X. We may

assume that Bv n K1 = {v}. (If the other end of Bt, lies in Kl n X, just move Kx

slightly.) Keep the endpoints of Bv fixed and push the rest of Bv out of TV, using the

natural (e/5)-product structure on Nx — K{ = 3A/, X [0,1). The new arc, Cv, has

diameter < 3e/5. Now add a small (e/5)-regular neighborhood of each arc C,, to

Nv We take N to be A/, plus the neighborhoods of the arcs and take K to be Kl

plus the arcs Cv plus the shadows of C n 3A/j under the collapse of Nx to Kv

Pick a point p e N. We must show that there is an e-homotopy of p in N which

pushes p into X. First homotope p into K with an (e/5)-homotopy. In case this

pushes p into Kv continue to push p along Kl to the nearest vertex. The other case

is that the first homotopy pushes p into one of the arcs C. In either case we get p

into one of the C„ with a (2e/5)-homotopy. The homotopy is completed by moving

along C into X.

Now suppose that r > 0 and that X has (e, r — l)-deformation neighborhoods

for arbitrarily small e.

Let e > 0 be given. Choose 5, > 0 such that any 6\-map of Sr+l into the

^-neighborhood of X extends to an (e/8)-map of Br+2 into M. (The existence of 5,

follows from the fact that M is LC+1.) Next we use the fact that X is LC to

choose 8 > 0 such that 8 < 5,/2 and if L is any (/- + l)-complex and /: L(r) -> X

such that diam[/(3A)] < 8 for every (r + l)-simplex A in L, then / extends to a

map /': L -> X such that diam[/'(A)] < §,/2 for every simplex A in L.

Now apply the inductive hypothesis to get a (5/3, r - l)-deformation neighbor-

hood Nl of X such that Nl collapses to a ^-dimensional polyhedron Kl via an

(e/8)-collapse. Triangulate K1 with a triangulation of mesh less than 5/3 and let

Klr+1) denote the (r + l)-skeleton of Kv

We claim that there exists an (e/8)-homotopy of K[r+l) into X which keeps A^1(r)

in Nv By the choice of Nl, there exists a (S/3)-homotopy ht: K\r) —> N1 such that

h0 = inclusion and h^K^) c X. Extend h0 via the inclusion to all of K{r+1). For
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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each (/• + l)-simplex A c K{r+l), ^(SA) c X and diam[/!,(aA)] < 6. So the choice

of 8 allows us to extend hx to K[r+V) in such a way that hy(K[r+l)) c X and

diam^^A)] < Sx/2 for each A c /C<r+1). Then for each (r + l)-simplex A c /C^1',

/i0(A) U fc,(A) U {/!,(3A)|0 < f < 1} has diameter less than 8X. The choice of 6\

now allows us to extend h, to the (e/8)-homotopy whose existence was claimed

above.

We now have a map h: K[r+l) X [0,1] -» M such that A(x,0) = x for all

x e Jrfr+1\ h{K[r+l) X {1}) c X, h{K[r) X [0,1]) c 7V1( and diam[/z(A X [0,1])]

< e/8 for every (r + l)-simplex A c Ari(r+1). For some small positive number y,

make h\K[r+l) X [0,1 - y] PL and put it in general position with respect to Kx. The

condition k + r + 3 < n then implies that h(K[r+l) X [0,1 - y]) intersects Kx only

along h{K[r+l) X {0}) = K[r+l). We may also assume that y and the PL approxi-

mation were chosen carefully enough so that

h(Klr+1)X{0,l - y})uh(Klr)x[0,l - y])c Nv

Push the rest of h(K[r+v> X [0,1 - y]) out of Nv keeping h{K[r+l) X {0,1 - y})

U /i(JfiT^^> X [0,1 - y]) fixed. Then h{K[r+l) X [0,1 - y]) consists of the part lying

in TV, together with some (r + 2)-cells poking out of TYj. Each of these (r + 2)-cells

has diameter less than 3e/8. We take N to be A/, plus (e/8)-regular neighborhoods

of the (r + 2)-cells and take K to be Kl plus the (/■ + 2)-cells plus shadows of the

(r + 2)-cells in the product structure of A^ — Kv

We must now show that N satisfies the conclusion of the lemma. Let L be an

(/• + l)-dimensional polyhedron and /: L -> N. We construct the homotopy of

f(L) into X in several stages. First, homotope f(L) out of the (/• + 2)-handles and

into Nv Next, push f(L) down the product structure of Nx — Kx into Kv Then

push along Kx into A'1<r+1). From there on, use the homotopy ht. The second and

third of those homotopies are (e/8)-homotopies and the first and last are (3e/8)-

homotopies, so the entire homotopy is an e-homotopy.    □

Lemma 2.2. Suppose X is a compact LC° subset of the PL manifold M. Then for

every e > 0 there exists a 8 > 0 such that every (8,Q)-deformation neighborhood of X

is a strong (e, Q)-deformation neighborhood of X.

Proof. Let e > 0 be given. Choose 8 > 0 such that 35 < e/6 and such that if x,

y g X and d(x, y) < 35, then x and y can be joined by an arc in X of diameter less

than e/6.

Now suppose that A is a (6,0)-deformation neighborhood of X in M. Let L be a

1-dimensional polyhedron, L0 a subpolyhedron of L and /: I^JVa map such

that f(L0) c X. Choose a triangulation of L of such small mesh that diam[/(A)] < 6

for every simplex A in L. For each vertex v of L - L0, there is a 5-homotopy of

f(v) into X. Extend those homotopies via the identity to f(L0) and then to a

5-homotopy of all of /(L) in N.

Now if A is a 1-simplex in L, we have 5-homotoped /|A to a map /': A -> N

such that /'(3A) c X and diam[/'(A)] < 35 < e/6. Thus the proof of the lemma

will be complete if we can show that /' is (5e/6)-homotopic, rel3A, to a map of A

into X. To do so we use a base point trick just like that in [L-V, Lemma 1].License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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By the choice of 5, we can extend /'|3A to a map /": A -> X such that

diam[/"(A)] < e/6. Let Q be the loop made up of /'(A) together with /"(A) with

reverse orientation. We want to show that Q is homotopic, rel base point, to a loop

£2' in X. If so, then /'(A) is homotopic (rel base point) to the path /"(A) followed

by ilf which lies entirely in X and so we are finished.

Take a triangulation of A of mesh less than 5 and let K denote the 1-skeleton of

the triangulation. By hypothesis, there exists a 5-homotopy h,: K -* A such that

h0 = inclusion and hx(K) c X. By moving /" slightly (if necessary) we may

assume that there is a point y e K such that hx(y) e /"(A). This may increase the

size of /"(A), but only by e/6. We will first use y as a base point. Let a be the path

from y to hx(y) traced out by the homotopy ht\{y). Notice that there is a

base-point-fixing 25-homotopy of the loop aQ,a~l to a loop of the form aQ'a~x

where ft' is a loop in X. (This homotopy consists of a push into the 1-skeleton K,

followed by the homotopy ht.) But now using h^y) as a base point, we see that

Q — a~la$la~la = alaQ,'a~la - Q' where " - " denotes "is homotopic to" and all

the homotopies are rel the base point hx(y). To complete the proof we need only

compute the size of the homotopies involved. The entire image of the homotopy has

diameter < diam[£2] + diam[a] + 45 + diam[a]

< (diam[/'(A)] + diam[/"(A)] + E/6) + 5 + 45 + 5

< 35 + e/6 + e/6 + 65 < 5e/6.        □

The following is the main result of this section.

Proposition 2.3. Suppose X is a k-dimensional compactum which is tamely

embedded in the PL n-manifold M. If X is LCr, r < k — 2, and k + r + 3 < n, then

for every e > 0 there is a strong (e, r)-deformation neighborhood N of X in M such that

N is an e-regular neighborhood of a k-dimensional polyhedron K.

Remark. The hypothesis r + k + 3 < n could be weakened considerably. But

doing so would require extra work and we do not have any need for a stronger result

in this paper.

Proof. The proof is by induction on r. The case r = — 1 has already been done

because there is no difference between an (e, — l)-deformation neighborhood and a

strong (e, — l)-deformation neighborhood. The case r = 0 is covered by Lemmas 2.1

and 2.2. So we may assume inductively that r > 1 and that for every e > 0 there is a

5 > 0 such that every (5, r - l)-deformation neighborhood of X is a strong (e,

r — l)-deformation neighborhood of X.

Let e > 0 be given. Use the fact that A' is LC to choose 5t > 0 such that any

map g: Sr -> X with diam[g(Sr)] < 35, extends to a map G: Br+l -» X such that

diam[G(iT+1)] < e/5. By the inductive hypothesis there exists 5 > 0 such that any

(5, r - l)-deformation neighborhood of X is a strong (5:, r - l)-deformation

neighborhood. We may also assume that 5 < 5X and 35j < e/5.

By Lemma 2.1 there exists a neighborhood N of X such that A is a (5, /-)-defor-

mation neighborhood and such that A is a 5-regular neighborhood of a /V-dimen-

sional polyhedron K. We will show that such an A is a strong (e, /-)-deformation

neighborhood.
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Let L be an (r + l)-dimensional polyhedron, L0 a subpolyhedron of L and /:

L->JVa map such that f(LQ) c X. We must produce an e-homotopy /,: L -* N

such that /0 = /, /■(£) c A', and /,|L0 = /|L0 for every t. We may assume that L0

is /--dimensional, because otherwise we could restrict our attention to Clos(L — L0),

construct such a homotopy of Clos(L - L0) which keeps L0 n Clos(L — JL0) fixed

and then extend it via / to all of L = Clos(L - L0) U L0.

Pick a triangulation for L such that if A is a simplex in L, then diam[/(A)] < 5

and L0 is a subcomplex of this triangulation. By the choice of A, there is a

Sj-homotopy h,: L -> A such that fc0 = /, h,\L0 = f\L0 for each /, and ft^I/*"*) c

X For each (/■ + l)-simplex A of L, we have that ft,(3A) c X and diairrf/i^A)] <

35,. Just as in the proof of Lemma 2.2, we will be finished if we can show that there

is a (4e/5)-homotopy of hx(A) into X which keeps /i,(3A) fixed.

So consider one such A. By the choice of 5,, there is a map h'\ A -> X which

extends AJ3A and such that diam[/2'(A)] < e/5. Consider the singular (r + l)-sphere

S = ^i(A) u h'{h.). There is a 5-homotopy of S to a singular (r + l)-sphere

5' c X. Pick a base point x e S n X. The path /» followed by x during the

homotopy from S to 5" is a 5-path beginning and ending on X. By induction, there

exists a 5,-homotopy of p into A" which keeps the ends of p fixed. Let p' be the

new path in X. Notice that diam[/>'] < 5 + 25, and that 5 is homotopic (rel base

point) to the singular (r + l)-sphere S" c X which is 5" acted on by the path p'.

Therefore /2X|A is homotopic, rel3A, to a map of A onto S" U //'(A).

The size of that homotopy is no greater than diam[,S] + 25 + 25j. But diam[5] <

35j + e/5, so the size of the homotopy is no more than 35, + e/5 + 25 + 25, <

4e/5.    □
Proposition 2.3 seems like the simplest, most natural way to state the properties of

the neighborhoods we have constructed. But in the proof of Theorem 1 we will

actually need the following, more technical, statement.

Proposition 2.4. Let X be an LC compactum in the PL n-manifold M and let e be

a positive number. Suppose A: is a strong (e, r)-deformation neighborhood of X, p:

Aj —> Kx is an e-retraction onto a k-dimensional spine Kx, A0 c A, is a second

(e, r)-deformation neighborhood of X, L is an (r + \)-dimensionalpolyhedron and L0

is a subpolyhedron of L. Then iff0: LQ -> A0 is a map such that pf0 extends to a map

f: L -> Kx, then there is an extension /': L -* N0 of f0 such that f and pf are

5e-homotopic, rel L0, in Kx.

Proof. We will show that there is a 3e-homotopy g,: L -> A, such that g0 = /,

gx(L) c A0, g,|L0 = /0 and p{g,{x)) = f(x) for every x e L0 and for every t. Once

such a homotopy has been constructed, we simply take f' = gx and notice that the

homotopy pgt is a 5e-homotopy from pg0 = / to pgx = pf.

To construct g, we proceed as follows. Pick a barycentric subdivision of L having

very small mesh. Let A denote the simplicial neighborhood of L0 in this triangula-

tion, C = Clos(L -A) and B = A n C. Since A0 is an (e, /-j-deformation neigh-

borhood, there exists an e-homotopy of f(L0) in A0 which pushes f(L0) into X. By
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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spreading that homotopy out over the neighborhood A, we construct a map F:

LX[0,1]-»JV, such that F(x,0) = f(x) for all x e L, F(x,l) = f0(x) for all

x e L0, F(x, 1) e A0 for all x <= A, F(x, 1) <= X for all x e B, p(F(x, t)) = f(x)

for all x G L0 and all f, and diam[F({x} X [0,1])] < 2e for all t. Now there exists

an e-homotopy which pushes F(C X {1}) into X keeping F(B X {1}) fixed because

of the fact that A, is a strong (e, /-)-deformation neighborhood. The homotopy g, is

the homotopy obtained by doing the two homotopies mentioned above in succes-

sion.    □

3. Inverse limits and CE limit maps. In this section we give conditions under which

a sequence of CE maps into neighborhoods of X converges to a CE map onto X. We

first show that if X is defined as the intersection of a sequence of neighborhoods

with sufficiently small collapses onto their spines, then there is a natural CE map

from the inverse limit of the spines onto X. Then we construct a CE map from an

inverse limit onto X as the limit of a sequence of level maps into that inverse

sequence.

The following notation is assumed throughout this section: A" is a compactum in

the interior of the PL n-manifold M, {A,} is a sequence of neighborhoods of X,

Ni + 1 c Int Ni for each i, X = DA;, A, collapses to a compact polyhedron Xt via an

e,-collapse £,, and {e,} is a sequence of positive numbers which converges to 0. Let

p,: Nt -* X{ denote the e,-retraction induced by £, and let /,: Xi+1 -» A", be the

restriction of p,. We will refer to the sequence {A,, A,} as a defining sequence for X.

Notice that the defining sequence {A,, A,} implicitly defines the maps f and the

numbers e,.

Lemma 3.1. Suppose X is a compact subset of the PL n-manifold M. If {A;, A",} is a

defining sequence for X such that Ze, < oo, then there is a natural CE map G:

lim{A-,/,}^A-.

Remark. It is possible to make G a homeomorphism by putting further restric-

tions on the defining sequence. To do so, the e, would have to be chosen inductively

and would depend on the preceding retractions. A proof of this stronger lemma

would follow the lines of the proofs of Theorems 1 and 2 in [Br].

Proof of Lemma 3.1. Let (x,) e lim{A',}. The facts that d{xt,xi+x)< e, and

£e, < oo imply that the sequence {*,} forms a Cauchy sequence when considered as

a sequence of points in M. Therefore there is a unique point y such that xi -*y as

i' —> oo. Notice that y must be a point in X, so we can define G((x,)) = y. It is clear

that G is continuous, so the proof will be complete if we show that Gl(x) is a

nonempty cell-like set for each x e X.

Fix x e X. Define C,■ = {y e Nt\d(y, x) <Lk>iek) and D, = C, n X,. It is clear

that HC, = {x}; i.e., if /?,: C,+ 1 -» Ct denotes the inclusion map, then {x} =

lim{C„j8,}. Pick y e Di+1; then y e Xi+1 and d(x, y) < Lk>i+1ek, so d(x,f(y))

< T.k>iek. Thus /,(^, + i)c £>,. We finish the proof by showing the following:

G\x) = lim{A,/,IA + i} and Sh(lim{ D,,f\Di + 1}) = Sh(lim {C„ B,}). This will
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complete the proof because then G~l(x) is nonempty (it is the inverse limit of an

inverse sequence of nonempty compacta) and it is cell-like because it has the shape

of a point.

Consider the diagram:

fi\Di fi\D) h\D*

Dx -      D2 «-       Z>3 <-      D4     «-       ■••

^*>sPllC2 ^\P2|C3 ^\P3lQ

C, *-      C2 +*      C3 ^      Q     *-      ■■■
ft ft ft

There is an e,-homotopy from Bt to p,|C+1. That homotopy stays in the e,-neighbor-

hood of C, + 1, and thus stays in G. Therefore each of the lower triangles in the

diagram commutes up to homotopy while each of the upper triangles commutes

exactly. Thus we have a shape equivalence from lim {D,, fi\Di+l) to lim {C,,/?,}.

We now show that G~\x) = lim{Z),,/,|Z), + 1}. Pick (x,) g G~\x). Then

d(Xj,xi+l) < e, and x, -> x. Thus d(x,, x) < Ek>iek and x, g Z),. On the other

hand, if (x,) G lim {£>,}, then d(x(, x) < T,k>iek. So x, -* x as i: ̂ > oo and (x,) g

G_1(*)-   n
Remark.  Since every PL manifold has a metric in which closed balls are

subpolyhedra, we may assume that the Z), in the proof above are subpolyhedra.

The following proposition is similar to Proposition 15 of [Hs]. The main difference

is that we do not assume that the bonding maps in the inverse sequences are onto,

but use Lemma 3.1 instead.

Proposition 3.2. Let X be a compact subset of the PL n-manifold M and let

(A,, A",} be a defining sequence for X such that Le, < oo. Suppose {Z,, g,} is an

inverse sequence of compact polyhedra and that for each i there is a PL CE map A,:

Z, ~» Xj. If /,A, + i is arhomotopic to A,g, for each i and L«, < oo, then A:

lim {Z(, gt} -* X defined by A((z,)) = lim, _ x A,(z,) is a CE map.

Proof. Let Z = lim {Z„ g,}. Define Ay. Z ^ A, by Ay((z,)) = Ay(zy). Then

d{AJ+1((z,)), A,((z,.))) = rf(A,.+1(z,+1),A,(z,)) = d(\J+1{zJ+1), \jgj(zJ+1))

< e> + °r

Thus {Ay} forms a Cauchy sequence of maps and therefore converges to a

continuous map A: Z -* A".

Fix x g X To complete the proof we must show that A_1(x) is a nonempty

cell-like subset of Z. Define Z), = {^ g A",|d(x, j>) < E^^e* + aA)} and Et =

X~1(Di). Notice that f(Di+l) c £>,. It is also true that g,(£, + 1) c Et. To see this,

choose w G £, + ,. We must show that g^w) g £; = A,_1(Z>) which is equivalent to
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showing that A,g,(w) g Dt.

d(\,g,{w),x) < d(X,g,(w),fXi+l(w)) + d(f,X, + l(w),x)

<o, + [e,+ rf(X/+1(w),Jt)]

<a, + e,+    £    (ek + ctk)= }Z(<xk + ek).
k>i + l klei

Thus A,g,(w) g E,.

Let G be the map defined in the proof of Lemma 3.1. We make the following

three claims.

(i)A"1(x)= lim{Zs,,g,|£, + 1}.

(h) Sh( lim { E„ g,\El + l}) = Sh( lhn { Z>„ f\Di+1}).

(iii) lhn{Z)„/,|Z), + 1} = G-1(x).

Once claims (i)-(iii) are verified, the proof is complete.

Let w G A_1(x). Then w = (w;) and A,(w,) -> x as i: -> oo. But

rf(*,+i(w,+i)> */(w/)) <a,■ + e,

(by the calculation at the beginning of this proof) and so w, g Et. On the other hand,

if (w,) G lim{£,}, then d(A,.(w1-),x) < e; + a„ so A,(w,) -» * and (w,) e A_1(x).

Thus claim (i) is verified.

The following diagram is homotopy commutative for each i.

f,\Dl+l
D, - A+i

E, «" £, + i
ft|£i+i

Furthermore,   A,-|Zs,- = AI|Aj"1(Z)|) is a homotopy equivalence [La, Theorem 1.2].

Therefore   {A,|£;}   induces   a   shape   equivalence   from    lim {£,., gt\Ej+1}   to

lim {ZX, f\Di+1} and claim (ii) is verified.

The proof of claim (iii) is just like the proof of the corresponding claim in the

proof of Lemma 3.1. This completes the proof of Proposition 3.2.    □

4. A technical lemma. Theorem 1 will be proved by constructing an infinite

sequence of CE maps and then taking limits as in Proposition 3.2. The lemma in this

section is the inductive step in that infinite construction. It is an e-controlled version

of [St] and corresponds to Proposition 6 of [Hs].

Lemma 4.1. Let X be a k-dimensional, LCr compactum tamely embedded in R"\

m > 2k + 3, r < k - 2, and let M be a PL n-manifold, n > k + 3 and n > 2k — r.

If ex, e2, Oj and a2 are positive numbers and

A, mi
*i«- z, - r,

satisfies

(4.1) A"] is a k-dimensional polyhedron which is the spine of a strong (el, r)-deforma-

tion neighborhood N^ of X in Rm;
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(4.2) Nx retracts to Xl via an ex-retraction px: Nx -* Xx;

(4.3) Zj = Ar1 U Mx, where Mx is (r + 2)-dimensional;

(4.4) Mx n A*! is (/- + l)-dimensional and collared in Mx;

(4.5) Ax: Zx -» A", is a PL CE retraction with XX(MX) c M, fl X,;

(4.6) Yj is a k-dimensional subpolyhedron of M;

(4.7) ju1: Zx -* Ylis a PL CE map;

(4.8) if A c A-, and diam[/4] < e,, ?/ie/j diam[jti1(^l)] < a,;

(4.9) ///I c Nx a/iJ diam[/l] < e2, then diam[ju,,p,(/!)] < a2; a/id

(4.10) Px is a regular neighborhood of Yx and q: Px -* Yx is a PL ax-retraction;

then there exists

\2 y.2

X2      *-      Z2      -»       Y2

if i g I h

K Mi
*i      «-      Zx      -»       7,

w/i/c/j satisfies

(4.11) A"2 w a k-dimensional polyhedron which is the spine of a strong (e2, r)-defor-

mation neighborhoodN2 of X in Nx;

(4.12)/=Pl|A-2;

(4.13) Z2 = A"2 U A/2, where M2 is (r + 2)-dimensional;

(4.14) M2 n Af2 is (r + Y)-dimensional and collared in M2;

(4.15) A2: Z2 -» A"2 « a PL CE retraction with X2(M2) c M2 n A"2;

(4.16) Y2 is a k-dimensional polyhedron in Px;

(4.17) A = 9|y2;
(4.18) ju2: Z2 -* y2wfl PL CE map;

(4.19) fijIA'j is so close to nlpl\X2 that if A c A"2 and diam[,4] < e2, then

diam[ju2(/l)] < a2;

(4.20) Xxg is 4(r + \)e1-homotopictofX2 in Kx; and

(4.21) nxg is 8(r + Y)ax-homotopic to h\x2 in Yx.

Proof. We may assume that e2 < ev Let A2 be a strong (e2, /-)-deformation

neighborhood of X in Nx which e2-collapses to a ^-dimensional polyhedron A'2. Let

p2:   A2 -» X2  be the e2-retraction induced by the collapse of A2 to X-, and let

f-Pi\X»
We next construct Z2. It will be constructed in two steps. First we will lift the

attaching map for Mx to X2 and form Z' by attaching Mx to X2. Then Z2 will be

formed by using an e-controlled version of Stallings [St] to attach further mapping

cylinders to Z'. The details follow.

Let B: Mx n Xx -* Xx denote the inclusion map. Since Nx is an (elt /-)-deforma-

tion neighborhood, there exists B': Mx n A^ -> A"2 such that /?' is 2erhomotopic to

/? in Nx. Define Z' = A"2 U ̂  Mx. Notice that fB' is 4erhomotopic to B in Xx. Thus

there is a map g: Z' -> Zj such that g|A"2 =/ and d(x, g(x)) < 4ej for every

x g Mx. The map g is just / on A"2, the identity on Mx minus a small collar on
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Mx n Xx and stretches the collar out over the homotopy from B to fB'. Further-

more, Xx induces a retraction A': Z' -+ X2 such that Xxg and /A' are 4e,-homotopic

in Xx.

Consider nxg: Z' -» Yxc Px. Let g': Z' -> Z*, be a PL general position map

which is aj-homotopic to /i,g. Let 2 denote the singular set of g' and let Af' denote

the mapping cylinder of g'|2: 2 -> g'(2). Then dim 2 < r and dim Af' < r + 1.

We identify 2 with 2 X {0} c A/' and let f: A/' -» g'(2) denote the map which

collapses out the fibers of the mapping cylinder.

We now wish to extend the inclusion map 2 c Z' to a map of M' into Z'. The

a,-homotopy from g' to nxg gives us a map tx: M' -» Z^ such that tJS = |tt,g|2,

Tx\g'(1) = inclusion and the diameter of the image under tx of each fiber of M' is

less than ax. Then at,: Af' -> Yx and ?t,|2 = jti,g|2. Notice that the arhomotopy

from tx to qrx can be used to construct an aj-homotopy form at, to £. The

homotopy is obviously not rel 2, but it does have the property that, when restricted

to 2, it is just the reverse of the arhomotopy from g' to ju,g. Since /ij is a CE map,

there exists a lift t2: Af' -* Zx such that t2|2 = g|2 and such that \i.xT2 is

aphomotopic to qrx rel 2. We may assume that t2 is PL. The next step is to lift to

Z'. We define t3: M' -* Z' as follows. First t3|2 = inclusion and t3|t2_1(A/1) =

g~1T2\T2~1(Mx). Then use Proposition 2.4 to extend t3 to all of Af' in such a way

that gr3 is 5e,-homotopic to t2 rel 2.

Now define M" = M' X [0,l]/{{x} X [0,l]|x G 2}; i.e., M" is obtained from

Af' X [0,1] by identifying each of the sets {x} X [0,1], x g 2, to a point. Notice

that M" is (/• + 2)-dimensional and contains two copies of A/': Af' X {0} and

Af' X {1}. Roughly speaking, we will attach Af" to Z' along one copy of M' to

form Z2 and shrink out fibers in the other copy to form Y2.

The map t3 defines, in a natural way, a map t: Af' X {0} -» Z'. Define

Z" = Z' UT Af', define £': Z" -» Z' to be the map which collapses out the interval

factors in M" and define g": Z" -» Zx by g" = g£'. Then define 7' to be the

polyhedron obtained from Af" by shrinking out fibers of the mapping cylinder

Af' X {1} c Af". Let /i: Z" -* Y' be the natural collapsing map.

We now claim that there is a map it: Y' -» Px such that qtTjx is 8a,-homotopic to

Hxg" in Yx. Since the point preimages of g' are precisely the subsets of Z' which are

identified by /x, we can use g' to define m\Z'. We can further extend m to

Z' U Af' X {1} by making tt(x, 1) = £(x) for each x G Af'. In order to extend it to

the rest of Af " we must find an 8ai-homotopy of g'r3 to £ which is rel 2.

First, there is an arhomotopy of gV3 to jn,gT3 (not rel 2). Next, there is a

5a,-homotopy (this one rel 2) of nxgT3 to ix,t2. But then there is an a,-homotopy

(rel 2) to qrx. Finally, qrx is aj-homotopic to |. All of this gives us an 8aj-homo-

topy from g'T3 to £. On 2 this homotopy is not constant, but is the homotopy from

g'|2 to jn!g|2 followed by the reverse of that same homotopy. We can use a small

collar on 2 in Af' to taper off that homotopy and arrive at the homotopy we seek

which is rel 2. Thus tt: Y' -» Px is defined. We may assume that tt is PL and in

general position.
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Notice that qirp: Z" -* Yx and fixg": Z" -* Yx are 8a,-homotopic. We can also

define a CE map A: Z" -» X2 by A = A'£'. Then the two maps A,g": Z" -* Xx and

/A: Z" -» Xx are 4e1-homotopic in Xx.

Special case: k < (2/3)(n — 1). In this case the dimension of the singular set of tt

is negative and thus it is an embedding. We take Z2 = Z", g = g", Y2 = tt(Y'),

fi2 = m\x, X2 = X, and h = q\Y2. Since p2\X2 = g'|AT2, we can easily make sure that

conclusion (4.19) is satisfied and the proof is complete in this case.

General case. In general, the dimension of the singular set of tt is less than or

equal to r — 1. We inductively apply the same construction to \itt as was applied

above to g'. This gives new polyhedra Z'" and Y" and a map it': Y" -» Px. This

time we will only have to attach polyhedra of dimension (r— l) + 2 = r + l, and so

the dimension of the singular set of tt' will be only r - 2. This is repeated

inductively until it is an embedding, which will take at most r repetitions.   □

5. Proof of Theorem 1. In this section we use the lemmas from the preceding three

sections to prove Theorem 1. The construction is based on that in the proof of

Theorem 19 in [Hs].

Let X, k, r, f, Af, and n be as in the statement of Theorem 1. We begin by

embedding A" as a tame subset of R2*+3. The map /: X -* M can be extended to a

compact neighborhood U of X in R2*+3. We may assume that /: U -* Af is PL and

in general position. Fix a sequence {a,} of positive numbers such that £a, < oo.

Next choose a number e: > 0 such that if A is a compact subset of U and

diam[y4] < ev then diam[f(A)] < av Now let Nx be a strong (e,, r)-deformation

neighborhood of X in U. Let us say that Nx ej-collapses to the /c-dimensional

polyhedron Xx and that the collapse induces the e,-retraction p,: Nx -* Xx.

Since Nx is a strong (ex, r)-deformation neighborhood of X, f\Xx: Xx -» Af is

(r + l)-connected. We can therefore apply Stallings' construction [St] to f\Xx. This

gives us two A>dimensional polyhedra Z, d A\ and Yx c Af, a PL CE retraction A,:

Zx -* Xx and a PL CE map jux: Zj -» Tj. Furthermore, Zx consists of Xx with some

mapping cylinders attached. In particular, we can write Zx = A\ U Mx, where Mx is

(/■ + 2)-dimensional, MXDXX is (r + l)-dimensional, and Afj n A"a is collared in

Afj. We can also arrange that nx\Xx is arbitrarily close to f\Xx, and so we choose

HX\XX to be so close to/1Xx that if A c A^ anddiam[^4] < e1; thendiaml/x^^)] < a,.

We will next apply Lemma 4.1, but we must first specify the number e2 of the

lemma. Choose e2 > 0 such that if A c Nx and diam[/l] < e2, then diamfju.jp^^)]

< a2. Now apply Lemma 4.1. This gives us a new diagram

2 2 * 2

1 /l -I gl i "\

\ Ml

^     «-     zx     -     y:

as well as an e2-neighborhood A2 of A"2.
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Let e3 > 0 be a number such that if A c A2 and diam[/I] < e3, then

diam[ju2p2(/l)] < a3. Apply Lemma 4.1 again, this time to A"2, Z2, and Y2. This

procedure is continued inductively and produces an infinite diagram:

i i i
A4 M4

xA     <-     z4     -»     y4

I h i & I hi
X3 ft,

Xl *~ Z2 -» 73

1/2 i gi i "2

%2    *~     z2     —»     y2

J- /1 1 g\ 1 *i
^1 fi

a-,    -    zx    -»     y,

We can make sure that the e, are chosen in such a way that £e, < 00. Let

Z = lim {Z„ gj} and let y = DP,. By Proposition 3.2 there are CE maps A: Z -» A"

and ju.: Z -+ Y. This completes the construction of y. To finish the proof of the

theorem we need only show that Y is LC. To do so, we prove the following

statement:

Suppose L is an (r + \)-dimensional polyhedron and L0 is a subpolyhedron of L.

For every map F0: L0 -» Yj+X such that htF0 extends to F: L -> Yt there exists an

extension F': L —* Yl + X of F0 such that htF' is [5 + \2(r + l)]a,--homotopic to F

rel Lq in Yt.

This is really just the statement that Proposition 2.4 holds for the neighborhoods

{P,} of 7 It is easy to see that this implies that Y is LC: just take a small singular

/rj-sphere in Y, m < r, homotope it to a point in a small subset of Af, and then apply

the statement above to push that homotopy into Y by pushing it into smaller and

smaller neighborhoods of Y with a Cauchy sequence of maps.

We will indicate how to get the extension F' whose existence was claimed above.

It is constructed by using the CE maps A, and ju, to make the transition from Y to X

and back again. We leave the calculation of the size of the homotopies involved to

the reader.

Since /i/ + 1 is CE, we can lift F0 to a map Fx: L0 -* Z/+1 such that |tt, + ,.F, is

arbitrarily close to F0. We choose it to be so close that if we can extend the map

Pi+iFj, then we are done. Consider fiig,Fx: L0 -* Yt. This map is 8(r + l)a,-

homotopic to hifxi+xFi which extends to all of L (via F) and thus there is an

extension F2: L -* Z, of gtFx. Now consider Xi + XFX: L0 -> Xi+1. Since flXi+xFx is

4e1-homotopic to XjgiFx and XjgiFx extends to A,F2, we have that f,Xi+xFx extends

to F3: L -> Xj. Thus we are in a position to apply Proposition 2.4 to the maps

Xi + XFX:   L0 -* Xi+X and  F3:   L -» Xi which extends fjXi+xFx. Thus there is an
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extension F4: L -» Xi+X of Xj + XFX to all of L. Now use the fact that A, + 1 is CE to

lift F4 to a map Fs: L -* Z,+1 which extends Fx. Now [ii+1F5 is the desired

extension of ni + xFx.   D

Remark 5.1. Notice that (in the proof above) lim {X„ f} c lim { Z„ g,}. So if we

did the extra work necessary to make the map G of Lemma 3.1 a homeomorphism,

we would have X c Z and A: Z -» A" would be a retraction.

Remark 5.2. It might seem more natural to assume in the statement of Theorem 1

that / is (/- + l)-shape connected rather than (r + l)-connected. But the two

assumptions are equivalent because either way we get that the extended map / has

the property that f\Xt: A, -> M is (/• + l)-connected (cf. [Hs, Proposition 14]).
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