Document Type

Article

Publication Title

Conservation Physiology

Abstract

Recent studies suggest that visual and acoustic anthropogenic disturbances can cause physiological stress in animals. Human-induced stress may be particularly problematic for birds as new technologies, such as drones, increasingly invade their low-altitude air space. Although professional and recreational drone usage is increasing rapidly, there is little information on how drones affect avian behavior and physiology. We examined the effects of drone activity on behavior and physiology in adult, box-nesting tree swallows (Tachycineta bicolor). Specifically, we monitored bird behavior during drone flights and in response to a control object and measured telomere lengths and corticosterone levels as indicators of longer-term physiological stress. We predicted that drone-exposed tree swallows would habituate behaviorally after multiple flights, but that telomeres would shorten more quickly and that baseline corticosterone levels would be altered. One significant and two strong, non-significant trends in behavioral assays indicated that adult swallows acted more aggressively towards drone presence compared to a control object, but were slower to approach the drone initially. Swallows were also more reluctant to use nest boxes during drone activity. Tree swallows habituated to drone presence as expected, although the rate of habituation often did not differ between drone-exposed and control groups. Contrary to our prediction, drone activity did not affect telomere length, corticosterone levels, body mass or fledging rates. Overall, our results indicate that a small number of short, targeted, drone flights do not impact tree swallow health or productivity differently than a non-invasive control object. Minor behavioral differences suggest that increasing the frequency of drone use could impact this species. We provide some of the first results addressing how drone activity alters behavioral, physiological and molecular responses to stress in songbirds. A better understanding of these impacts will allow ecologists to make more informed decisions on the use and regulation of new drone technologies.

DOI

10.1093/conphys/coaa080

Publication Date

1-1-2020

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.