Document Type

Article

Publication Title

Physics Letters, Section A: General, Atomic and Solid State Physics

Abstract

The cnoidal wave solution of the integrable Korteweg-de Vries equation is the most basic of its periodic solutions. Following earlier work where the linear stability of these solutions was established, we prove in this Letter that cnoidal waves are (nonlinearly) orbitally stable with respect to so-called subharmonic perturbations: perturbations that are periodic with period any integer multiple of the cnoidal-wave period. Our method of proof combines the construction of an appropriate Lyapunov function with the seminal results of Grillakis, Shatah and Strauss (1987, 1990) [17,18]. The integrability of the Korteweg-de Vries equation is used in that we need the presence of at least one extra conserved quantity in addition to those expected from the Lie point symmetries of the equation.

First Page

4018

Last Page

4022

DOI

10.1016/j.physleta.2010.08.007

Publication Date

8-30-2010

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.